1
|
Zhang S, Bi Y, Tan H. Dark septate endophytic fungus Alternaria sp. 17463 regulates various antioxidant enzymes and compounds to mitigate salt stress caused by different anion salts. J Biotechnol 2025; 401:48-59. [PMID: 39986543 DOI: 10.1016/j.jbiotec.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
In the field of agricultural and environmental management, understanding how dark septate endophytic fungi (DSE) like Alternaria sp. 17463 respond to salt stress is crucial. Prior research has yet to fully explore the anion-specific responses of DSE to salt stress. In this study, we delve into the physiological and biochemical responses of Alternaria sp. 17463 under NaCl and Na2SO4 stress, employing a suite of analytical techniques. We discovered a marked disparity in fungal tolerance, with NaCl inducing a 50 % growth reduction at 0.6 M and a complete growth arrest at 1.4 M, contrasting with Na2SO4's milder 30 % impact at the highest tested concentration. Cell membrane integrity was severely compromised under NaCl, with a 70 % increase in permeability and a 40 % plummet in cell viability at 1.4 M, whereas Na2SO4 induced only a 20 % permeability increase. Antioxidant enzyme profiling revealed a twofold surge in superoxide dismutase (SOD) activity under NaCl at 0.4 M, and a 1.5-fold rise in catalase (CAT) activity under Na2SO4. Furthermore, there was a significant correlation between Na+ concentration and cellular responses, particularly under Na2SO4 stress, where higher sodium tolerance was linked to enhanced melanin, reduced glutathione (GSH), and total glutathione (tGSH) levels. Our findings not only illuminate the nuanced response of Alternaria sp. 17463 to anionic stress but also underscore the fungus's potential as a bioindicator for salt stress. This research paves the way for developing targeted microbial interventions to bolster crop performance in saline environments, offering a significant step forward in precision agriculture.
Collapse
Affiliation(s)
- Shishuang Zhang
- Institute of Ecological and Environmental Restoration in Mine Areas of West China, Xi'an, University of Science and Technology, Xi'an 710054, China; College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yinli Bi
- Institute of Ecological and Environmental Restoration in Mine Areas of West China, Xi'an, University of Science and Technology, Xi'an 710054, China; College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Hai Tan
- Institute of Ecological and Environmental Restoration in Mine Areas of West China, Xi'an, University of Science and Technology, Xi'an 710054, China; College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
2
|
de Almeida JDR, Fonseca RSK, de Sousa NSO, Cortez ACA, Lima ES, de Souza Oliveira JG, de Souza ÉS, Frickmann H, de Souza JVB. Antifungal potential, mechanism of action, and toxicity of 1,4-naphthoquinone derivatives. Eur J Microbiol Immunol (Bp) 2024; 14:289-295. [PMID: 39178045 PMCID: PMC11393642 DOI: 10.1556/1886.2024.00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Background The rising prevalence of fungal infections and challenges such as adverse effects and resistance against existing antifungal agents have driven the exploration of new antifungal substances. Methods We specifically investigated naphthoquinones, known for their broad biological activities and promising antifungal capabilities. It specifically examined the effects of a particular naphthoquinone on the cellular components of Candida albicans ATCC 60193. The study also assessed cytotoxicity in MRC-5 cells, Artemia salina, and the seeds of tomatoes and arugula. Results Among four tested naphthoquinones, 2,3-DBNQ (2,3-dibromonaphthalene-1,4-dione) was identified as highly effective, showing potent antifungal activity at concentrations between 1.56 and 6.25 μg mL-1. However, its cytotoxicity in MRC-5 cells (IC50 = 15.44 µM), complete mortality in A. salina at 50 μg mL-1, and significant seed germination inhibition suggest limitations for its clinical use. Conclusions The findings indicate that primary antifungal mechanism of 2,3-DBNQ might involve disrupting fungal membrane permeability, which leads to increased nucleotide leakage. This insight underscores the need for further research to enhance the selectivity and safety of naphthoquinones for potential therapeutic applications.
