1
|
Zhao K, Zhang J, Zhou L, Sun Z. Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors. Front Pharmacol 2024; 15:1483785. [PMID: 39654621 PMCID: PMC11625591 DOI: 10.3389/fphar.2024.1483785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Scutellaria baicalensis has been used for the treatment of digestive system disorders for thousands of years in China and other regions. Modern research have revealed its therapeutic efforts in digestive system tumors. Thus, to review the updated progress of S. baicalensis and its main flavonoids in the treatment of digestive system tumors in the past 10 years, this article summarized the therapeutic effect and molecular mechanisms of S. baicalensis and its 5 flavonoids on tumors in oral cavity, esophagus, stomach, colon, liver, pancreas by inhibiting tumor cell proliferation, inducing autophagy, stimulating immune response, and increasing drug sensitivity. In conclusion, S. baicalensis and its flavonoids could be applied to treat digestive system tumors with different type of methods.
Collapse
Affiliation(s)
- Kangning Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Van der Stede T, Van de Loock A, Lievens E, Yigit N, Anckaert J, Van Thienen R, Weyns A, Mestdagh P, Vandesompele J, Derave W. Transcriptomic signatures of human single skeletal muscle fibers in response to high-intensity interval exercise. Am J Physiol Cell Physiol 2024; 327:C1249-C1262. [PMID: 39316684 DOI: 10.1152/ajpcell.00299.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
The heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited. Rather, the activation pattern displays a continuum with a more uniform response within fast versus slow fibers during the recovery from exercise. The transcriptome-wide response immediately after exercise is characterized by some distinct signatures for slow versus fast fibers, although the most exercise-responsive genes are common between the two fiber types. The temporal transcriptional waves further converge the gene signatures of both fiber types toward a more similar profile during the recovery from exercise. Furthermore, a large heterogeneity among all resting and exercised fibers was observed, with the principal drivers being independent of a slow/fast typology. This profound heterogeneity extends to distinct exercise responses of fibers beyond a classification based on myosin heavy chains. Collectively, our single-fiber methodological approach points to a substantial between-fiber diversity in muscle fiber responses to high-intensity interval exercise.NEW & NOTEWORTHY By development of a single-fiber transcriptomics technology, we assessed the transcriptional events in individual human skeletal muscle fibers upon high-intensity exercise. We demonstrate a large variability in transcriptional activation of fibers, with shared and distinct gene signatures for slow and fast fibers. The heterogeneous fiber-specific exercise response extends beyond this traditional slow/fast categorization. These findings expand on our understanding of exercise responses and uncover a profound between-fiber diversity in muscle fiber activation and transcriptional perturbations.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Wyant GA, Jiang Q, Singh M, Qayyum S, Levrero C, Maron BA, Kaelin WG. Induction of DEPP1 by HIF Mediates Multiple Hallmarks of Ischemic Cardiomyopathy. Circulation 2024; 150:770-786. [PMID: 38881449 PMCID: PMC11361356 DOI: 10.1161/circulationaha.123.066628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND HIF (hypoxia inducible factor) regulates many aspects of cardiac function. We and others previously showed that chronic HIF activation in the heart in mouse models phenocopies multiple features of ischemic cardiomyopathy in humans, including mitochondrial loss, lipid accumulation, and systolic cardiac dysfunction. In some settings, HIF also causes the loss of peroxisomes. How, mechanistically, HIF promotes cardiac dysfunction is an open question. METHODS We used mice lacking cardiac pVHL (von Hippel-Lindau protein) to investigate how chronic HIF activation causes multiple features of ischemic cardiomyopathy, such as autophagy induction and lipid accumulation. We performed immunoblot assays, RNA sequencing, mitochondrial and peroxisomal autophagy flux measurements, and live cell imaging on isolated cardiomyocytes. We used CRISPR-Cas9 gene editing in mice to validate a novel mediator of cardiac dysfunction in the setting of chronic HIF activation. RESULTS We identify a previously unknown pathway by which cardiac HIF activation promotes the loss of mitochondria and peroxisomes. We found that DEPP1 (decidual protein induced by progesterone 1) is induced under hypoxia in a HIF-dependent manner and localizes inside mitochondria. DEPP1 is both necessary and sufficient for hypoxia-induced autophagy and triglyceride accumulation in cardiomyocytes ex vivo. DEPP1 loss increases cardiomyocyte survival in the setting of chronic HIF activation ex vivo, and whole-body Depp1 loss decreases cardiac dysfunction in hearts with chronic HIF activation caused by VHL loss in vivo. CONCLUSIONS Our findings identify DEPP1 as a key component in the cardiac remodeling that occurs with chronic ischemia.
Collapse
Affiliation(s)
- Gregory A. Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
| | - Madhu Singh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Shariq Qayyum
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Clara Levrero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
| | - Bradley A. Maron
- Department of Cardiovascular Medicine (B.A.M.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
- Department of Medicine (W.G.K.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD (W.G.K.)
| |
Collapse
|
4
|
Peng J, Liang G, Li Y, Mao S, Zhang C, Wang Y, Li Z. Identification of a novel FOXO3 agonist that protects against alcohol induced liver injury. Biochem Biophys Res Commun 2024; 704:149690. [PMID: 38387326 DOI: 10.1016/j.bbrc.2024.149690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.
Collapse
Affiliation(s)
- Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Hunan, 410081, China
| | - Siyu Mao
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Chen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Hunan, 410081, China.
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China.
