1
|
Varier KM, Dan G, Li X, Liu W, Jiang F, Linghu KG, Li Y, Ben-David Y, Zhang N, Xiao C, Gajendran B, Shen X. B4 suppresses lymphoma progression by inhibiting fibroblast growth factor binding protein 1 through intrinsic apoptosis. Front Pharmacol 2024; 15:1408389. [PMID: 39005939 PMCID: PMC11239434 DOI: 10.3389/fphar.2024.1408389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 07/16/2024] Open
Abstract
Lymphoma positions as the fifth most common cancer, in the world, reporting remarkable deaths every year. Several promising strategies to counter this disease recently include utilizing small molecules that specifically target the lymphoma cellular proteins to overwhelm its progression. FGFBP1 is a soluble intracellular protein that progresses cancer cell proliferation and is upregulated in several cancers. Therefore, inhibiting FGFBP1 could significantly slow down lymphoma progression through triggering apoptosis. Thus, in this study, a flavonoid B4, isolated from Cajanus cajan, has been investigated for its effects of B4 on lymphoma, specifically as an FGFBP1 inhibitor. B4 could selectively hinder the growth of lymphoma cells by inducing caspase-dependent intrinsic apoptosis through G1/S transition phase cell cycle arrest. RNA sequencing analysis revealed that B4 regulates the genes involved in B-cell proliferation and DNA replication by inhibiting FGFBP1 in vitro. B4 increases the survival rate of lymphoma mice. B4 also represses the growth of patient-derived primary lymphoma cells through FGFBP1 inhibition. Drug affinity responsive target stability experimentations authorize that B4 powerfully binds to FGFBP1. The overexpression of FGFBP1 raises the pharmacological sensitivity of B4, supplementing its specific action on lymphoma cells. This study pioneers the estimation of B4 as a possible anticancer agent for lymphoma treatment. These outcomes highlight its selective inhibitory effects on lymphoma cell growth by downregulating FGFBP1 expression through intrinsic apoptosis, causing mitochondrial and DNA damage, ultimately leading to the inhibition of lymphoma progression. These suggest B4 may be a novel FGFBP1 inhibitor for the lymphoma treatment.
Collapse
Affiliation(s)
- Krishnapriya M Varier
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gou Dan
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaolong Li
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Wuling Liu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Jiang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ke-Gang Linghu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yaacov Ben-David
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Nenling Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Chaoda Xiao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Ma M, Xu L, Cui W, Huang Y, Chi G. FIBP is a prognostic biomarker and correlated with clinicalpathological characteristics and immune infiltrates in acute myeloid leukemia. Discov Oncol 2023; 14:97. [PMID: 37310595 DOI: 10.1007/s12672-023-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancy that has a high recurrence rate. FIBP was reported to be highly expressed in multiple tumor types. However, its expression and role in acute myeloid leukemia remains largely unknown. The aim of this study was to clarify the role and value of FIBP in the diagnosis and prognosis, and to analyze its correlation with immune infiltration in acute myeloid leukemia by The Cancer Genome Atlas (TCGA) dataset. FIBP was highly expressed in AML samples compared to normal samples. The differentially expressed genes were identified between high and low expression of FIBP. The high FIBP expression group had poorer overall survival. FIBP was closely correlated with CD4, IL-10 and IL-2. The enrichment analysis indicated DEGs were mainly related to leukocyte migration, leukocyte cell-cell adhesion, myeloid leukocyte differentiation, endothelial cell proliferation and T cell tolerance induction. FIBP expression has significant correlation with infiltrating levels of various immune cells. FIBP could be a potential targeted therapy and prognostic biomarker associated with immune infiltrates for AML.
Collapse
Affiliation(s)
- Muya Ma
- Department of Hematology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Lingling Xu
- Department of Hematology, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Shandong, 264000, Yantai, China
| | - Wenhua Cui
- Department of Hematology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yan Huang
- Department of Biochemistry, Changzhi Medical College, Changazhi, 046000, Shanxi, China
| | - Gang Chi
- Department of Biochemistry, Changzhi Medical College, Changazhi, 046000, Shanxi, China.
| |
Collapse
|
3
|
Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, Zeng S, Shi Q, Xia Y, Zeng Q, Wen Q, Chen J, Dai X, Xiong J, Xiang X, Lei W, Deng J. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer 2023; 22:60. [PMID: 36966334 PMCID: PMC10039534 DOI: 10.1186/s12943-023-01761-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".