Collapse
Affiliation(s)
- Juan Diego Ribeiro de Almeida
- 1Postgraduate Program in Biotechnology and Natural Resources of the Amazon, Higher School of Health Sciences, Amazonas State University (UEA), Manaus, Amazonas, Brazil
- 2Mycology Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Raissa Sayumy Kataki Fonseca
- 1Postgraduate Program in Biotechnology and Natural Resources of the Amazon, Higher School of Health Sciences, Amazonas State University (UEA), Manaus, Amazonas, Brazil
- 2Mycology Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | | | - Ana Cláudia Alves Cortez
- 2Mycology Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Emerson Silva Lima
- 3Faculty of Pharmaceutical Sciences, Federal University of Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Juliana Gomes de Souza Oliveira
- 4Collection of Microorganisms of Medical Interest, National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Érica Simplício de Souza
- 1Postgraduate Program in Biotechnology and Natural Resources of the Amazon, Higher School of Health Sciences, Amazonas State University (UEA), Manaus, Amazonas, Brazil
- 5Higher School of Technology, Amazonas State University (UEA), Manaus, Amazonas, Brazil
| | - Hagen Frickmann
- 6Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
- 7Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital, Germany
| | | |
Collapse
|
3
|
Santos TB, de Moraes LGC, Pacheco PAF, dos Santos DG, Ribeiro RMDAC, Moreira CDS, da Rocha DR. Naphthoquinones as a Promising Class of Compounds for Facing the Challenge of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:1577. [PMID: 38004442 PMCID: PMC10674926 DOI: 10.3390/ph16111577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative disease that affects approximately 6.1 million people and is primarily caused by the loss of dopaminergic neurons. Naphthoquinones have several biological activities explored in the literature, including neuroprotective effects. Therefore, this review shows an overview of naphthoquinones with neuroprotective effects, such as shikonin, plumbagin and vitamin K, that prevented oxidative stress, in addition to multiple mechanisms. Synthetic naphthoquinones with inhibitory activity on the P2X7 receptor were also found, leading to a neuroprotective effect on Neuro-2a cells. It was found that naphthazarin can act as inhibitors of the MAO-B enzyme. Vitamin K and synthetic naphthoquinones hybrids with tryptophan or dopamine showed inhibition of the aggregation of α-synuclein. Synthetic derivatives of juglone and naphthazarin were able to protect Neuro-2a cells against neurodegenerative effects of neurotoxins. In addition, routes for producing synthetic derivatives were also discussed. With the data presented, 1,4-naphthoquinones can be considered as a promising class in the treatment of PD and this review aims to assist the scientific community in the application of these compounds. The derivatives presented can also support further research that explores their structures as synthetic platforms, in addition to helping to understand the interaction of naphthoquinones with biological targets related to PD.
Collapse
Affiliation(s)
- Thaís Barreto Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Leonardo Gomes Cavalieri de Moraes
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Paulo Anastácio Furtado Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Douglas Galdino dos Santos
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Rafaella Machado de Assis Cabral Ribeiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| | - Caroline dos Santos Moreira
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
- Instituto Federal do Rio de Janeiro, Campus Paracambi, Rua Sebastião Lacerda s/n°, Fábrica, Paracambi CEP 26.600-000, RJ, Brazil
| | - David Rodrigues da Rocha
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n°, Niterói CEP 24.020-141, RJ, Brazil; (T.B.S.); (L.G.C.d.M.); (P.A.F.P.); (D.G.d.S.); (R.M.d.A.C.R.); (C.d.S.M.)