| |
Collapse
|
5
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
6
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Pan Z, Huang J, Song H, Xiao Y, Liu T, Zeng Y, Zhu H, Yang K. PLCL1 suppresses tumour progression by regulating AMPK/mTOR-mediated autophagy in renal cell carcinoma. Aging (Albany NY) 2023; 15:10407-10427. [PMID: 37801481 PMCID: PMC10599749 DOI: 10.18632/aging.205085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
Autophagy has been increasingly recognized as a critical regulatory mechanism in the maintenance of cellular homeostasis. A previous study showed that phospholipase C-like protein 1 (PLCL1) is associated with lipid metabolism in renal cell carcinoma (RCC). However, it is unclear whether PLCL1 regulates autophagy, thereby influencing the progression of RCC. Bioinformatics analysis of five microarray datasets revealed that expression of PLCL1 is decreased in tumours and is positively correlated with prognosis in RCC patients. Three independent public datasets, clinical RCC tissues and RCC cell lines, were validated using real-time qPCR, western blotting and immunohistochemistry. Using wound healing and transwell assays, we observed that elevated PLCL1 levels decreased the migratory distance and the invasive number of 786-O and ACHN cells, but PLCL1 knockdown reversed these changes in 769P cell lines compared to those in controls. The results of flow cytometry analysis indicated that PLCL1 promotes apoptosis. Moreover, transcriptional analysis based on stable overexpression of PLCL1 in 786-O cells revealed that PLCL1 is related to autophagy, and western blotting and autophagic experimental results further verified these findings. Mechanistic investigations confirmed that PLCL1 activates the AMPK/mTOR pathway and interacts with decidual protein induced by progesterone (DEPP). Collectively, our data suggest that PLCL1 functions as a suppressor of RCC progression by activating the AMPK/mTOR pathway, interacting with DEPP, initiating autophagy and inducing apoptosis. PLCL1 may be a promising therapeutic target for the diagnosis and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Zhou Pan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Jing Huang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Huajie Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Yusha Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Ting Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 443002, P.R. China
| |
Collapse
|
8
|
Lin JC, Liu TP, Chen YB, Yang PM. PF-429242 exhibits anticancer activity in hepatocellular carcinoma cells via FOXO1-dependent autophagic cell death and IGFBP1-dependent anti-survival signaling. Am J Cancer Res 2023; 13:4125-4144. [PMID: 37818050 PMCID: PMC10560959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
Effective therapies for hepatocellular carcinoma (HCC) are urgently needed, as it is a type of cancer resistant to chemotherapy. Recent evidence showed that PF-429242, a membrane-bound transcription factor site-1 protease (MBTPS1) inhibitor, exhibited anticancer activities against glioblastomas, renal cell carcinoma, and pancreatic cancer. However, its anticancer activity against HCC has yet to be investigated. In this study, we found that PF-429242 induced autophagy-dependent cell death in HCC cells. RNA-sequencing analysis indicated that the primary effect of PF-429242 was inhibition of the sterol regulatory element-binding protein (SREBP) signaling pathway. However, overexpression of SREBP proteins did not efficiently rescue PF-429242-induced autophagy and cell death. Mechanistically, PF-429242 induced forkhead box protein O1 (FOXO1)-dependent autophagic cell death. Additionally, PF-429242 caused FOXO1-independent upregulation of insulin-like growth factor-binding protein 1 (IGFBP1), ultimately leading to autophagy-independent cell death. The in vivo anticancer activity of PF-429242 against HCC cells was demonstrated in a tumor xenograft mouse model. Therefore, PF-429242 is a potential anticancer agent to treat HCC by triggering FOXO1-dependent autophagic cell death and IGFBP1-mediated anti-survival signaling in parallel.
Collapse
Affiliation(s)
- Jiunn-Chang Lin
- Department of Surgery, MacKay Memorial HospitalTaipei 10449, Taiwan
- MacKay Junior College of Medicine, Nursing and ManagementNew Taipei 11260, Taiwan
- Department of Medicine, MacKay Medical CollegeNew Taipei 25245, Taiwan
- Liver Medical Center, MacKay Memorial HospitalTaipei 10449, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
| | - Tsang-Pai Liu
- Department of Surgery, MacKay Memorial HospitalTaipei 10449, Taiwan
- MacKay Junior College of Medicine, Nursing and ManagementNew Taipei 11260, Taiwan
- Department of Medicine, MacKay Medical CollegeNew Taipei 25245, Taiwan
- Liver Medical Center, MacKay Memorial HospitalTaipei 10449, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
| | - Yan-Bin Chen
- Department of Surgery, MacKay Memorial HospitalTaipei 10449, Taiwan
| | - Pei-Ming Yang
- Liver Medical Center, MacKay Memorial HospitalTaipei 10449, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
- TMU Research Center of Cancer Translational MedicineTaipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical UniversityTaipei 11696, Taiwan
- TMU and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical UniversityTaipei 11031, Taiwan
| |
Collapse
|
9
|
Xu Q, Liu M, Chao X, Zhang C, Yang H, Chen J, Zhou B. Stevioside Improves Antioxidant Capacity and Intestinal Barrier Function while Attenuating Inflammation and Apoptosis by Regulating the NF-κB/MAPK Pathways in Diquat-Induced Oxidative Stress of IPEC-J2 Cells. Antioxidants (Basel) 2023; 12:antiox12051070. [PMID: 37237936 DOI: 10.3390/antiox12051070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
As a natural sweetener, stevioside is extracted from Stevia rebaudiana Bertoni and possesses potent antioxidant activity. However, little information is known about its protective role in maintaining the intestinal epithelial cells health under oxidative stress. The aim of this study was to investigate the protective effects and underlying mechanisms of stevioside on alleviating inflammation, apoptosis, and improving antioxidant capacity in intestinal porcine epithelial cells (IPEC-J2) under oxidative stress by diquat. The results demonstrated that the pretreatment with stevioside (250 μM) for 6 h increased cell viability and proliferation and prevented apoptosis induced by diquat at 1000 μM for 6 h in IPEC-J2 cells, compared with the diquat alone-treated cells. Importantly, stevioside pretreatment significantly reduced ROS and MDA production as well as upregulated T-SOD, CAT, and GSH-Px activity. Moreover, it also decreased cell permeability and improved intestinal barrier functions by significantly upregulating the tight junction protein abundances of claudin-1, occludin, and ZO-1. At the same time, stevioside significantly down-regulated the secretion and gene expression of IL-6, IL-8, and TNF-α and decreased the phosphorylation levels of NF-κB, IκB, and ERK1/2 compared with the diquat alone group. Taken together, this study demonstrated that stevioside alleviated diquat-stimulated cytotoxicity, inflammation, and apoptosis in IPEC-J2 cells, protecting cellular barrier integrity and mitigating oxidative stress by interfering with the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Cui W, Xie N, Lam EWF, Hahn-Stromberg V, Liu N, Zhang H, Sun XF. High expression of cytoplasmic FOXO3 protein associated with poor prognosis of rectal cancer patients: A study from Swedish clinical trial of preoperative radiotherapy to big database analysis. Heliyon 2023; 9:e15342. [PMID: 37131452 PMCID: PMC10149220 DOI: 10.1016/j.heliyon.2023.e15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Accumulating evidence has implicated a pivotal role for FOXO3, FOXM1 and SIRT6 in cancer progression. The majority of researches focused on the functions of these proteins in drug resistance, but their relationships with radiotherapy (RT) response remain unclear. In this study, we examined protein expression of FOXO3, FOXM1 and SIRT6 and their clinical significance in a Swedish rectal cancer trial of preoperative RT. Methods Expression of FOXO3, FOXM1 and SIRT6 protein was examined by immunohistochemistry in patient samples. Genetic analysis of FOXO3, FOXM1 and SIRT6 were performed by cBioportal and MEXPRESS database. Gene-gene network analysis was conducted using GeneMANIA. Functional enrichment analysis was performed based on LinkedOmics and Metascape online software. Results FOXO3 and FOXM1were mainly expressed in the cytoplasm in both normal and tumour tissues, and SIRT6 in both the cytoplasm and nucleus in normal and tumour tissues. FOXO3 and FOXM1 expression increased from normal mucosa to primary cancer (P < 0.001), while SIRT6 expression decreased from normal mucosa to primary cancer (P < 0.001). High FOXO3 expression correlated with late TNM stage (P = 0.040), distant metastasis (P = 0.032) and independently with disease free survival (DFS) in the RT patients (HR = 7.948; P = 0.049; 95% CI = 1.002-63.032) but not in non-RT patients (P > 0.05). Genetic analysis indicated that DNA methylation status contributed to FOXO3 overexpression. Functional enrichment analysis demonstrated that FOXO3 was closely related to metabolism-related signalling pathway which in turn associated with cancer radioresistance. Moreover, there were strong gene-gene interactions between FOXO3 and metabolism-related signalling. Conclusions Our findings suggest that FOXO3 may be a prognostic factor in rectal cancer patients with RT.