Collapse
Affiliation(s)
- Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Li Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuan Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chunye Huang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhanmin Zhang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Hongguang Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Shaocheng Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qianqian Shi
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yang Xia
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qinru Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qin Wen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jingyi Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaofeng Dai
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jianping Xiong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaojun Xiang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Wan Lei
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Avvisato R, Mone P, Jankauskas SS, Varzideh F, Kansakar U, Gambardella J, De Luca A, Matarese A, Santulli G. miR-4432 Targets FGFBP1 in Human Endothelial Cells. BIOLOGY 2023; 12:459. [PMID: 36979151 PMCID: PMC10045418 DOI: 10.3390/biology12030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of several target genes. Fibroblast growth factor binding protein 1 (FGFBP1) has been associated with endothelial dysfunction at the level of the blood-brain barrier (BBB). However, the underlying mechanisms are mostly unknown and there are no studies investigating the relationship between miRs and FGFBP1. Thus, the overarching aim of the present study was to identify and validate which miR can specifically target FGFBP1 in human brain microvascular endothelial cells, which represent the best in vitro model of the BBB. We were able to identify and validate miR-4432 as a fundamental modulator of FGFBP1 and we demonstrated that miR-4432 significantly reduces mitochondrial oxidative stress, a well-established pathophysiological hallmark of hypertension.
Collapse
Affiliation(s)
- Roberta Avvisato
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Pasquale Mone
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | | | - Gaetano Santulli
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Fleischer Institute for Diabetes and Metabolism (FIDAM), New York, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
5
|
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest 2022; 132:e157399. [PMID: 35951441 PMCID: PMC9525122 DOI: 10.1172/jci157399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.
Collapse
Affiliation(s)
- Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuran Fan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiqing Deng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaodong Chu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenqian Yin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| |
Collapse
|
6
|
Li F, Zhang H, Wang Y, Yao Z, Xie K, Mo Q, Fan Q, Hou L, Deng F, Tan W. FGFBP1 as a potential biomarker predicting bacillus Calmette–Guérin response in bladder cancer. Front Immunol 2022; 13:954836. [PMID: 36119059 PMCID: PMC9478507 DOI: 10.3389/fimmu.2022.954836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate prediction of Bacillus Calmette–Guérin (BCG) response is essential to identify bladder cancer (BCa) patients most likely to respond sustainably, but no molecular marker predicting BCG response is available in clinical routine. Therefore, we first identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423 datasets. These different expression genes associated with FGFBP1 expression are mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. A significant positive correlation was observed between FGFBP1 expression and regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176), suggesting that FGFBP1 may influence the response of BCa patients to BCG immunotherapy through immune escape. Though FGFBP1 expression was positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was observed in BCa cell lines and tissues in comparison to corresponding normal controls by RT-qPCR, Western blotting, and immunohistochemical staining. Increased FGFBP1 was further detected in the failures than in the responders by immunohistochemical staining. Notably, FGFBP1 is positively associated with PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in BCa tissue could be identified as a promising biomarker for the accurate prediction of BCG response in BCa.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihao Yao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunfeng Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wanlong Tan, ; Fan Deng, ; Lina Hou,
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Wanlong Tan, ; Fan Deng, ; Lina Hou,
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wanlong Tan, ; Fan Deng, ; Lina Hou,
| |
Collapse
|
7
|
Giordo R, Wehbe Z, Paliogiannis P, Eid AH, Mangoni AA, Pintus G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin Cancer Biol 2022; 86:784-804. [DOI: 10.1016/j.semcancer.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
8
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Abstract
The HOXC10 gene, a member of the HOX genes family, plays crucial roles in mammalian physiological processes, such as limb morphological development, limb regeneration, and lumbar motor neuron differentiation. HOXC10 is also associated with angiogenesis, fat metabolism, and sex regulation. Additional evidence suggests that HOXC10 dysregulation is closely associated with various tumors. HOXC10 is an important transcription factor that can activate several oncogenic pathways by regulating various target molecules such as ERK, AKT, p65, and epithelial mesenchymal transition-related genes. HOXC10 also induces drug resistance in cancers by promoting the DNA repair pathway. In this review, we summarize HOXC10 gene structure and expression as well as the role of HOXC10 in different human cancer processes. This review will provide insight into the status of HOXC10 research and help identify novel targets for cancer therapy.
