1
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Getachew D, Gebre-Michael T, Balkew M, Tekie H. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia. Parasit Vectors 2019; 12:257. [PMID: 31122286 PMCID: PMC6533711 DOI: 10.1186/s13071-019-3499-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background Vector control interventions using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly practiced tools for the control of malaria in Ethiopia. In order to evaluate the effectiveness of these control interventions, and understand the prevailing malaria vectors, their incrimination in disease transmission, and their resting and feeding behavior, we set out to identify the Anopheles species, their blood meal sources, and entomological inoculation rate (EIR) in Ghibe and Darge within the Ghibe River basin, southwestern Ethiopia. Methods Adult Anopheles mosquitoes were sampled both indoors and outdoors from January 2015 to October 2016 using Centers for Disease Control and Prevention (CDC) light traps, pyrethrum spray catch (PSC), artificial pit shelters and mouth aspirators. Mosquito species were morphologically identified, and their blood meal sources and malaria sporozoite rates were assessed using enzyme-linked immunosorbent assays. Results In total, 13 species of Anopheles mosquitoes were identified, among which Anopheles gambiae (s.l.) was the predominant species: 87.9 and 67.7% in Ghibe and Darge, respectively. The mean density of An. gambiae (s.l.) collected per night using CDC light traps was 1.8 and 0.7 outdoors and indoors, respectively, in Ghibe, and 0.125 and 0.07 indoors and outdoors, respectively, in Darge. Anopheles mosquito abundance was higher in houses near the river than in houses far from the river in both study sites. Among Anopheles mosquitoes sampled using CDC light trap catches, 67.6% were unfed and the indoor and outdoor human blood indices of An. gambiae (s.l.) were 58.4 and 15.8%, respectively in Ghibe, while in Darge, they were 57.1 and 50%, respectively. Sporozoite rates were 0.07% for P. vivax and 0.07% for P. falciparum in Ghibe and zero in Darge. In Ghibe, the overall EIRs for P. falciparum and P. vivax were zero and 8.4 infective bites/person/year, respectively, in 2015, while zero and 5.4 infective bites/person/year for P. vivax and P. falciparum, respectively, in 2016. No Plasmodium-positive Anopheles mosquitoes were identified from Darge. Conclusions Anopheles gambiae (s.l.), the principal vector of malaria in Ethiopia was the most abundant species both indoors and outdoors, fed both on human and cattle blood and occurred at higher frequencies near rivers. Anopheles gambiae (s.l.) that were circumsporozoite-positive for Plasmodium species were collected from Ghibe, but not Darge.
Collapse
Affiliation(s)
- Dejene Getachew
- Department of Biology, Dire Dawa University, P. O. Box 1362, Dire Dawa, Ethiopia. .,Department of Zoological Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| | - Teshome Gebre-Michael
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Habte Tekie
- Department of Zoological Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Ganser C, Gregory AJ, McNew LB, Hunt LA, Sandercock BK, Wisely SM. Fine-scale distribution modeling of avian malaria vectors in north-central Kansas. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:114-122. [PMID: 27232133 DOI: 10.1111/jvec.12202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Infectious diseases increasingly play a role in the decline of wildlife populations. Vector-borne diseases, in particular, have been implicated in mass mortality events and localized population declines are threatening some species with extinction. Transmission patterns for vector-borne diseases are influenced by the spatial distribution of vectors and are therefore not uniform across the landscape. Avian malaria is a globally distributed vector-borne disease that has been shown to affect endemic bird populations of North America. We evaluated shared habitat use between avian malaria vectors, mosquitoes in the genus Culex and a native grassland bird, the Greater Prairie-Chicken (Tympanuchus cupido), by (1) modeling the distribution of Culex spp. occurrence across the Smoky Hills of north-central Kansas using detection data and habitat variables, (2) assessing the occurrence of these vectors at nests of female Greater Prairie-Chickens, and (3) evaluating if shared habitat use between vectors and hosts is correlated with malarial infection status of the Greater Prairie-Chicken. Our results indicate that Culex occurrence increased at nest locations compared to other available but unoccupied grassland habitats; however the shared habitat use between vectors and hosts did not result in an increased prevalence of malarial parasites in Greater Prairie-Chickens that occupied habitats with high vector occurrence. We developed a predictive map to illustrate the associations between Culex occurrence and infection status with malarial parasites in an obligate grassland bird that may be used to guide management decisions to limit the spread of vector-borne diseases.