Collapse
Affiliation(s)
- Weiyingqi Cui
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | | | - Na Liu
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Corresponding author.Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
- Corresponding author.
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Corresponding author. ;
| |
Collapse
|
11
|
Chen Y, Tang M, Li H, Huang J. Effects of C10orf10 on growth and prognosis of glioma under hypoxia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:499-507. [PMID: 37385612 PMCID: PMC10930248 DOI: 10.11817/j.issn.1672-7347.2023.220396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Glioma is the most common malignant tumor in the central nervous system, and the hypoxic microenvironment is prevalent in solid tumors. This study aims to investigate the up-regulation of genes under the condition of hypoxia and their roles in glioma growth, as well as their impact on glioma prognosis. METHODS The hypoxia-related dataset with glioma was screened in the Gene Expression Omnibus database (GEO), and the differentially expressed genes were analyzed between hypoxia and normoxia through bioinformatics, and chromosome 10 open reading frame 10 (C10orf10) was verified and screened in hypoxia-treated cells through real-time PCR and Western blotting. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets were downloaded to analyze the mRNA expression of C10orf10 in different grades of glioma and its impact on prognosis. The glioma specimens and follow-up data of 68 gliomas who underwent surgical treatment in Xiangya Hospital of Central South University from March 2017 to January 2021 were collected, and real-time PCR was used to detect the mRNA expression of C10orf10 in different grades of glioma, and the Kaplan-Meier method was used to analyze the relationship between the expression C10orf10 and prognosis. The glioma cells, which could interfere the expression of C10orf10, were constructed, and the effect of C10orf10 on the proliferation of glioma cells was evaluated by cell counting kit-8 (CCK-8) and colony formation assays. RESULTS Compared with the condition of normoxia, the expression levels of C10orf10 mRNA and protein were significantly up-regulated in glioma cells under hypoxia (P<0.001), and the mRNA expression level of C10orf10 in glioma tissues was up-regulated with the increase of WHO grade in glioma (P<0.001). Based on Kaplan-Meier survival analysis, the higher the mRNA expression level of C10orf10 was, the shorter the survival time of the patient was (P<0.05). And the expression of C10orf10 mRNA was higher in recurrent gliomas than that in primary gliomas in the CGGA database (P<0.001). Knockdown of C10orf10 could significantly inhibit the growth of glioma cells both under hypoxia and normoxia (both P<0.001). CONCLUSIONS The expression level of C10orf10 can promote the proliferation and prognosis of glioma, which is expected to become a prognostic marker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| | - Miao Tang
- Department of Neurosurgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hui Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| |
Collapse
|
12
|
Jang JY, Im E, Kim ND. Therapeutic Potential of Bioactive Components from Scutellaria baicalensis Georgi in Inflammatory Bowel Disease and Colorectal Cancer: A Review. Int J Mol Sci 2023; 24:1954. [PMID: 36768278 PMCID: PMC9916177 DOI: 10.3390/ijms24031954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scutellaria baicalensis Georgi (SBG), an herbal medicine with various biological activities, including anti-inflammatory, anticancer, antiviral, antibacterial, and antioxidant activities, is effective in treatment of colitis, hepatitis, pneumonia, respiratory infections, and allergic diseases. This herbal medicine consists of major active substances, such as baicalin, baicalein, wogonoside, and wogonin. Inflammatory bowel disease (IBD) comprises a group of inflammatory conditions of the colon and small intestine, with Crohn's disease and ulcerative colitis being the main types. IBD can lead to serious complications, such as increased risk of colorectal cancer (CRC), one of the most common cancers worldwide. Currently, there is no cure for IBD, and its incidence has been increasing over the past few decades. This review comprehensively summarizes the efficacy of SBG in IBD and CRC and may serve as a reference for future research and development of drugs for IBD and cancer treatment.
Collapse
Affiliation(s)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Kohoutova K, Dočekal V, Ausserlechner MJ, Kaiser N, Tekel A, Mandal R, Horvath M, Obsilova V, Vesely J, Hagenbuchner J, Obsil T. Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS OMEGA 2022; 7:34632-34646. [PMID: 36188303 PMCID: PMC9521028 DOI: 10.1021/acsomega.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Collapse
Affiliation(s)
- Klara Kohoutova
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | | | - Nora Kaiser
- Department
of Pediatrics I, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Andrej Tekel
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Raju Mandal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Matej Horvath
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Veronika Obsilova
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Jan Vesely
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Judith Hagenbuchner
- Department
of Pediatrics II, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
14
|
Gu Y, Zheng Q, Fan G, Liu R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int J Mol Sci 2022; 23:ijms231911042. [PMID: 36232344 PMCID: PMC9570317 DOI: 10.3390/ijms231911042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.