| |
Collapse
|
4
|
Topçu S, Şeker MG. In Vitro Antimicrobial Effects and Inactivation Mechanisms of 5,8-Dihydroxy-1,4-Napthoquinone. Antibiotics (Basel) 2022; 11:antibiotics11111537. [PMID: 36358192 PMCID: PMC9687054 DOI: 10.3390/antibiotics11111537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Naphthoquinones are an important class of natural organic compounds that have antimicrobial effects. However, the mechanisms of their action remain to be elucidated. Therefore, the antimicrobial activity of the chemically synthesized naphthoquinone derivative, 5,8-dihydroxy-1,4-naphthoquinone, was investigated in this study against 10 different microorganisms. Its inhibitory activity was evident against Bacillus cereus, Proteus vulgaris, Salmonella enteritidis, Staphylococcus epidermidis, S. aureus, and Candida albicans, and its MIC50 values were determined to be 14, 10, 6, 2, 4, 1.2, and <0.6 µg/mL, respectively. Moreover, the crystal violet uptake, TTC dehydrogenase activity, protein/DNA leakage, and DNA damage of the compound in these microorganisms were also investigated to reveal the antimicrobial mechanisms. In addition, scanning electron microscopy was used to detect physiological damage to the cell membrane of S. epidermidis, S. aureus, and C. albicans, which was most severe in the crystal violet uptake assay. The overall results showed that 5,8-dihydroxy-1,4-naphthoquinone exhibited its effects on S. aureus, S. epidermidis, and C. albicans by various mechanisms, especially membrane damage and membrane integrity disruption. It also caused DNA leakage and damage along with respiratory chain disruption (78%) in C. albicans. Similarly, it caused varying degrees of reduction in the respiratory activity of S. aureus (47%), S. epidermidis (16%), B. cereus (12%), S. enteritidis (9%), and P. vulgaris (8%). Therefore, 5,8-dihydroxy-1,4-naphthoquinone proved to be a very effective antifungal and antibacterial agent and could be considered a new potential drug candidate, inspiring further discoveries in these microorganisms.
Collapse
|
5
|
de Almeida PDO, Dos Santos Barbosa Jobim G, Dos Santos Ferreira CC, Rocha Bernardes L, Dias RB, Schlaepfer Sales CB, Valverde LDF, Rocha CAG, Soares MBP, Bezerra DP, de Carvalho da Silva F, Cardoso MFDC, Ferreira VF, Brito LF, Pires de Sousa L, de Vasconcellos MC, Lima ES. A new synthetic antitumor naphthoquinone induces ROS-mediated apoptosis with activation of the JNK and p38 signaling pathways. Chem Biol Interact 2021; 343:109444. [PMID: 33939975 DOI: 10.1016/j.cbi.2021.109444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/11/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Quinones are plant-derived secondary metabolites that present diverse pharmacological properties, including antibacterial, antifungal, antiviral, anti-inflammatory, antipyretic and anticancer activities. In the present study, we evaluated the cytotoxic effect of a new naphthoquinone 6b,7-dihydro-5H-cyclopenta [b]naphtho [2,1-d]furan-5,6 (9aH)-dione) (CNFD) in different tumor cell lines. CNFD displayed cytotoxic activity against different tumor cell lines, especially in MCF-7 human breast adenocarcinoma cells, which showed IC50 values of 3.06 and 0.98 μM for 24 and 48 h incubation, respectively. In wound-healing migration assays, CNFD promoted inhibition of cell migration. We have found typical hallmarks of apoptosis, such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of caspases-9 and-3 activation, increase of internucleosomal DNA fragmentation without affecting the cell membrane permeabilization, increase of ROS production, and loss of mitochondrial membrane potential induced by CNFD. Moreover, gene expression experiments indicated that CNFD increased the expression of the genes CDKN1A, FOS, MAX, and RAC1 and decreased the levels of mRNA transcripts of several genes, including CCND1, CDK2, SOS1, RHOA, GRB2, EGFR and KRAS. The CNFD treatment of MCF-7 cells induced the phosphorylation of c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) and inactivation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In a study using melanoma cells in a murine model in vivo, CNFD induced a potent anti-tumor activity. Herein, we describe, for the first time, the cytotoxicity and anti-tumor activity of CNFD and sequential mechanisms of apoptosis in MCF-7 cells. CNFD seems to be a promising candidate for anti-tumor therapy.