Collapse
Affiliation(s)
- Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Jianjun Wang
- Department of Gastroenterological Surgery, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Liangliang Yu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
10
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
11
|
Kunz M, Brandl M, Bhattacharya A, Nobereit-Siegel L, Ewe A, Weirauch U, Hering D, Reinert A, Kalwa H, Guzman J, Weigelt K, Wach S, Taubert H, Aigner A. Nanoparticle-complexed antimiRs for inhibiting tumor growth and metastasis in prostate carcinoma and melanoma. J Nanobiotechnology 2020; 18:173. [PMID: 33228711 PMCID: PMC7685669 DOI: 10.1186/s12951-020-00728-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs). A major bottleneck in antimiR therapy, however, is their efficient delivery. The nanoparticle formation with polyethylenimine (PEI) may be particularly promising, based on the PEI’s ability to electrostatically interact with oligonucleotides. This leads to their protection and supports delivery. In the present study, we explore for the first time PEI for antimiR formulation and delivery. We use the branched low molecular weight PEI F25-LMW for the complexation of different antimiRs, and analyse tumor- and metastasis-inhibitory effects of PEI/antimiR complexes in different tumor models. Results In prostate carcinoma, transfection of antimiRs against miR-375 and miR-141 leads to tumor cell inhibition in 2D- and 3D-models. More importantly, an in vivo tumor therapy study in prostate carcinoma xenografts reveals anti-tumor effects of the PEI/antimiR complexes. In advanced melanoma and metastasis, we identify by a microRNA screen miR-150 as a particularly relevant oncomiR candidate, and validate this result in vitro and in vivo. Again, the systemic application of PEI/antimiR complexes inhibiting this miRNA, or the previously described antimiR-638, leads to profound tumor growth inhibition. These effects are associated with the upregulation of direct miRNA target genes. In a melanoma metastasis mouse model, anti-metastatic effects of PEI/antimiR treatment are observed as well. Conclusions We thus describe PEI-based complexes as efficient platform for antimiR therapy, as determined in two different tumor entities using in vivo models of tumor growth or metastasis. Our study also highlights the therapeutic relevance of miR-375, miR-141, miR-150 and miR-638 as target miRNAs for antimiR-mediated inhibition.![]()
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Madeleine Brandl
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Animesh Bhattacharya
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-University Medical Center, Virchow Campus, Berlin, Germany
| | - Lars Nobereit-Siegel
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Doreen Hering
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Reinert
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Juan Guzman
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
12
|
Chen J, Liu QM, Du PC, Ning D, Mo J, Zhu HD, Wang C, Ge QY, Cheng Q, Zhang XW, Fan YW, Liang HF, Chu L, Chen XP, Zhang BX, Jiang L. Type-2 11β-hydroxysteroid dehydrogenase promotes the metastasis of colorectal cancer via the Fgfbp1-AKT pathway. Am J Cancer Res 2020; 10:662-673. [PMID: 32195034 PMCID: PMC7061758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023] Open
Abstract
Type-2 11β-hydroxysteroid dehydrogenase (HSD11B2) is a key enzyme which converts cortisol to inactive cortisone and is involved in tumor progression and metastasis. Several studies have shown that the promotion of tumor progression and metastasis by HSD11B2 resulted from its physiological function of inactivating glucocorticoids (GC). However, the underlying molecular mechanisms by which HSD11B2 drives metastasis, in addition to inactivating GC, are still unclear. In our study, a series of in vivo and in vitro assays were performed to determine the function of HSD11B2 and the possible mechanisms underlying its role in CRC metastasis. mRNA transcriptome array analysis was used to identify the possible downstream targets of HSD11B2. We found that the ectopic expression of HSD11B2 significantly promoted the migration, invasion and metastasis of colorectal cancer (CRC) cells both in vitro and in vivo, while it did not affect their proliferation in either case. Mechanically, HSD11B2 appeared to enhance cell migration and invasion by upregulating the expression of fibroblast growth factor binding protein 1 (Fgfbp1), and subsequently increasing the phosphorylation of AKT. Furthermore, AKT activation partially mediated the increased expression of Fgfbp1 induced by HSD11B2. HSD11B2 expression was positively correlated with Fgfbp1 and p-AKT expression in clinical samples of CRC. Additionally, knockdown of either Fgfbp1 or AKT impaired the migration and invasion capability of CRC cells with HSD11B2 overexpression, suggesting that HSD11B2 promoted the migration, invasion and metastasis of CRC cells via the Fgfbp1-AKT pathway. Therefore, targeting HSD11B2 or Fgfbp1 may be a novel treatment strategy for inhibiting the metastasis of CRC.