Collapse
|
15
|
Chen J, Xu Y, Wu P, Chen X, Weng W, Li D. Transcription Factor FOXO3a Overexpression Inhibits the Progression of Neuroblastoma by Regulating the miR-21/SPRY2/ERK Axis. World Neurosurg 2022; 164:e99-e112. [DOI: 10.1016/j.wneu.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
16
|
Kuwahara M, Akasaki Y, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Teramura T, Nakashima Y. C10orf10/DEPP activates mitochondrial autophagy and maintains chondrocyte viability in the pathogenesis of osteoarthritis. FASEB J 2022; 36:e22145. [PMID: 34997944 DOI: 10.1096/fj.202100896r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), the most prevalent joint disease, is characterized by the progressive loss of articular cartilage. Autophagy, a lysosomal degradation pathway, maintains cellular homeostasis, and autophagic dysfunction in chondrocytes is a hallmark of OA pathogenesis. However, the cause of autophagic dysfunction in OA chondrocytes remains incompletely understood. Recent studies have reported that decidual protein induced by progesterone (C10orf10/DEPP) positively regulates autophagic functions. In this study, we found that DEPP was involved in mitochondrial autophagic functions of chondrocytes, as well as in OA pathogenesis. DEPP expression decreased in human OA chondrocytes in the absence or presence of pro-inflammatory cytokines, and was induced by starvation, hydrogen peroxide (H2 O2 ), and hypoxia (cobalt chloride). For functional studies, DEPP knockdown decreased autophagic flux induced by H2 O2 , whereas DEPP overexpression increased autophagic flux and maintained cell viability following H2 O2 treatment. DEPP was downregulated by knockdown of forkhead box class O (FOXO) transcription factors and modulated the autophagic function regulated by FOXO3. In an OA mouse model by destabilization of the medial meniscus, DEPP-knockout mice exacerbated the progression of cartilage degradation with TUNEL-positive cells, and chondrocytes isolated from knockout mice were decreased autophagic flux and increased cell death following H2 O2 treatment. Subcellular fractionation analysis revealed that mitochondria-located DEPP activated mitochondrial autophagy via BCL2 interacting protein 3. Taken together, our data demonstrate that DEPP is a major stress-inducible gene involved in the activation of mitochondrial autophagy in chondrocytes, and maintains chondrocyte viability during OA pathogenesis. DEPP represents a potential therapeutic target for enhancing autophagy in patients with OA.
Collapse
Affiliation(s)
- Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Taisuke Uchida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoaki Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ryota Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
17
|
Qian Z, Shang D, Fan L, Zhang J, Ji L, Chen K, Zhao R. Heterogeneity analysis of the immune microenvironment in laryngeal carcinoma revealed potential prognostic biomarkers. Hum Mol Genet 2021; 31:1487-1499. [PMID: 34791236 DOI: 10.1093/hmg/ddab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is the second most prevalent malignancy occurring in the head and neck with a high incidence and mortality rate. Immunotherapy has recently become an emerging treatment for cancer. It is therefore essential to explore the role of tumour immunity in laryngeal cancer. Our study first delineated and evaluated the comprehensive immune infiltration landscapes of the tumour microenvironment in LSCC. A hierarchical clustering method was applied to classify the LSCC samples into two groups (high- and low-infiltration groups). We found that individuals with low immune infiltration characteristics had significantly better survival than those in the high-infiltration group, possibly because of the elevated infiltration of immune suppressive cells, such as regulatory T cells and myeloid-derived suppressor cells (MDSCs), in the high-infiltration group. Differentially expressed genes (DEGs) between two groups were involved in some immune-related terms, such as antigen processing and presentation. A univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed to identify an immune gene-set-based prognostic signature (IBPS) to assess the risk of LSCC. The prognostic model comprising six IBPSs was successfully verified to be robust in different cohorts. The expression of the six IBPSs was detected by immunohistochemistry (IHC) in 110 cases of LSCC. In addition, different inflammatory profiles and immune checkpoint landscape of LSCC were found between two groups. Hence, our model could serve as a candidate immunotherapeutic biomarker and potential therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Zhipeng Qian
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Desi Shang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Fan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiarui Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linhao Ji
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Chen
- Department of Pathology, the Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Beaulac HJ, Gilels F, Zhang J, Jeoung S, White PM. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis 2021; 12:682. [PMID: 34234110 PMCID: PMC8263610 DOI: 10.1038/s41419-021-03972-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/-), and Foxo3 knock-out (Foxo3-/-) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3-/- OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3-/- mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3-/- mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.
Collapse
MESH Headings
- Animals
- Cell Death
- Disease Models, Animal
- Female
- Forkhead Box Protein O3/deficiency
- Forkhead Box Protein O3/genetics
- Gene Expression Regulation
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Homozygote
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Male
- Mice, Knockout
- Noise
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Time Factors
- Mice
Collapse
Affiliation(s)
- Holly J Beaulac
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Felicia Gilels
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jingyuan Zhang
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Otolaryngology, Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston Children's Hospital Center for Life Science, Boston, MA, USA
| | - Sarah Jeoung
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
19
|
Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium 2020; 91:102268. [PMID: 32827867 DOI: 10.1016/j.ceca.2020.102268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
20
|
Sallee NA, Lee E, Leffert A, Ramirez S, Brace AD, Halenbeck R, Kavanaugh WM, Sullivan KMC. A Pilot Screen of a Novel Peptide Hormone Library Identified Candidate GPR83 Ligands. SLAS DISCOVERY 2020; 25:1047-1063. [PMID: 32713278 DOI: 10.1177/2472555220934807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.
Collapse
Affiliation(s)
- Nathan A Sallee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,Maze Therapeutics Inc., South San Francisco, CA, USA
| | - Ernestine Lee
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Atossa Leffert
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Silvia Ramirez
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Arthur D Brace
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | - Robert Halenbeck
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - W Michael Kavanaugh
- Five Prime Therapeutics Inc., South San Francisco, CA, USA.,CytomX Therapeutics Inc., South San Francisco, CA, USA
| | | |
Collapse
|
21
|
The Expression of Decidual Protein Induced by Progesterone (DEPP) is Controlled by Three Distal Consensus Hypoxia Responsive Element (HRE) in Hypoxic Retinal Epithelial Cells. Genes (Basel) 2020; 11:genes11010111. [PMID: 31963726 PMCID: PMC7016973 DOI: 10.3390/genes11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia affects the development and/or progression of several retinopathies. Decidual protein induced by progesterone (DEPP) has been identified as a hypoxia-responsive gene that may be part of cellular pathways such as autophagy and connected to retinal diseases. To increase our understanding of DEPP regulation in the eye, we defined its expression pattern in mouse and human retina and retinal pigment epithelium (RPE). Interestingly, DEPP expression was increased in an age-dependent way in the central human RPE. We showed that DEPP was regulated by hypoxia in the mouse retina and eyecup and that this regulation was controlled by hypoxia-inducible transcription factors 1 and 2 (HIF1 and HIF2). Furthermore, we identified three hypoxia response elements (HREs) about 3.5 kb proximal to the transcriptional start site that were responsible for hypoxic induction of DEPP in a human RPE cell line. Comparative genomics analysis suggested that one of the three HREs resides in a highly conserved genomic region. Collectively, we defined the molecular elements controlling hypoxic induction of DEPP in an RPE cell line, and provided evidence for an enrichment of DEPP in the aged RPE of human donors. This makes DEPP an interesting gene to study with respect to aging and age-related retinal pathologies.
