1
|
Heuts BMH, Arza-Apalategi S, Frölich S, Bergevoet SM, van den Oever SN, van Heeringen SJ, van der Reijden BA, Martens JHA. Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework. Sci Rep 2022; 12:18656. [PMID: 36333382 PMCID: PMC9636203 DOI: 10.1038/s41598-022-21148-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we present an easy to use network-based computational framework that exploits enhancers defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks Specified by Enhancers based on CAGE (ANANSE-CAGE) to predict TFs driving red and white blood cell development, and THP-1 leukemia cell immortalization. Further, we predicted TFs that are differentially important to either cell line- or primary- associated MLL-AF9-driven gene programs, and in primary MLL-AF9 acute leukemia. Our approach identified experimentally validated as well as thus far unexplored TFs in these processes. ANANSE-CAGE will be useful to identify transcription factors that are key to any cell fate change using only CAGE-seq data as input.
Collapse
Affiliation(s)
- B M H Heuts
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - S Arza-Apalategi
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - S Frölich
- Department of Molecular Developmental Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - S M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - S N van den Oever
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - S J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - B A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - J H A Martens
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Li X, Yao Y, Wu F, Song Y. A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth. J Hematol Oncol 2022; 15:41. [PMID: 35395864 PMCID: PMC8994274 DOI: 10.1186/s13045-022-01258-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5–10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. Methods Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. Results Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. Conclusion Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01258-8.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Current Trends in the Gene Therapy of Hematologic Disorders. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent advances in molecular genetics and the invention of new technologies led to an advance in the development of gene therapy. Gene therapy is used to correct defective genes in order to cure a disease or help the body better fight a disease. It works by restoring or modifying cellular functions through the introduction of a functional gene into the target cell. The concept of gene therapy is simple, but introducing it to routine clinical practice is not. The main concerns are related to some safety issues as well as to the problem that maintaining a stable and prolonged expression in target cells may not be easily achieved. In spite of the difficulties, gene therapy remains a hope for many hematological disorders that cannot be effectively treated so far. This article reviews the current status of gene therapy with a focus on hematological disorders. In addition, clinically applied approaches are presented through particular examples of approved gene therapy drugs.
Collapse
|
4
|
Chiarella E, Aloisio A, Scicchitano S, Todoerti K, Cosentino EG, Lico D, Neri A, Amodio N, Bond HM, Mesuraca M. ZNF521 Enhances MLL-AF9-Dependent Hematopoietic Stem Cell Transformation in Acute Myeloid Leukemias by Altering the Gene Expression Landscape. Int J Mol Sci 2021; 22:ijms221910814. [PMID: 34639154 PMCID: PMC8509509 DOI: 10.3390/ijms221910814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Leukemias derived from the MLL-AF9 rearrangement rely on dysfunctional transcriptional networks. ZNF521, a transcription co-factor implicated in the control of hematopoiesis, has been proposed to sustain leukemic transformation in collaboration with other oncogenes. Here, we demonstrate that ZNF521 mRNA levels correlate with specific genetic aberrations: in particular, the highest expression is observed in AMLs bearing MLL rearrangements, while the lowest is detected in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. In cord blood-derived CD34+ cells, enforced expression of ZNF521 provides a significant proliferative advantage and enhances MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome analysis of primary CD34+ cultures displayed subsets of genes up-regulated by MLL-AF9 or ZNF521 single transgene overexpression as well as in MLL-AF9/ZNF521 combinations, at either the early or late time points of an in vitro leukemogenesis model. The silencing of ZNF521 in the MLL-AF9 + THP-1 cell line coherently results in an impairment of growth and clonogenicity, recapitulating the effects observed in primary cells. Taken together, these results underscore a role for ZNF521 in sustaining the self-renewal of the immature AML compartment, most likely through the perturbation of the gene expression landscape, which ultimately favors the expansion of MLL-AF9-transformed leukemic clones.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Nucleophosmin
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (K.T.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Emanuela G. Cosentino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Exiris S.r.l., 00128 Roma, Italy
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Daniela Lico
- Department of Obstetrics and Gynaecology, Pugliese-Ciaccio Hospital, University Magna Græcia, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (K.T.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
| | - Heather Mandy Bond
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (A.A.); (S.S.); (E.G.C.); (N.A.)