Collapse
Affiliation(s)
- Patricia D O de Almeida
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil
| | - Gleyce Dos Santos Barbosa Jobim
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil
| | - Caio César Dos Santos Ferreira
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil
| | - Lucas Rocha Bernardes
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil
| | - Rosane B Dias
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Caroline B Schlaepfer Sales
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia - UFBA, Salvador, Bahia, 40110-902, Brazil
| | - Ludmila de F Valverde
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Clarissa A G Rocha
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Milena B P Soares
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Fernando de Carvalho da Silva
- Laboratory of Carbohydrate and Nucleotide Synthesis, Department of Organic Chemistry, Federal Fluminense University - UFF, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Mariana Filomena do Carmo Cardoso
- Laboratory of Carbohydrate and Nucleotide Synthesis, Department of Organic Chemistry, Federal Fluminense University - UFF, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Vitor Francisco Ferreira
- Laboratory of Carbohydrate and Nucleotide Synthesis, Department of Organic Chemistry, Federal Fluminense University - UFF, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Larissa F Brito
- Laboratory of Signaling in Inflammation, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Lirlândia Pires de Sousa
- Laboratory of Signaling in Inflammation, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marne C de Vasconcellos
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil
| | - Emerson S Lima
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil.
| |
Collapse
|
6
|
Alves Eloy M, Ribeiro R, Martins Meireles L, Antonio de Sousa Cutrim T, Santana Francisco C, Lirian Javarini C, Borges WDS, Costa AV, Queiroz VTD, Scherer R, Lacerda V, Alves Bezerra Morais P. Thymol as an Interesting Building Block for Promising Fungicides against Fusarium solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6958-6967. [PMID: 34152748 DOI: 10.1021/acs.jafc.0c07439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The semisynthesis of 15 new thymol derivatives was achieved through Williamson synthesis and copper-catalyzed azide-alkyne cycloaddition (CuAAC) approaches. The reaction of CuAAC using the "Click Chemistry" strategy, in the presence of an alkynyl thymol derivative and commercial or prepared azides, provided nine thymol derivatives under microwave irradiation. This procedure reduces reaction time and cost. All molecular entities were elucidated by 1H and 13C NMR, IR, and HRMS data. These derivatives were evaluated in vitro for their fungicidal activity against Fusarium solani sp. Among the nine triazolic thymol derivatives obtained, seven of them were found to have moderated antifungal activity. In contrast, naphthoquinone/thymol hybrid ether 2b displayed activity comparable with that of the commercial fungicide thiabendazole. The structure-activity relationship for the most active compound 2b was discussed, and the mode of action was predicted by a possible binding to the fungic ergosterol and interference of osmotic balance of K+ into the extracellular medium.
Collapse
Affiliation(s)
- Mariana Alves Eloy
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000, Alegre, Espirito Santo, Brazil
| | - Rayssa Ribeiro
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000, Alegre, Espirito Santo, Brazil
| | - Leandra Martins Meireles
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, 29103-900, Vila Velha, Espirito Santo, Brazil
| | - Thiago Antonio de Sousa Cutrim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, 29103-900, Vila Velha, Espirito Santo, Brazil
| | - Carla Santana Francisco
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910, Vitória, Espirito Santo, Brazil
| | - Clara Lirian Javarini
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910, Vitória, Espirito Santo, Brazil
| | - Warley de Souza Borges
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910, Vitória, Espirito Santo, Brazil
| | - Adilson Vidal Costa
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000, Alegre, Espirito Santo, Brazil
| | - Vagner Tebaldi de Queiroz
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000, Alegre, Espirito Santo, Brazil
| | - Rodrigo Scherer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, 29103-900, Vila Velha, Espirito Santo, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910, Vitória, Espirito Santo, Brazil
| | - Pedro Alves Bezerra Morais
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000, Alegre, Espirito Santo, Brazil
| |
Collapse
|
7
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
8
|
da Silva Oliveira V, Dantas ED, de Sousa Queiroz AT, de Freitas Oliveira JW, de Sousa da Silva M, Ferreira PG, de Carvalho da Siva F, Ferreira VF, de Lima ÁAN. Novel Solid Dispersions of Naphthoquinone Using Different Polymers for Improvement of Antichagasic Activity. Pharmaceutics 2020; 12:pharmaceutics12121136. [PMID: 33255502 PMCID: PMC7760255 DOI: 10.3390/pharmaceutics12121136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
IVS320 (3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione) is a naphthoquinone that has low solubility in aqueous medium, a physical behavior that limits its biological activities, considering that compounds from this class have several activities. In this work, solid dispersions (SDs) prepared between IVS320 and polymers hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), and polyvinylpyrrolidone (PVP) were developed using physical mixture (PM), kneading (KN), and rotary evaporation (RE) methods. Dispersions were investigated using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). In addition, in vitro antiparasitic activity in Trypanosoma cruzi Y strains was evaluated. Physical-chemical characterization demonstrated the formation of SDs through the interaction of IVS320 with polymeric matrices. SDs of IVS320-polymer presented a significant potentiation of antichagasic activity, with inhibitory growth around 62% (IVS320-HPMC/RE), 55% (IVS320-PEG/RE), and 85% (IVS320-PVP/RE), while pure IVS320 showed a value of 48% for the highest concentrations evaluated (50 µg/mL).