Collapse
Affiliation(s)
- Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Qiu-Meng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Peng-Chen Du
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST)Wuhan, Hubei, P.R. China
| | - Deng Ning
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST)Wuhan, Hubei, P.R. China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Hai-Dan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST)Wuhan, Hubei, P.R. China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Qian-Yun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Xue-Wu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Ya-Wei Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P.R. China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceWuhan, Hubei, P.R. China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhan 430030, Hubei, P.R. China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST)Wuhan, Hubei, P.R. China
| |
Collapse
|
13
|
Zhang Z, Liu M, Hu Q, Xu W, Liu W, Sun Q, Ye Z, Fan G, Xu X, Yu X, Ji S, Qin Y. FGFBP1, a downstream target of the FBW7/c-Myc axis, promotes cell proliferation and migration in pancreatic cancer. Am J Cancer Res 2019; 9:2650-2664. [PMID: 31911852 PMCID: PMC6943353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023] Open
Abstract
The secreted fibroblast growth factor (FGF) binding protein (FGF-BP), which is an extracellular chaperone molecule for FGFs, has been demonstrated to enhance the biological and biochemical activities of FGFs and to be closely related to the growth of several cancers. However, the role of FGFBP1 in pancreatic adenocarcinoma (PDAC) has not been studied extensively. We previously reported that decreased FBW7 could induce pancreatic cancer proliferation and progression. In the present study, we investigated whether FBW7 inhibited cell proliferation and metastasis by decreasing the expression of FGFBP1 in pancreatic cancer. We initially confirmed that pancreatic cancer patients with higher FGFBP1 expression had a worse prognosis. Next, we demonstrated that FGFBP1 silencing inhibited the proliferation and metastasis of PANC-1 and Mia PaCa-2 cells. Mechanistically, FGFBP1 was negatively correlated with FBW7 but positively correlated with c-Myc in PDAC tissue samples, and FBW7 regulated FGFBP1 in a c-Myc-dependent manner. We also found that FBW7 silencing could partly reverse the effect of FGFBP1 silencing on proliferation and metastasis. In summary, FGFBP1 is a prognostic marker for overall survival and is required for pancreatic cancer cell proliferation and metastasis, which is mediated by FBW7 in a c-Myc-dependent manner. Thus, targeting the FBW7/c-Myc/FGFBP1 axis might suppress recurrence and metastasis and provide novel treatment strategies for PDAC.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer CenterShanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai, P. R. China
- Pancreatic Cancer Institute, Fudan UniversityShanghai, P. R. China
| |
Collapse
|
14
|
Miwa T, Kanda M. ASO Author Reflections: Homeobox C10 Influences on the Malignant Phenotype of Gastric Cancer Cell Lines and its Elevated Expression Positively Correlates with Recurrence and Poor Survival. Ann Surg Oncol 2019; 26:596-597. [PMID: 31025230 DOI: 10.1245/s10434-019-07405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
15
|
Miwa T, Kanda M, Umeda S, Tanaka H, Tanaka C, Kobayashi D, Suenaga M, Hayashi M, Yamada S, Nakayama G, Koike M, Kodera Y. Homeobox C10 Influences on the Malignant Phenotype of Gastric Cancer Cell Lines and its Elevated Expression Positively Correlates with Recurrence and Poor Survival. Ann Surg Oncol 2019; 26:1535-1543. [PMID: 30673899 DOI: 10.1245/s10434-019-07166-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The detection of molecules and mechanisms affecting the malignant phenotype of gastric cancer cells may contribute to the identification of biomarkers for metastasis and recurrence, and such molecules may serve as targets of therapy. For this purpose, in this study transcriptome analysis was performed using surgically resected specimens from patients with gastric cancer with synchronous metastasis. We identified homeobox C10 (HOXC10) as the most highly expressed gene in gastric cancer tissues compared with the adjacent noncancerous gastric mucosa. METHODS Polymerase chain reaction (PCR) array analysis was performed to identify genes coordinately expressed with HOXC10. The effects of inhibiting HOXC10 on malignant phenotype was evaluated using HOXC10 knockout gastric cancer cell lines, and antibody array analysis was performed to assess the effect of HOXC10 knockout on intracellular signaling. We used a mouse subcutaneous xenograft model to evaluate the tumorigenicity. HOXC10 expression was determined in gastric cancer tissues acquired from 300 patients with gastric cancer. RESULTS PCR array analysis revealed that the levels of HOXC10 