Collapse
|
22
|
Salcher S, Spoden G, Huber JM, Golderer G, Lindner H, Ausserlechner MJ, Kiechl-Kohlendorfer U, Geiger K, Obexer P. Repaglinide Silences the FOXO3/Lumican Axis and Represses the Associated Metastatic Potential of Neuronal Cancer Cells. Cells 2019; 9:cells9010001. [PMID: 31861249 PMCID: PMC7017090 DOI: 10.3390/cells9010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown. In the present study, we uncover the small leucine-rich proteoglycan family member lumican (LUM) as a FOXO3-regulated gene that stimulates cellular migration in NB. By a drug-library screen we identified the small molecular weight compound repaglinide (RPG) as a putative FOXO3 inhibitor. Here, we verify that RPG binds to the FOXO3-DNA-binding-domain (DBD) and thereby silences the transcriptional activity of FOXO3. Consistent with the concept that the FOXO3/LUM axis enhances the migratory capacity of aggressive NB cells, we demonstrate that stable knockdown of LUM abrogates the FOXO3-mediated increase in cellular migration. Importantly, FOXO3 inhibition by RPG represses the binding of FOXO3 to the LUM promoter, inhibits FOXO3-mediated LUM RNA and protein expression, and efficiently abrogates FOXO3-triggered cellular “wound healing” as well as spheroid-based 3D-migration. Thus, silencing the FOXO3/LUM axis by the FDA-approved compound RPG represents a promising strategy for novel therapeutic interventions in NB and other FOXO3-dependent tumors.
Collapse
Affiliation(s)
- Stefan Salcher
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Gilles Spoden
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Julia M. Huber
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | | | | | - Kathrin Geiger
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Petra Obexer
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
- Department of Pediatrics II, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-504-25439
| |
Collapse
|
23
|
Hagenbuchner J, Obsilova V, Kaserer T, Kaiser N, Rass B, Psenakova K, Docekal V, Alblova M, Kohoutova K, Schuster D, Aneichyk T, Vesely J, Obexer P, Obsil T, Ausserlechner MJ. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. eLife 2019; 8:48876. [PMID: 31789593 PMCID: PMC6919977 DOI: 10.7554/elife.48876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modeling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic
| | - Teresa Kaserer
- Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Nora Kaiser
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Bettina Rass
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Katarina Psenakova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtech Docekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Alblova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic
| | - Klara Kohoutova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniela Schuster
- Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tatsiana Aneichyk
- Division of Molecular Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria.,Independent Data Lab UG, Munich, Germany
| | - Jan Vesely
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | | |
Collapse
|
24
|
A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2019; 39:1080-1097. [PMID: 31591479 PMCID: PMC6989399 DOI: 10.1038/s41388-019-1044-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.
Collapse
|
25
|
Kang MA, Lee J, Ha SH, Lee CM, Kim KM, Jang KY, Park SH. Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers (Basel) 2019; 11:cancers11091394. [PMID: 31540495 PMCID: PMC6770213 DOI: 10.3390/cancers11091394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Specific kinds of interleukin (IL) receptors are known to mediate lymphocyte proliferation and survival. However, recent reports have suggested that the high expression of IL4Rα and IL13Rα1 in tumor tissue might be associated with tumorigenesis in several kinds of tumor. We found that a significant association between mRNA level of IL4Rα or IL13Rα1 and the poor prognosis of renal cell carcinoma (RCC) from the public database (http://www.oncolnc.org/). Then, we evaluated the clinicopathological significance of the immunohistochemical expression of IL4Rα and IL13Rα1 in 199 clear cell RCC (CCRCC) patients. The individual and co-expression patterns of IL4Rα and IL13Rα1 were significantly associated with cancer-specific survival (CSS) and relapse-free survival (RFS) in univariate analysis. Multivariate analysis indicated IL4Rα-positivity and co-expression of IL4Rα and IL13Rα1 as the independent indicators of shorter CSS and RFS of CCRCC patients. For the in vitro evaluation of the oncogenic role of IL4Rα and IL13Rα1 in RCC, we knock-downed IL4Rα or IL13Rα1 and observed that the cell proliferation rate was decreased, and the apoptosis rate was increased in A498 and ACHN cells. Furthermore, we examined the possible role of Janus kinase 2 (JAK2), well-known down-stream tyrosine kinase under the heterodimeric receptor complex of IL4Rα and IL13Rα1. Interestingly, JAK2 interacted with Forkhead box O3 (FOXO3) to cause tyrosine-phosphorylation of FOXO3. Silencing IL4Rα or JAK2 in A498 and ACHN cells reduced the interaction between JAK2 and FOXO3. Moreover, pharmacological inhibition of JAK2 induced the nuclear localization of FOXO3, leading to increase apoptosis and decrease cell proliferation rate in A498 and ACHN cells. Taken together, these results suggest that IL4Rα and IL13Rα1 might be involved in the progression of RCC through JAK2/FOXO3 pathway, and their expression might be used as the novel prognostic factor and therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
26
|
Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics. Cells 2019; 8:cells8090966. [PMID: 31450545 PMCID: PMC6770010 DOI: 10.3390/cells8090966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
FOXO transcription factors regulate cellular homeostasis, longevity and response to stress. FOXO1 (also known as FKHR) is a key regulator of hepatic glucose production and lipid metabolism, and its specific inhibition may have beneficial effects on diabetic hyperglycemia by reducing hepatic glucose production. Moreover, all FOXO proteins are considered potential drug targets for drug resistance prevention in cancer therapy. However, the development of specific FOXO inhibitors requires a detailed understanding of structural differences between individual FOXO DNA-binding domains. The high-resolution structure of the DNA-binding domain of FOXO1 reported in this study and its comparison with structures of other FOXO proteins revealed differences in both their conformation and flexibility. These differences are encoded by variations in protein sequences and account for the distinct functions of FOXO proteins. In particular, the positions of the helices H1, H2 and H3, whose interface form the hydrophobic core of the Forkhead domain, and the interactions between hydrophobic residues located on the interface between the N-terminal segment, the H2-H3 loop, and the recognition helix H3 differ among apo FOXO1, FOXO3 and FOXO4 proteins. Therefore, the availability of apo structures of DNA-binding domains of all three major FOXO proteins will support the development of FOXO-type-specific inhibitors.