Collapse
Affiliation(s)
- Verônica da Silva Oliveira
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
| | - Elen Diana Dantas
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
| | - Anna Thereza de Sousa Queiroz
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
| | - Johny Wysllas de Freitas Oliveira
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
| | - Marcelo de Sousa da Silva
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University Lisbon, 1800-166 Lisbon, Portugal
| | - Patricia Garcia Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, Rio de Janeiro 24241-002, Brazil; (P.G.F.); (V.F.F.)
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, Rio de Janeiro 24241-002, Brazil; (P.G.F.); (V.F.F.)
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil; (V.d.S.O.); (E.D.D.); (A.T.d.S.Q.); (J.W.d.F.O.); (M.d.S.d.S.)
- Correspondence: ; Tel.: +55-84-99928-8864
| |
Collapse
|
9
|
Venil CK, Velmurugan P, Dufossé L, Renuka Devi P, Veera Ravi A. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J Fungi (Basel) 2020; 6:E68. [PMID: 32443916 PMCID: PMC7344934 DOI: 10.3390/jof6020068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.
Collapse
Affiliation(s)
| | - Palanivel Velmurugan
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, Indian Ocean, France
| | - Ponnuswamy Renuka Devi
- Department of Biotechnology, Anna University, Regional Campus – Coimbatore, Coimbatore 641046, Tamil Nadu, India;
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| |
Collapse
|
10
|
Espinosa-Bustos C, Canales C, Ramírez G, Jaque P, Salas CO. Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-naphthoquinone derivatives: A combined electrochemical and computational study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Pintas SK, Quave CL. A Review of Botanicals Exhibiting Antifungal Activity Against Malassezia spp. Implicated in Common Skin Conditions. CURRENT DERMATOLOGY REPORTS 2019. [DOI: 10.1007/s13671-019-00274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Spicer SK, Subramani A, Aguila AL, Green RM, McClelland EE, Bicker KL. Toward a clinical antifungal peptoid: Investigations into the therapeutic potential of AEC5. Biopolymers 2019; 110:e23276. [PMID: 30938841 PMCID: PMC6660985 DOI: 10.1002/bip.23276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.
Collapse
Affiliation(s)
- Sabrina K. Spicer
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Aarthi Subramani
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Angelica L. Aguila
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - R. Madison Green
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Erin E. McClelland
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| |
Collapse
|
13
|
Garcia Ferreira P, Pereira Borba-Santos L, Noronha LL, Deckman Nicoletti C, de Sá Haddad Queiroz M, de Carvalho da Silva F, Rozental S, Omena Futuro D, Francisco Ferreira V. Synthesis, Stability Studies, and Antifungal Evaluation of Substituted α- and β-2,3-Dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii. Molecules 2019; 24:molecules24050930. [PMID: 30866442 PMCID: PMC6429059 DOI: 10.3390/molecules24050930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Sporotrichosis is a neglected fungal infection caused by Sporothrix spp., which have a worldwide distribution. The standard antifungal itraconazole has been recommended as a first-line therapy. However, failure cases in human and feline treatment have been reported in recent years. This study aimed to synthesize several α- and β-2,3-dihydrofuranaphthoquinones and evaluate them against Sporothrix schenckii and Sporothrix brasiliensis—the main etiological agents of sporotrichosis in Brazil. The stability of these compounds was also investigated under different storage conditions for 3 months. The samples were removed at 0, 60, and 90 days and assessed by 1H-NMR, and their in vitro antifungal susceptibility was tested. Furthermore, we evaluated the superficial changes caused by the most effective and stable compounds using scanning electron microscopy and determined their effects when combined with itraconazole. Nine dihydrofuranaphthoquinones showed good antifungal activity and stability, with MIC values of 2–32 µM. Compounds 6 and 10 were the most active dihydrofuranaphthoquinones in vitro for both species; in fungi, these compounds induced yeast–hyphae conversion and alteration in the hyphae and conidia structures. Compound 10 also exhibited a synergistic activity with itraconazole against S. schenckii, with a ΣFIC index value of 0.3. Our results indicate that Compounds 6 and 10 are potential candidates for the development of new antifungal agents for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Luana Pereira Borba-Santos
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Leticia Lorena Noronha
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Caroline Deckman Nicoletti
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Marcella de Sá Haddad Queiroz
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói-RJ 24210-141, Brazil.