messenger RNA positively correlated with those of FGFBP1 and SOX10. The phosphorylation of ERK1/2 was decreased in HOXC10 knockout cells. HOXC10 knockout significantly suppressed proliferation by increasing apoptosis and reducing the migration and invasiveness of gastric cancer cells. Mouse xenograft models revealed that the tumorigenicity of HOXC10 knockout cells was attenuated compared with the parental cells. The relatively high expression levels of HOXC10 in gastric cancer tissues were significantly associated with hepatic and peritoneal recurrence, as well as worse prognosis. CONCLUSIONS Our results indicated that HOXC10 enhances the malignant phenotype of gastric cancer cells. The expression levels of HOXC10 may therefore serve as a prognostic biomarker and the products of HOXC10 may provide targets of therapy.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
16
|
Tassi E, Garman KA, Schmidt MO, Ma X, Kabbara KW, Uren A, Tomita Y, Goetz R, Mohammadi M, Wilcox CS, Riegel AT, Carlstrom M, Wellstein A. Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Sci Rep 2018; 8:15973. [PMID: 30374109 PMCID: PMC6206164 DOI: 10.1038/s41598-018-34238-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Secreted FGF binding proteins (FGFBP) mobilize locally-acting paracrine FGFs from their extracellular storage. Here, we report that FGFBP3 (BP3) modulates fat and glucose metabolism in mouse models of metabolic syndrome. BP3 knockout mice exhibited altered lipid metabolism pathways with reduced hepatic and serum triglycerides. In obese mice the expression of exogenous BP3 reduced hyperglycemia, hepatosteatosis and weight gain, blunted de novo lipogenesis in liver and adipose tissues, increased circulating adiponectin and decreased NEFA. The BP3 protein interacts with endocrine FGFs through its C-terminus and thus enhances their signaling. We propose that BP3 may constitute a new therapeutic to reverse the pathology associated with metabolic syndrome that includes nonalcoholic fatty liver disease and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Elena Tassi
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Khalid A Garman
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Marcel O Schmidt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Xiaoting Ma
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Khaled W Kabbara
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Aykut Uren
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - York Tomita
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Regina Goetz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Anna T Riegel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Mattias Carlstrom
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, School of Medicine, Washington, DC, 20007, USA.,Department of Physiology & Pharmacology, Karolinska Institutet S-17177, Stockholm, Sweden
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA.
| |
Collapse
|
17
|
Huang YF, Niu WB, Hu R, Wang LJ, Huang ZY, Ni SH, Wang MQ, Yang Y, Huang YS, Feng WJ, Xiao W, Zhu DJ, Xian SX, Lu L. FIBP knockdown attenuates growth and enhances chemotherapy in colorectal cancer via regulating GSK3β-related pathways. Oncogenesis 2018; 7:77. [PMID: 30275459 PMCID: PMC6167373 DOI: 10.1038/s41389-018-0088-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer stem cells (CSCs), characterized by self-renewal ability and high expression of proliferative genes, contribute to the chemoresistance of colorectal cancer (CRC). We aimed to identify the molecular mechanisms underlying CRC chemoresistance through comprehensive bioinformatics screenings and experimental confirmation of gene functions. We found that high expression of FGF1 intracellular binding protein (FIBP) was correlated with chemoresistance and poor prognosis in CRC patients. Therefore, the chemoresistant CRC cell line HCT116-CSC with high expression of the stem cell markers CD44 and CD133 was established for further phenotypic tests. FIBP knockdown inhibited proliferation, enhanced chemotherapy effects, and attenuated the stemness markers of CRC cells in vivo and in vitro. Through RNA-seq and gene set enrichment analysis, we identified cyclin D1 as a key downstream target in FIBP-regulated cell cycle progression and proliferation. Moreover, FIBP bound to GSK3β, inhibited its phosphorylation at Tyr216, and activated β-catenin/TCF/cyclin D1 signaling in HCT116-CSCs. Additional GSK3β knockdown reversed the FIBP silencing-induced inhibition of proliferation and decreased stemness marker expression in HCT116-CSCs. Furthermore, DNA methylation profiling suggested that FIBP regulated the stemness of CRC cells via methylation activity that was dependent on GSK3β but independent of β-catenin signaling. Our data illuminate the potential of FIBP as a novel therapeutic target for treating chemoresistant CRC through inhibition of GSK3β-related signaling.