Collapse
|
27
|
Sagasser J, Ma BN, Baecker D, Salcher S, Hermann M, Lamprecht J, Angerer S, Obexer P, Kircher B, Gust R. A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. J Med Chem 2019; 62:8053-8061. [PMID: 31369259 DOI: 10.1021/acs.jmedchem.9b00814] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chlorido[N,N'-disalicylidene-1,2-phenylenediamine]iron(III) complexes generate lipid-based ROS and induce ferroptosis in leukemia and neuroblastoma cell lines. The extent of ferroptosis on the mode of action is regulated by simple modifications of the substituents at the 1,2-phenylenediamine moiety. In HL-60 cells, the unsubstituted lead exclusively caused ferroptosis. For instance, a 4-F substituent shifted the mode of action toward both ferroptosis and necroptosis, while the analogously chlorinated derivative exerted only necroptosis. Remarkably, cell-death in NB1 neuroblastoma cells was solely induced by ferroptosis, independent of the used substituents. The effects were higher than that of the therapeutically applied drug cisplatin. These data clearly demonstrate for the first time that not only iron ions but also iron salophene complexes are potent ferroptosis inducers, which can be optimized as antitumor agents.
Collapse
Affiliation(s)
- Jessica Sagasser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Benjamin N Ma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Daniel Baecker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Stefan Salcher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Julia Lamprecht
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Stefanie Angerer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Department of Pediatrics II , Medical University Innsbruck , Innrain 66 , 6020 Innsbruck , Austria
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
28
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
29
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
30
|
Su MQ, Zhou YR, Rao X, Yang H, Zhuang XH, Ke XJ, Peng GY, Zhou CL, Shen BY, Dou J. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol 2018; 53:750-760. [PMID: 29749481 DOI: 10.3892/ijo.2018.4402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalein has efficient antitumor properties and has been reported to promote the apoptosis of several human cancer cell lines. Decidual protein induced by progesterone (DEPP), a transcriptional target of Forkhead Box O, was originally identified from the human endometrial stromal cell cDNA library. However, the expression and physiological functions of DEPP in human colon cancer cells remain to be fully elucidated. In the present study, it was reported that baicalein stimulated apoptosis and morphological changes of HCT116, A549 and Panc‑1 cells in a dose-dependent manner. It also upregulated the mRNA and protein levels of DEPP and growth arrest and DNA damage-inducible 45α (Gadd45a). In addition, the overexpression of DEPP promoted mitogen-activated protein kinase (MAPK) phosphorylation. To further investigate the role of DEPP and Gadd45a in baicalein-induced apoptosis, HCT116 cells were transfected with small interfering RNA against either DEPP or Gadd45a as in vitro models. Through an Annexin V/PI double staining assay, it was observed that baicalein-induced apoptosis was impaired by the inactivation of either DEPP or Gadd45a, which in turn restricted the baicalein-induced activation of caspase‑3 and caspase‑9 and phosphorylation of MAPKs. In addition, the inhibition of c‑Jun N‑terminal kinase (JNK)/p38 activity with SP600125/SB203580 decreased the expression of Gadd45a, whereas the inactivation of extracellular signal-regulated kinase with SCH772984 had no effect on the expression of Gadd45a. Taken together, these results demonstrated that baicalein induced the upregulation of DEPP and Gadd45a, which promoted the activation of MAPKs with a positive feedback loop between Gadd45a and JNK/p38, resulting in a marked apoptotic response in human colon cancer cells. These results indicated that baicalein is a potential antitumor drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Meng-Qi Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi-Ran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Xuan Rao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin-Hao Zhuang
- Department of Chemistry and Biochemistry, University of Oregon, OR 97401, USA
| | - Xue-Jia Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guang-Yong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Chang-Lin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Li W, Ji M, Lin Y, Miao Y, Chen S, Li H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21. FASEB J 2018; 32:5459-5469. [PMID: 29702025 DOI: 10.1096/fj.201800357r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Decidual protein induced by progesterone (DEPP/DEPP1/C10ORF10) is induced by denying access to food and reduced by refeeding in insulin-sensitive organs in vivo. The negative regulation of DEPP by insulin is also proven in several cell lines. However, the functions of DEPP in insulin-sensitive organs remain unknown. In the present study, we investigated the impact of DEPP on hepatic energy metabolism and addressed the underlying mechanisms. The metabolic effects of DEPP were investigated in mice with adenovirus-mediated hepatic overexpression. Liver triglyceride (TG), glycogen, and serum metabolites were detected by biochemical assays. Energy homeostasis was measured by indirect calorimetry. Quantitative PCR was used to examine expression of genes involved in fatty acid oxidation, ketogenesis, lipogenesis, and gluconeogenesis. To evaluate the role of fibroblast growth factor 21 (FGF21) mediating the metabolic effects of DEPP, FGF21 antibody was administrated intraperitoneally to mice at 24 h after the delivery of adenovirus, and the metabolic alterations were examined. Reactive oxygen species (ROS) levels were measured by catalase activity assay, live cell fluorescence, or quantitative PCR. Effects of DEPP on the phenotype of db/db mice were also assessed. Acute hepatic overexpression of DEPP significantly reduced serum glucose and TG levels, dramatically elevated β-hydroxybutyrate levels, and improved glucose clearance. Compared with controls, DEPP overexpression reduced food intake, the energy expenditure rate, and the respiratory quotient. DEPP overexpression significantly increased fatty acid oxidation and ketogenesis but suppressed lipid synthesis and gluconeogenesis. Investigations of the underlying mechanisms revealed that DEPP regulates energy metabolism by inducing oxidative stress. With the impairment of the ROS scavenging system and promotion of ROS formation, DEPP overexpression leads to ROS accumulation. FGF21 is upregulated in response to oxidative stress and mediates the effects of DEPP on fatty acid oxidation, ketogenesis, and lipid synthesis but not gluconeogenesis, as evidenced by the fact that the FGF21 antibody dramatically suppressed a DEPP-induced increase of fatty acid oxidation and ketogenesis, reversed the reduction of lipid synthesis, but did not change the suppression of gluconeogenesis. Moreover, overexpression of DEPP in db/ db mice led to a marked reduction in body weight and serum glucose levels and significantly improved insulin sensitivity. Hepatic overexpression of DEPP in mice promotes fatty acid oxidation and ketogenesis and suppresses lipogenesis and gluconeogenesis, which is partly mediated by FGF21 induced by elevated cellular ROS levels.-Li, W., Ji, M., Lin, Y., Miao, Y., Chen, S., Li, H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Meiling Ji