| | - Sônia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| |
Collapse
|
14
|
Screening and Antifungal Activity of a β-Carboline Derivative against Cryptococcus neoformans and C. gattii. Int J Microbiol 2019; 2019:7157845. [PMID: 30805002 PMCID: PMC6362477 DOI: 10.1155/2019/7157845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Cryptococcosis is a fungal disease of bad prognosis due to its pathogenicity and the toxicity of the drugs used for its treatment. The aim of this study was to investigate the medicinal potential of carbazole and β-carboline alkaloids and derivatives against Cryptococcus neoformans and C. gattii. Methods MICs were established in accordance with the recommendations of the Clinical and Laboratory Standards Institute for alkaloids and derivatives against C. neoformans and C. gattii genotypes VNI and VGI, respectively. A single active compound was further evaluated against C. neoformans genotypes VNII, VNIII, and VNIV, C. gattii genotypes VGI, VGIII, and VGIV, Candida albicans ATCC 36232, for cytotoxicity against the MRC-5 lineage of human fibroblasts and for effects on fungal cells (cell wall, ergosterol, and leakage of nucleic acids). Results Screening of 11 compounds revealed 8-nitroharmane as a significant inhibitor (MIC 40 μg/mL) of several C. neoformans and C. gattii genotypes. It was not toxic to fibroblasts (IC50 > 50 µg/mL) nor did it alter fungal cell walls or the concentration of ergosterol in C. albicans or C. neoformans. It increased leakage of substances that absorb at 260 nm. Conclusions The synthetic β-carboline 8-nitroharmane significantly inhibits pathogenic Cryptococcus species and is interesting as a lead compound towards new therapy for Cryptococcus infections.
Collapse
|
15
|
Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Silva FCDA, Rozental S, Ferreira VF. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018; 90:1187-1214. [PMID: 29873671 DOI: 10.1590/0001-3765201820170815] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Naphthoquinones are the most commonly occurring type of quinones in nature. They are a diverse family of secondary metabolites that occur naturally in plants, lichens and various microorganisms. This subgroup is constantly being expanded through the discovery of new natural products and by the synthesis of new compounds via innovative techniques. Interest in quinones and the search for new biological activities within the members of this class have intensified in recent years, as evidenced by the evaluation of the potential antimicrobial activities of quinones. Among fungi of medical interest, yeasts of the genus Candida are of extreme importance due to their high frequency of colonization and infection in humans. The objective of this review is to describe the development of naphthoquinones as antifungals for the treatment of Candida species and to note the most promising compounds. By using certain criteria for selection of publications, 68 reports involving both synthetic and natural naphthoquinones are discussed. The activities of a large number of substances were evaluated against Candida albicans as well as against 7 other species of the genus Candida. The results discussed in this review allowed the identification of 30 naphthoquinones with higher antifungal activities than those of the currently used drugs.