- Correspondence: (E.C.); (H.M.B.); (M.M.)
| |
Collapse
|
5
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
6
|
Wang H, Zhang C, Liu J, Yang X, Han F, Wang R, Zhao H, Hou M, Ma D. Dopamine promotes the progression of AML via activating NLRP3 inflammasome and IL-1β. Hum Immunol 2021; 82:968-975. [PMID: 34509315 DOI: 10.1016/j.humimm.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022]
Abstract
Mental stress has been shown to activate sympathetic adrenergic system to produce dopamine and finally promote the progression of cancer. Dopamine can also regulate the immune system through secreting kinds of cytokines. However, what role does dopamine play in acute myeloid leukemia (AML) remains unclear. Here, we investigated the effects and mechanisms of dopamine in NLRP3 inflammasome activation and cellular viability of acute myeloid leukemia U937 cells. Our results showed that dopamine enhanced the viability of U937 cells and activated the NLRP3 inflammasome in U937 cells. To further explore the mechanism of dopamine on U937 cells, we examined the expression level of dopamine receptors (DRs). We found that the mRNA expression level of DR5 in U937 cells was significantly higher than other dopamine receptors. Furthermore, we treated U937 cells with DR1/2/3/5 antagonist before dopamine, and it manifestly reversed the NLRP3 inflammasome activation and the viability-enhancing effect in U937 cells induced by dopamine. Anti-IL-1β antibody also could partly reversed the viability-enhancing effect by dopamine. We concluded that dopamine could enhance the viability of U937 cells through DR1/5 receptor pathway and activate NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hong Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Hematology, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Sudha T, Godugu K, Darwish NHE, Nazeer T, Mousa SA. Novel Polyethylene Glycol-Conjugated Triazole Derivative with High Thyrointegrin αvβ3 Affinity in Acute Myeloid Leukemia Management. Cancers (Basel) 2021; 13:cancers13164070. [PMID: 34439224 PMCID: PMC8392871 DOI: 10.3390/cancers13164070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) accounts for up to one-third of more than 60,000 leukemia cases diagnosed annually in the U.S. Primary AML cells express membrane αvβ3 integrin, which is associated with adverse prognosis and resistance to chemotherapies. A novel anticancer compound Polyethylene glycol-conjugated bi-TriAzole Tetraiodothyroacetic acid (P-bi-TAT) interacts with high affinity (Ki 0.3 nM) and specificity with the thyrointegrin αvβ3. We evaluated P-bi-TAT activities in two different AML models representing monocytic and myelocytic forms of acute leukemia. (2) Methods and Results: The in vivo AML models were established prior to initiation of treatment protocols by grafting human leukemia cells in immunocompromised mice. IVIS imaging scans revealed that leukemic colonies were extensively established throughout the bone marrow, liver, and lung of the untreated animals. In animals treated with P-bi-TAT at daily doses ranging from 1-10 mg/kg, subcutaneously for 2-3 weeks, IVIS imaging scans revealed 95% reduction in bone marrow colonies and leukemic colonies in liver and lung. Also, the leukemic cells were not detected in bone marrow samples of P-bi-TAT-treated animals. The anti-neoplastic effect of P-bi-TAT administration on leukemic cells was associated with marked inhibition of NF-κB activity. We conclude that experimental P-bi-TAT therapy in vivo appears extraordinarily effective against the two forms of human AML models in mice. Because the P-bi-TAT molecular target, thyrointegrin αvβ3, is consistently expressed in many, if not all, clinical AML samples, P-bi-TAT-based therapy seems to have significant clinical potential in treating most AML sub-types. Hence, P-bi-TAT represents a promising targeted therapeutic agent for AML patients.
Collapse
Affiliation(s)
- Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tipu Nazeer
- Albany Medical Center, Pathology Department, AMC Hospital, Albany, NY 12208, USA;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (T.S.); (K.G.); (N.H.E.D.)