Collapse
Affiliation(s)
- Yan-Feng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Shunde Hospital (The first People's Hospital of Shunde Foshan), Southern Medical University, 528300, Foshan, China
| | - Wen-Bo Niu
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China
| | - Rong Hu
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Zeng-Yan Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Ming-Qing Wang
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Yi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China.
| | - Da-Jian Zhu
- Department of Gastrointestinal Surgery, Guangdong Medical University Affiliated Women and Children Hospital, 528300, Foshan, China.
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China. .,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China. .,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
19
|
Analysis of cellular and molecular antitumor effects upon inhibition of SATB1 in glioblastoma cells. BMC Cancer 2017; 17:3. [PMID: 28049521 PMCID: PMC5209874 DOI: 10.1186/s12885-016-3006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Background The Special AT-rich Sequence Binding Protein 1 (SATB1) regulates the expression of many genes by acting as a global chromatin organizer. While in many tumor entities SATB1 overexpression has been observed and connected to pro-tumorigenic processes, somewhat contradictory evidence exists in brain tumors with regard to SATB1 overexpression in glioblastoma and its association with poorer prognosis and tumor progression. On the functional side, initial data indicate that SATB1 may be involved in several tumor cell-relevant processes. Methods For the detailed analysis of the functional relevance and possible therapeutic potential of SATB1 inhibition, we employ transient siRNA-mediated knockdown and comprehensively analyze the cellular and molecular role of SATB1 in glioblastoma. Results In various cell lines with different SATB1 expression levels, a SATB1 gene dose-dependent inhibition of anchorage-dependent and –independent proliferation is observed. This is due to cell cycle-inhibitory and pro-apoptotic effects of SATB1 knockdown. Molecular analyses reveal SATB1 knockdown effects on multiple important (proto-) oncogenes, including Myc, Bcl-2, Pim-1, EGFR, β-catenin and Survivin. Molecules involved in cell cycle, EMT and cell adhesion are affected as well. The putative therapeutic relevance of SATB1 inhibition is further supported in an in vivo tumor xenograft mouse model, where the treatment with polymeric nanoparticles containing SATB1-specific siRNAs exerts antitumor effects. Conclusion Our results demonstrate that SATB1 may represent a promising target molecule in glioblastoma therapy whose inhibition or knockdown affects multiple crucial pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3006-6) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Ferraresi A, Phadngam S, Morani F, Galetto A, Alabiso O, Chiorino G, Isidoro C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 2016; 56:1164-1181. [PMID: 27787915 DOI: 10.1002/mc.22582] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Galetto
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Oscar Alabiso
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
21
|
Jing Q, Wang Y, Liu H, Deng X, Jiang L, Liu R, Song H, Li J. FGFs: crucial factors that regulate tumour initiation and progression. Cell Prolif 2016; 49:438-47. [PMID: 27383016 DOI: 10.1111/cpr.12275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are crucial signalling molecules involved in normal cell growth, differentiation and proliferation. Over the past few decades, a large body of research has illustrated effects of individual FGFs on tumour initiation and progression. Tumour development is commonly accompanied with generation of new blood and lymph vessels, which support enhanced cell proliferation. Moreover, acquisition of tumour cells of the epithelial-mesenchymal transition (EMT) phenotype, enhances tumour cell migration and invasion potentials, crucial steps in tumour metastasis. This review summarizes recent findings concerning roles of FGFs in angiogenesis, lymphangiogenesis and EMT.