Collapse
Affiliation(s)
- Débora O Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Caroline D Nicoletti
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luana P Borba-Santos
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C DA Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Sonia Rozental
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
16
|
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 2018; 18:4810751. [DOI: 10.1093/femsyr/foy003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
|
17
|
FUTURO DÉBORAO, FERREIRA PATRICIAG, NICOLETTI CAROLINED, BORBA-SANTOS LUANAP, SILVA FERNANDOCDA, ROZENTAL SONIA, FERREIRA VITORFRANCISCO. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018. [DOI: 10.1590/0001-3765201820170815 pmid: 29873671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
18
|
Characterization and Trypanocidal Activity of a Novel Pyranaphthoquinone. MOLECULES (BASEL, SWITZERLAND) 2017; 22:molecules22101631. [PMID: 28973960 PMCID: PMC6151607 DOI: 10.3390/molecules22101631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022]
Abstract
Chagas disease is an endemic parasitic infection that occurs in 21 Latin American countries. New therapies for this disease are urgently needed, as the only two drugs available (nifurtimox and benznidazol) have high toxicity and variable efficacy in the disease’s chronic phase. Recently, a new chemical entity (NCE) named Pyranaphthoquinone (IVS320) was synthesized from lawsone. We report herein, a detailed study of the physicochemical properties and in vitro trypanocidal activity of IVS320. A series of assays were performed for characterization, where thermal, diffractometric, and morphological analysis were performed. In addition, the solubility, permeability, and hygroscopicity of IVS320 were determined. The results show that its poor solubility and low permeability may be due to its high degree of crystallinity (99.19%), which might require the use of proper techniques to increase the IVS320’s aqueous solubility and permeability. The trypanocidal activity study demonstrated that IVS320 is more potent than the reference drug benznidazole, with IC50/24 h of 1.49 ± 0.1 μM, which indicates that IVS320 has potential as a new drug candidate for the treatment of Chagas disease.
Collapse
|
19
|
Shrestha JP, Baker C, Kawasaki Y, Subedi YP, Vincent de Paul NN, Takemoto JY, Chang CWT. Synthesis and bioactivity investigation of quinone-based dimeric cationic triazolium amphiphiles selective against resistant fungal and bacterial pathogens. Eur J Med Chem 2016; 126:696-704. [PMID: 27951483 DOI: 10.1016/j.ejmech.2016.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/19/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
A series of synthetic dimeric cationic anthraquinone analogs (CAAs) with potent antimicrobial activities against a broad range of fungi and bacteria were developed. These compounds were prepared in 2-3 steps with high overall yield and possess alkyl chain, azole, quinone, and quaternary ammonium complexes (QACs). In vitro biological evaluations reveal prominent inhibitory activities of lead compounds against several drug-susceptible and drug-resistant fungal and bacterial strains, including MRSA, VRE, Candida albicans and Aspergillus flavus. Mode of action investigation reveals that the synthesized dimeric CAA's can disrupt the membrane integrity of fungi. Computational studies reveal possible designs that can revive the activity of QACs against drug-resistant bacteria. Cytotoxicity assays in SKOV-3, a cancer cell line, show that the lead compounds are selectively toxic to fungi and bacteria over human cells.