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yandie Lin
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Simin Chen
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Hao Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Hagenbuchner J, Lungkofler L, Kiechl-Kohlendorfer U, Viola G, Ferlin MG, Ausserlechner MJ, Obexer P. The tubulin inhibitor MG-2477 induces autophagy-regulated cell death, ROS accumulation and activation of FOXO3 in neuroblastoma. Oncotarget 2018; 8:32009-32026. [PMID: 28415610 PMCID: PMC5458265 DOI: 10.18632/oncotarget.16434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most frequent extra-cranial solid tumor in children with still high mortality in stage M. Here we studied the tubulin-inhibitor MG-2477 as a possible therapeutic agent for neuroblastoma therapy and uncovered that MG-2477 induces death in neuroblastoma cells independent of PKB-activation status and stage. MG-2477 triggers within 30 minutes extensive autophagosome-formation that finally leads to cell death associated with mitotic catastrophe. Autophagy is critical for MG-2477-induced death and is regulated by the BH3-only protein PMAIP1/NOXA which sequesters the anti-apoptotic BCL2-protein BCLXL and thereby displaces and activates the autophagy-regulator BECN1/beclin1. Knockdown of NOXA or overexpression of its pro-survival binding partners MCL1 and BCLXL counteracts MG-2477-induced cell death. MG-2477 also rapidly induces the repression of the anti-apoptotic protein Survivin, which promotes autophagy and cell death. We further observed the accumulation of reactive oxygen species (ROS) that triggers autophagy induction suggesting a change of the PI3 kinase-III/BECN1 complex and activates the transcription factor FOXO3, which contributes to final cell death induction. The combined data suggest that MG-2477 induces a sequential process of ROS-accumulation, autophagy and FOXO3-activation that leads to cell death in neuroblastoma cells.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory University of Padova, Padova, Italy
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
33
|
Groß A, Schulz C, Kolb J, Koster J, Wehner S, Czaplinski S, Khilan A, Rohrer H, Harter PN, Klingebiel T, Langer JD, Geerts D, Schulte D. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma. Cancer Res 2018; 78:1935-1947. [DOI: 10.1158/0008-5472.can-17-1860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
|
34
|
Rupp M, Hagenbuchner J, Rass B, Fiegl H, Kiechl-Kohlendorfer U, Obexer P, Ausserlechner MJ. FOXO3-mediated chemo-protection in high-stage neuroblastoma depends on wild-type TP53 and SESN3. Oncogene 2017; 36:6190-6203. [PMID: 28869600 PMCID: PMC5671944 DOI: 10.1038/onc.2017.288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
Abstract
Forkhead box O class transcription factors are homeostasis regulators that control cell death, longevity and therapy-resistance. In neuroblastoma (NB), nuclear FOXO3 correlates with stage M disease and poor prognosis. To analyze whether FOXO3 contributes to drug-resistance in this childhood cancer, we investigated how different high-stage-derived NB cells respond to the activation of an ectopic FOXO3 allele. We found endogenous FOXO3 mostly localized to the nucleus—upon activation of an ectopic, 4OHT-activated FOXO3(A3)ER fusion protein two of the cell lines underwent apoptosis, whereas in the others FOXO3-activation even increased survival during drug-treatment. In the latter cell type, FOXO3 did not induce the BH3-only protein BCL2L11/BIM due to impaired binding of FOXO3 to the BIM-promoter, but still activated other FOXO3 targets. It was shown before that FOXO3 and TP53 physically interact with each other at two different regions—the TP53-N-terminus binds to the FOXO3-DNA binding domain (DBD) and the FOXO3-C-terminus interacts with the TP53-DBD. Interestingly, cell lines that undergo FOXO3-induced cell death carry homozygous point mutations in the TP53-DBD near the structural hotspot-mutation-site R175H, which abrogated FOXO3–TP53 interaction. In contrast, in FOXO3-death-resistant cells no point mutations in the TP53-DBD were found—in these cells FOXO3–TP53 complexes are formed and FOXO3-binding to the BIM-promoter, but not the induction of the detoxifying protein SESN3, were prevented, which in turn increased chemo-protection in this type of high-stage-derived NB cells. Our combined data suggest that FOXO3 steps in as a death inducer in case of TP53-mutation, whereas functional TP53 alters FOXO3-target-promoter-recognition, which prevents death induction by FOXO3 and instead increases chemo-protection and survival of NB cells. This novel mechanism may explain the low incidence of TP53 mutation in high-stage NB at diagnosis and suggests FOXO3 as a therapeutic target for this childhood malignancy.
Collapse
Affiliation(s)
- M Rupp
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - J Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - B Rass
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - H Fiegl
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | | | - P Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - M J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Tseng JH, Chen CY, Chen PC, Hsiao SH, Fan CC, Liang YC, Chen CP. Valproic acid inhibits glioblastoma multiforme cell growth via paraoxonase 2 expression. Oncotarget 2017; 8:14666-14679. [PMID: 28108734 PMCID: PMC5362434 DOI: 10.18632/oncotarget.14716] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
We studied the potential mechanisms of valproic acid (VPA) in the treatment of glioblastoma multiforme (GBM). Using the human U87, GBM8401, and DBTRG-05MG GBM-derived cell lines, VPA at concentrations of 5 to 20 mM induced G2/M cell cycle arrest and increased the production of reactive oxygen species (ROS). Stress-related molecules such as paraoxonase 2 (PON2), cyclin B1, cdc2, and Bcl-xL were downregulated, but p27, p21 and Bim were upregulated by VPA treatment. VPA response element on the PON2 promoter was localized at position -400/−1. PON2 protein expression was increased in GBM cells compared with normal brain tissue and there was a negative correlation between the expression of PON2 and Bim. These findings were confirmed by the public Bredel GBM microarray (Gene Expression Omnibus accession: GSE2223) and the Cancer Genome Atlas GBM microarray datasets. Overexpression of PON2 in GBM cells significantly decreased intracellular ROS levels, and PON2 expression was decreased after VPA stimulation compared with controls. Bim expression was significantly induced by VPA in GBM cells with PON2 silencing. These observations were further shown in the subcutaneous GBM8401 cell xenograft of BALB/c nude mice. Our results suggest that VPA reduces PON2 expression in GBM cells, which in turn increases ROS production and induces Bim production that inhibits cancer progression via the PON2–Bim cascade.