Collapse
Affiliation(s)
- Qian Jing
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Wang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Hao Liu
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaowei Deng
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Lin Jiang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haixing Song
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
22
|
Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis 2015; 33:197-210. [PMID: 26620208 PMCID: PMC4761368 DOI: 10.1007/s10585-015-9769-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Roy Bicknell
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
23
|
Huang W, Chen Z, Shang X, Tian D, Wang D, Wu K, Fan D, Xia L. Sox12, a direct target of FoxQ1, promotes hepatocellular carcinoma metastasis through up-regulating Twist1 and FGFBP1. Hepatology 2015; 61:1920-33. [PMID: 25704764 DOI: 10.1002/hep.27756] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Metastasis is the main reason for high recurrence and poor survival of hepatocellular carcinoma (HCC) after curative resection. However, the molecular mechanism underlying HCC metastasis remains unclear. Here, we report on a novel function of SRY (sex determining region Y)-box 12 (Sox12), a member of the SYR-related high mobility group box family proteins, in promoting HCC metastasis. Overexpression of Sox12 was significantly correlated with loss of tumor encapsulation, microvascular invasion, and a higher tumor-nodule-metastasis (TNM) stage and indicated poor prognosis in human HCC patients. Sox12 expression was an independent and significant risk factor for recurrence and reduced survival after curative resection. Overexpression of Sox12 induced epithelial-mesenchymal transition by transactivating Twist1 expression. Down-regulation of Twist1 decreased Sox12-enhanced HCC migration, invasion, and metastasis, whereas up-regulation of Twist1 rescued the decreased migration, invasion, and metastasis induced by Sox12 knockdown. Additionally, serial deletion, site-directed mutagenesis, and chromatin immunoprecipitation assays showed that fibroblast growth factor binding protein 1 (FGFBP1) was a direct transcriptional target of Sox12. Knockdown of FGFBP1 decreased Sox12-mediated HCC invasion and metastasis, whereas overexpression of FGFBP1 rescued the decreased invasion and metastasis induced by Sox12 knockdown. Furthermore, forkhead box Q1 (FoxQ1) directly bound to the Sox12 promoter and transactivated its expression, which contributed to Sox12 overexpression in human HCC. Knockdown of Sox12 dramatically decreased FoxQ1-mediated HCC metastasis. In two independent cohorts of human HCC tissues, Sox12 expression was positively correlated with Twist1, FGFBP1, and FoxQ1 expression, and patients with positive coexpression of Sox12/Twist1, Sox12/FGFBP1, or FoxQ1/Sox12 were associated with poorer prognosis. CONCLUSION Up-regulated Sox12 induced by FoxQ1 promotes HCC invasion and metastasis by transactivating Twist1 and FGFBP1 expression. Thus, our study implicates Sox12 as a potential prognostic biomarker and a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Wenjie Huang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhangqian Chen
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin Shang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Daowen Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Limin Xia
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
24
|
Weirauch U, Gutsch D, Höbel S, Aigner A. Polymer-based delivery of RNA-based therapeutics in ovarian cancer. Methods Mol Biol 2014; 1049:443-65. [PMID: 23913237 DOI: 10.1007/978-1-62703-547-7_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
RNA interference (RNAi) is a naturally occurring, powerful mechanism for gene silencing, based on the cleavage of a given target mRNA. It relies on small interfering RNAs (siRNAs) in the cell. Being similar in structure, microRNAs (miRNAs) are important regulators of gene expression which mainly act by blocking mRNA translation. In cancer, certain miRNAs have been found to be pathologically downregulated. The therapeutic application of siRNAs or miRNAs for the induction of RNAi or miRNA replacement, respectively, relies on their efficient delivery through a non-viral formulation. Complexation of siRNAs/miRNAs in polymeric nanoparticles based on polyethylenimines (PEIs) offers protection against degradation, delivery to the target site, cellular uptake, and intracellular release. This chapter provides protocols for therapeutic gene silencing and miRNA replacement therapy, based on PEI complexes for in vitro and in vivo use.
Collapse
Affiliation(s)
- Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
25
|
Darweish MM, Abbas A, Ebrahim MA, Al-Gayyar MMH. Chemopreventive and hepatoprotective effects of Epigallocatechin-gallate against hepatocellular carcinoma: role of heparan sulfate proteoglycans pathway. J Pharm Pharmacol 2014; 66:1032-45. [DOI: 10.1111/jphp.12229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
Abstract
Objective
Epigallocatechin-gallate (EGCG) claims a plethora of health benefits including protection against neoplastic diseases. Meanwhile, heparan-sulfate proteoglycans (HSPGs) have defensive role against tumour cell invasion. Therefore, the chemopreventive and hepatoprotective effects of EGCG were studied in hepatocellular carcinoma (HCC) in vivo and in vitro and compared with strong water soluble antioxidant, sodium ascorbate.
Methods
HCC was induced in SD rats by thioacetamide (200 mg/Kg). Some rats were treated with EGCG (20 mg/Kg) or sodium ascorbate (100 mg/Kg). Liver impairment was assessed by measuring serum α-fetoprotein and investigating liver sections stained with H/E. Hepatic HSPGs, syndecan-1 and matrix metalloproteinase-9 (MMP-9) were measured by ELISA. Gene expression of fibroblast growth factor (FGF)-2 was measured. Cell death was assessed by caspase-3 activity. In addition, all markers were measured in human hepatocellular carcinoma cell line (HepG2).