Collapse
Affiliation(s)
- Claudia Ganser
- Division of Biology, Kansas State University, Manhattan, KS 60506, U.S.A
- Department of Wildlife Ecology Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Andrew J Gregory
- School of Earth, the Environment, Society, Bowling Green State University, Bowling Green, OH 43403, U.S.A
| | - Lance B McNew
- Division of Biology, Kansas State University, Manhattan, KS 60506, U.S.A
- Department of Animal Range Sciences, Montana State University, Bozeman, MT 59717, U.S.A
| | - Lyla A Hunt
- Division of Biology, Kansas State University, Manhattan, KS 60506, U.S.A
| | - Brett K Sandercock
- Division of Biology, Kansas State University, Manhattan, KS 60506, U.S.A
| | - Samantha M Wisely
- Department of Wildlife Ecology Conservation, University of Florida, Gainesville, FL 32611, U.S.A..
| |
Collapse
|
4
|
Abstract
To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna malaria; larval control may be considered though its role is not so far well established. In contrast, urban malaria in the Indian subcontinent is associated with higher risks than most adjacent rural areas, and larval control has a definite, though not exclusive, role. Simulation modelling of cost-effectiveness of malaria control strategies in different scenarios should prioritize ecotypes where malaria control encounters serious technical problems. Further field research on malaria and ecology should be interdisciplinary, especially with geography, and pay more attention to juxtapositions and to anthropic elements, especially migration.
Collapse
Affiliation(s)
- Allan Schapira
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
5
|
Kamdem C, Fouet C, Etouna J, Etoa FX, Simard F, Besansky NJ, Costantini C. Spatially explicit analyses of anopheline mosquitoes indoor resting density: implications for malaria control. PLoS One 2012; 7:e31843. [PMID: 22348131 PMCID: PMC3279417 DOI: 10.1371/journal.pone.0031843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes' habitats and behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be carefully evaluated. Methodology/Principal Findings We used correlograms, directional variograms, Local Indicators of Spatial Association (LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in two dominant malaria vectors sampled with a 5×5 km grid over a 2500 km2 area in the forest domain of Cameroon. SADIE analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa<0.05 and Ia = 1.464, Pa>0.05, respectively). Correlograms and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices. Conclusions/Significance Our study illustrates the importance of spatial analyses in unraveling the complex spatial patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control.
Collapse
Affiliation(s)
- Colince Kamdem
- Unité Mixte de Recherche MIVEGEC, UM1-UM2-CNRS 5290-IRD 224, Institut de Recherche pour le Développement, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, El-Rayah EA, Githeko AK, Yan G. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malar J 2009; 8:234. [PMID: 19845968 PMCID: PMC2771030 DOI: 10.1186/1475-2875-8-234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An. funestus larvae occurred throughout the study period along the streams, a total of only 15 An. gambiae larvae were counted in the hilltops, and no An. funestus were found. Moreover, no larvae managed to develop into adults in the hilltops, and the density of adult An. gambiae was consistently low, averaging at 0.06 females per house per survey. Conclusion The occurrence of malaria vector larvae in the hilltop area was uncommon as a result of the low availability and high instability of habitats. To optimize the cost-effectiveness of malaria interventions in the western Kenya highlands, larval control should be focused primarily along the streams, as these are likely the only productive habitats at high altitude.
Collapse
Affiliation(s)
- Yousif E Himeidan
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P.O. Box 1578, Kisumu 40100, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|