Collapse
Affiliation(s)
- Jaya P Shrestha
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Coleman Baker
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Yukie Kawasaki
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Yagya P Subedi
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | | | - Jon Y Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Cheng-Wei Tom Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| |
Collapse
|
20
|
New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur J Med Chem 2016; 124:1019-1025. [DOI: 10.1016/j.ejmech.2016.10.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
|
21
|
Lagnika L, Amoussa AMO, Adjileye RAA, Laleye A, Sanni A. Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy-vegetable consumed in Bénin, West Africa. Altern Ther Health Med 2016; 16:34. [PMID: 26817601 PMCID: PMC4728828 DOI: 10.1186/s12906-016-1014-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/22/2016] [Indexed: 02/04/2023]
Abstract
Background Acmella uliginosa (Asteraceae) is a flowering plant whose leaves are consumed as a vegetable in Benin. They are also traditionally used as an antibiotic in the treatment of infectious diseases. To evaluate the therapeutic potential and toxicity effect of this leafy-vegetable, the antibacterial, antifungal, antioxidant activities and, toxicity and phytochemical constituents were investigated. Methods Dichloromethane, methanol and aqueous extracts of Acmella uliginosa were evaluated for their antimicrobial activity against six bacterial and six fungi strains. Antibacterial and antifungal activities were investigated by microdilution method and agar diffusion method respectively. Antioxidant activity was assessed using the 2,2-diphenyl-1-picryl-hydrazyl assay and phytochemical screening was carried out using standard procedures. Finally, oral acute toxicity at a dose of 2000 mg/kg was done according to the Organization for Economic Co-operation and Development guideline n° 423. Results The antibacterial activity was broad spectrum, inhibiting both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration ranged from 0.625 to 5 mg/ml. The antifungal evaluation show that all the extracts inhibited mycelial growth and sporulation of fungi with percentages of inhibition ranging from 9.39 to 75.67 % and 22.04 to 99.77 %, respectively. In DPPH radical scavenging assay, the effect on reducing free radicals increased in a dose dependent manner. The percentage of inhibition of DPPH ranged from 0.94 to 73.07 %. Phytochemical screening revealed the presence of coumarin, flavonoid, naphtoquinone, anthracene derivative, saponin, lignan, triterpene and tannin. The dichloromethane and methanol extracts showed the best biological activities; they were also shown as the best extraction solvents of phytochemicals. In the acute toxicity evaluation, all animals were physically active and no deaths of rats were observed during the test. However, the aqueous extract promoted biochemical, hematological and histopathological alterations of treated rats at 2000 mg/kg body weight. Conclusion A. uliginosa extracts contains antimicrobial, antioxidant agents and was not lethal for rats when ingested. However, according to the results obtained for biochemical, hematological, and histopathological analysis, caution is required regarding its consumption.
Collapse
|
22
|
da S Souza LG, Almeida MCS, Lemos TLG, Ribeiro PRV, de Brito ES, Silva VLM, Silva AMS, Braz-Filho R, Costa JGM, Rodrigues FFG, Barreto FS, de Moraes MO. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes. Bioorg Med Chem Lett 2015; 26:435-439. [PMID: 26684850 DOI: 10.1016/j.bmcl.2015.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022]
Abstract
Biflorin 1 is a biologically active quinone, isolated from Capraria biflora. Five new biflorin-based nitrogen derivatives were synthesized, of which two were mixtures of (E)- and (Z)- isomers: (Z)-2a, (Z)-2b, (Z)-3a, (Z)- and (E)-3b, (Z)- and (E)-3c. The antibacterial activity was investigated using the microdilution method for determining the minimum inhibitory concentration (MIC) against six bacterial strains. Tests have shown that these derivatives have potential against all bacterial strains. The cytotoxic activity was also evaluated against three strains of cancer cells, but none of the derivatives showed activity.
Collapse
Affiliation(s)
- Luciana G da S Souza
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil
| | - Macia C S Almeida
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil
| | - Telma L G Lemos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil.
| | - Paulo R V Ribeiro
- Embrapa Agroindustria Tropical, R Dra Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Edy S de Brito
- Embrapa Agroindustria Tropical, R Dra Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Vera L M Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - José G M Costa
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Fábio F G Rodrigues
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Francisco S Barreto
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| | - Manoel O de Moraes
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| |
Collapse
|
23
|
Reis MIP, Campos VR, Resende JALC, Silva FC, Ferreira VF. A new and efficient procedure for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones. Beilstein J Org Chem 2015; 11:1235-40. [PMID: 26425181 PMCID: PMC4578459 DOI: 10.3762/bjoc.11.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/03/2015] [Indexed: 11/23/2022] Open
Abstract
A new and efficient method for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones in one step with high yields from the reaction of lawsone with 1,3,5-triazinanes was developed.
Collapse
Affiliation(s)
- Marcelo Isidoro P Reis
- Universidade Federal Fluminense, Departamento de Química Orgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vinícius R Campos
- Universidade Federal Fluminense, Departamento de Química Orgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Jackson A L C Resende
- Universidade Federal Fluminense, Departamento de Química Inorgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando C Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Química Orgânica, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| |
Collapse
|