Key findings
EGCG increased the animal survival and decreased both α-fetoprotein and HepG2 viability. In addition, EGCG ameliorated fibrosis and massive hepatic tissue breakdown. EGCG restored HSPGs and reduced expression of MMP-9, syndecan-1 and FGF-2 in-vivo and in-vitro. Sodium ascorbate showed significantly lower results than EGCG.
Conclusions
Besides antioxidant activity, other mechanisms are involved in the chemopreventive and hepatoprotective effects of EGCG including restoration of HSPGs receptors and inhibition of vascular invasion.
Collapse
Affiliation(s)
- Mohamed M Darweish
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Ahmed Abbas
- Deparment of Pharmacognosy, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | | | - Mohammed M H Al-Gayyar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
26
|
van der Weyden L, Adams DJ. Using mice to unveil the genetics of cancer resistance. Biochim Biophys Acta Rev Cancer 2012; 1826:312-30. [PMID: 22613679 DOI: 10.1016/j.bbcan.2012.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/28/2022]
Abstract
In the UK, four in ten people will develop some form of cancer during their lifetime, with an individual's relative risk depending on many factors, including age, lifestyle and genetic make-up. Much research has gone into identifying the genes that are mutated in tumorigenesis with the overwhelming majority of genetically-modified (GM) mice in cancer research showing accelerated tumorigenesis or recapitulating key aspects of the tumorigenic process. Yet if six out of ten people will not develop some form of cancer during their lifetime, together with the fact that some cancer patients experience spontaneous regression/remission, it suggests there are ways of 'resisting' cancer. Indeed, there are wildtype, spontaneously-arising mutants and GM mice that show some form of 'resistance' to cancer. Identification of mice with increased resistance to cancer is a novel aspect of cancer research that is important in terms of providing both chemopreventative and therapeutic options. In this review we describe the different mouse lines that display a 'cancer resistance' phenotype and discuss the molecular basis of their resistance.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | | |
Collapse
|
27
|
Targeted CRM197-PEG-PEI/siRNA Complexes for Therapeutic RNAi in Glioblastoma. Pharmaceuticals (Basel) 2011; 4:1591-1606. [PMID: 27721338 PMCID: PMC4060103 DOI: 10.3390/ph4121591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) allows the specific knockdown of tumor relevant genes. To induce RNAi, the delivery of small interfering RNAs (siRNAs) is of crucial importance. This is particularly challenging for their therapeutic applications in vivo. Low molecular weight branched polyethylenimine (PEI) is safe and efficient for nucleic acid delivery including small RNA molecules, based on its ability to electrostatically complex siRNA molecules, thereby protecting them from nuclease degradation. The nanoscale PEI/siRNA complexes are endocytosed by cells prior to intracellular complex release from the lysosome and cytoplasmic release of the siRNAs from the complexes. Chemical modification and ligand decoration of the complexes aim at introducing target tissue specificity and further increased efficacy of PEI-mediated siRNA delivery. CRM197 is a mutated, non-toxic diphtheria toxin (DT) that binds to the membrane-bound precursor of HB-EGF-like growth factor/diphtheria toxin receptor highly expressed in glioblastoma cells. Likewise, the growth factor pleiotrophin (PTN/HB-GAM/HARP) is overexpressed in glioblastoma and is rate limiting for tumor growth, thus representing an attractive target gene for therapeutic knockdown approaches. PEGylation of PEI was performed to reduce the surface charge, and by CRM197 coupling we prepared a modified PEI for siRNA delivery into glioblastoma cells. The novel PEI conjugates were analyzed for their complexation efficiency and optimal mixing ratios, and complexes were physicochemically characterized regarding stability, size and zeta potential. The biological activity of the complexes was confirmed in cell culture by reporter gene knockdown. For the therapeutic treatment of subcutaneous human gliobastoma xenografts in athymic nude mice, we systemically injected the modified PEI/siRNA complexes targeting PTN. Antitumor effects based on PTN knockdown demonstrated the advantage of tumor-targeted CRM197-PEG-PEI/siRNA over untargeted PEG-PEI polyplexes. Thus, we establish targeted CRM197-PEG-PEI-based complexes for siRNA delivery in vivo, and show therapeutic effects of CRM197-PEG-PEI/siRNA-mediated knockdown of PTN.
Collapse
|