Collapse
Affiliation(s)
- Jen-Ho Tseng
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Sheng-Huang Hsiao
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan.,College of Science, National Chengchi University, Taipei 116, Taiwan
| | - Chi-Chen Fan
- Department of Physiology, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chie-Pein Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.,Department of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
36
|
Salcher S, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol Cancer 2017; 16:95. [PMID: 28545464 PMCID: PMC5445297 DOI: 10.1186/s12943-017-0661-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/15/2017] [Indexed: 11/15/2022] Open
Abstract
Background Neuroblastoma is the most common solid tumor in childhood and develops from undifferentiated progenitor cells of the sympathetic nervous system. In neuronal tumor cells DNA-damaging chemotherapeutic agents activate the transcription factor FOXO3 which regulates the formation of reactive oxygen species (ROS) and cell death as well as a longevity program associated with therapy resistance. We demonstrated before that C10ORF10/DEPP, a transcriptional target of FOXO3, localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification. In the present study, we investigated the impact of FOXO3 and DEPP on the regulation of autophagy. Autophagy serves to reduce oxidative damage as it triggers a self-degradative process for the removal of aggregated or misfolded proteins and damaged organelles. Methods The effect of FOXO3 and DEPP on autophagy induction was analyzed using live cell fluorescence microscopy and immunoblot analyses of SH-EP cells transfected with a plasmid for EYFP-LC3 and with siRNAs specific for LC3, respectively. ROS steady-state levels were measured with reduced MitoTrackerRed CM-H2XROS. Cellular apoptosis was analyzed by flow cytometry and the caspase 3/7 assay. Results We report for the first time that DEPP induces ROS accumulation and thereby mediates the formation of autophagosomes as inhibition of ROS formation by N-acetyl-cysteine completely blocks autophagy. We further demonstrate that H2O2-treatment triggers autophagy-induction by FOXO3-mediated DEPP expression. Importantly, knockdown of DEPP was sufficient to efficiently inhibit autophagy-induction under different stress conditions such as serum starvation and genotoxic stress, suggesting that DEPP expression is critical for the initiation of autophagy in neuroblastoma. FOXO3-triggered autophagy partially protects neuroblastoma cells from cell death. Consistent with this concept, we demonstrate that inhibition of autophagy by LC3-knockdown significantly increased etoposide- and doxorubicin-induced apoptosis. These results were also confirmed by the use of the autophagy-inhibitor chloroquine that significantly enhanced the chemotherapeutic effect of etoposide and doxorubicin in neuronal tumor cells. Conclusion Targeting FOXO3/DEPP-triggered autophagy is a promising strategy to sensitize neuroblastoma cells to chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0661-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Salcher
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria
| | - M Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - U Kiechl-Kohlendorfer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria
| | - M J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.
| | - P Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
37
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
38
|
Cao S, Xia M, Mao Y, Zhang Q, Donkor PO, Qiu F, Kang N. Combined oridonin with cetuximab treatment shows synergistic anticancer effects on laryngeal squamous cell carcinoma: involvement of inhibition of EGFR and activation of reactive oxygen species-mediated JNK pathway. Int J Oncol 2016; 49:2075-2087. [PMID: 27667173 DOI: 10.3892/ijo.2016.3696] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is expressed at high levels in a large proportion of laryngeal squamous cell carcinoma (LSCC). Cetuximab (Cet), an anti-EGFR monoclonal antibody, has limited clinical outcome for patients with head and neck squamous cell carcinoma. Our previous studies showed that oridonin (ORI), a natural and safe kaurene diterpenoid isolated from Rabdosia rubescens, inhibited cell growth in HEp-2 cells through inhibition of EGFR phosphorylation. The aim of the present study was to determine whether ORI could improve the anticancer efficacy of Cet on LSCC. We observed that the combination with Cet and ORI synergistically inhibited cell growth associated with Fas-mediated apoptosis and G2/M phase arrest in two LSCC cell lines (HEp-2 and Tu212 cells). Moreover, combination treatment caused cell death associated with suppression of p-EGFR and activation of reactive oxygen species (ROS)-mediated JNK pathway. In nude mice bearing HEp-2 xenografts, ORI plus Cet caused a significant tumor regression through induction of apoptosis and inhibition of proliferation with no side-effect. Together, our findings suggest that the combination of ORI and Cet has the potential to enhance tumor responses and may significantly improve therapeutic outcomes in LSCC.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Meijuan Xia
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yiwei Mao
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Paul Owusu Donkor
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Feng Qiu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
39
|
Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 2015; 35:3839-53. [PMID: 26640148 DOI: 10.1038/onc.2015.455] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of ROS and mitophagy as a main determinant of neuroblastoma resistance with potential relevance for personalized anticancer therapeutic approaches.
Collapse
|
40
|
Oxidative Stress in Placenta: Health and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293271. [PMID: 26693479 PMCID: PMC4676991 DOI: 10.1155/2015/293271] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022]
Abstract
During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed.
Collapse
|
41
|
Dasari SR, Velma V, Yedjou CG, Tchounwou PB. Preclinical Assessment of Low Doses of Cisplatin in the Management of Acute Promyelocytic Leukemia. ACTA ACUST UNITED AC 2015; 1. [PMID: 26900603 PMCID: PMC4758698 DOI: 10.16966/2381-3318.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cis-diamminedichloroplatinum (II) (cisplatin) is the most widely used chemotherapeutic drug for various cancers, but its effectiveness is limited by tumor cell resistance and the severe side effects it causes. Since high level of cisplatin is cytotoxic to both cancer and normal cells, the goal of the present study was to explore the effectiveness of prolonged low doses of cisplatin in the management of leukemia. To achieve our goal, human leukemia (HL-60) cells were treated with different doses (1, 2, or 3 µM) of cisplatin for 24, 48, 72 and 96 hours. Cell viability was assessed by MTS assay. Both oxidative stress damage and genotoxicity were estimated by antioxidants, lipid peroxidation, and comet assays, respectively. Data obtained from the MTS assay demonstrated that cisplatin treatment decreased the number of viable tumor cells by direct cell killing or by simply decreasing the rate of cellular proliferation in a dose- and time-dependent fashion. The results of the lipid peroxidation showed a significant increase (p<0.05) of malondialdehyde levels with increasing cisplatin doses. Results obtained from super oxide dismutase and catalase assays showed a gradual increase in antioxidant enzyme activity in cisplatin-treated cells compared to control cells. Data generated from the Comet assay demonstrated a significant dose-dependent increase in genotoxicity with respect to DNA damage as a result of cisplatin treatment. Taken together, our research demonstrated that cisplatin-induced cytotoxicity in HL-60 cells is mediated at least in part via induction of oxidative stress and oxidative damage.
Collapse
Affiliation(s)
- Shaloam R Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Venkatramreddy Velma
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Clement G Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| |
Collapse
|
42
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|