- Correspondence:
| |
Collapse
|
8
|
Wu F, Nie S, Yao Y, Huo T, Li X, Wu X, Zhao J, Lin YL, Zhang Y, Mo Q, Song Y. Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics 2021; 11:8172-8184. [PMID: 34373735 PMCID: PMC8344022 DOI: 10.7150/thno.56737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Chromosome translocations involving mixed lineage leukemia (MLL) gene cause acute leukemia with a poor prognosis. MLL is frequently fused with transcription cofactors AF4 (~35%), AF9 (25%) or its paralog ENL (10%). The AHD domain of AF9/ENL binds to AF4, its paralog AFF4, or histone-H3 lysine-79 (H3K79) methyltransferase DOT1L. Formation of AF9/ENL/AF4/AFF4-containing super elongation complexes (SEC) and the catalytic activity of DOT1L are essential for MLL-rearranged leukemia. Protein-protein interactions (PPI) between AF9/ENL and DOT1L/AF4/AFF4 are therefore a potential drug target. Methods: Compound screening followed by medicinal chemistry was used to find inhibitors of such PPIs, which were examined for their biological activities against MLL-rearranged leukemia and other cancer cells. Results: Compound-1 was identified to be a novel small-molecule inhibitor of the AF9/ENL-DOT1L/AF4/AFF4 interaction with IC50s of 0.9-3.5 µM. Pharmacological inhibition of the PPIs significantly reduced SEC and DOT1L-mediated H3K79 methylation in the leukemia cells. Gene profiling shows compound-1 significantly suppressed the gene signatures related to onco-MLL, DOT1L, HoxA9 and Myc. It selectively inhibited proliferation of onco-MLL- or Myc-driven cancer cells and induced cell differentiation and apoptosis. Compound-1 exhibited strong antitumor activity in a mouse model of MLL-rearranged leukemia. Conclusions: The AF9/ENL-DOT1L/AF4/AFF4 interactions are validated to be an anticancer target and compound-1 is a useful in vivo probe for biological studies as well as a pharmacological lead for further drug development.
Collapse
|
9
|
Liu H, Lee S, Zhang Q, Chen Z, Zhang G. The potential underlying mechanism of the leukemia caused by MLL-fusion and potential treatments. Mol Carcinog 2020; 59:839-851. [PMID: 32329934 DOI: 10.1002/mc.23204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
A majority of infant and pediatric leukemias are caused by the mixed-lineage leukemia gene (MLL) fused with a variety of candidates. Several underlying mechanisms have been proposed. One currently popular view is that truncated MLL1 fusion and its associated complex constitutively hijacks super elongation complex, including positive transcription elongation factor b, CDK9, and cyclin T1 complex and DOT1L, to enhance the expression of transcription factors that maintain or restore stemness of leukocytes, as well as prevent the differentiation of hematopoietic progenitor cells. An alternative emerging view proposes that MLL1-fusion promotes the recruitment of TATA binding protein and RNA polymerase II (Pol II) initiation complex, so as to increase the expression levels of target genes. The fundamental mechanism of both theories are gain of function for truncated MLL1 fusions, either through Pol II elongation or initiation. Our recent progress in transcription regulation of paused Pol II through JMJD5, JMJD6, and JMJD7, combined with the repressive role of H3K4me3 revealed by others, prompted us to introduce a contrarian hypothesis: the failure to shut down transcribing units by MLL-fusions triggers the transformation: loss of function of truncated MLL1 fusions coupled with the loss of conversion of H3K4me1 to H3K4me3, leading to the constitutive expression of transcription factors that are in charge of maintenance of hematopoietic progenitor cells, may trigger the transformation of normal cells into cancer cells. Following this track, a potential treatment to eliminate these fusion proteins, which may ultimately cure the disease, is proposed.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| | - Schuyler Lee
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| | - Qianqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agriculture University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agriculture University, Beijing, China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, and Department of Immunology and Microbiology, Anschutz Medical Center, University of Colorado, Denver, Colorado
| |
Collapse
|
10
|
Tettweiler G, Blaquiere JA, Wray NB, Verheyen EM. Hipk is required for JAK/STAT activity during development and tumorigenesis. PLoS One 2019; 14:e0226856. [PMID: 31891940 PMCID: PMC6938406 DOI: 10.1371/journal.pone.0226856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Drosophila has been instrumental as a model system in studying signal transduction and revealing molecular functions in development and human diseases. A point mutation in the Drosophila Janus kinase JAK (called hop) causes constitutive activation of the JAK/STAT pathway. We provide robust genetic evidence that the Homeodomain interacting protein kinase (Hipk) is required for endogenous JAK/STAT activity. Overexpression of Hipk can phenocopy the effects of overactive JAK/STAT mutations and lead to melanized tumors, and loss of Hipk can suppress the effects of hyperactive JAK/STAT. Further, the loss of the pathway effector Stat92E can suppress Hipk induced overgrowth. Interaction studies show that Hipk can physically interact with Stat92E and regulate Stat92E subcellular localization. Together our results show that Hipk is a novel factor required for effective JAK/STAT signaling.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Jessica A. Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Nathan B. Wray
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
- * E-mail:
| |
Collapse
|
11
|
Wang CI, Kao HK, Chen TW, Huang Y, Cheng HW, Yi JS, Hung SY, Wu CS, Lee YS, Chang KP. Characterization of Copy Number Variations in Oral Cavity Squamous Cell Carcinoma Reveals a Novel Role for MLLT3 in Cell Invasiveness. Oncologist 2019; 24:e1388-e1400. [PMID: 31273053 DOI: 10.1634/theoncologist.2019-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND DNA copy number variations (CNVs) are a hallmark of cancer, and the current study aimed to demonstrate the profile of the CNVs for oral cavity squamous cell carcinoma (OSCC) and elucidate the clinicopathological associations and molecular mechanisms of a potential marker derived from CNVs, mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), in OSCC carcinogenesis. MATERIALS AND METHODS CNVs in 37 OSCC tissue specimens were analyzed using a high-resolution microarray, the OncoScan array. Gene expression was analyzed by real-time polymerase chain reaction in 127 OSCC and normal tissue samples. Cell function assays included cell cycle, migration, invasion and chromatin immunoprecipitation assays. RESULTS We found a novel copy number amplified region, chromosome 9p, encompassing MLLT3 via the comparison of our data set with six other OSCC genome-wide CNV data sets. MLLT3 overexpression was associated with poorer overall survival in patients with OSCC (p = .048). MLLT3 knockdown reduced cell migration and invasion. The reduced invasion ability in MLLT3-knockdown cells was rescued with double knockdown of MLLT3 and CBP/p300-interacting transactivator with ED rich carboxy-terminal domain 4 (CITED4; 21.0% vs. 61.5%). Knockdown of MLLT3 impaired disruptor of telomeric silencing-1-like (Dot1L)-associated hypermethylation in the promoter of the tumor suppressor, CITED4 (p < .001), and hence dysregulated HIF-1α-mediated genes (TWIST, MMP1, MMP2, VIM, and CDH1) in OSCC cells. CONCLUSION We identified unique CNVs in tumors of Taiwanese patients with OSCC. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes. IMPLICATIONS FOR PRACTICE This article reports unique copy number variations in oral cavity squamous cell carcinoma (OSCC) tumors of Taiwanese patients. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes.
Collapse
Affiliation(s)
- Chun-I Wang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsing-Wen Cheng
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jui-Shan Yi
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Yu Hung
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Sheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Serotonin receptor type 1B constitutes a therapeutic target for MDS and CMML. Sci Rep 2018; 8:13883. [PMID: 30224768 PMCID: PMC6141614 DOI: 10.1038/s41598-018-32306-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/22/2018] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are chronic myeloid clonal neoplasms. To date, the only potentially curative therapy for these disorders remains allogeneic hematopoietic progenitor cell transplantation (HCT), although patient eligibility is limited due to high morbimortality associated with this procedure coupled with advanced age of most patients. Dopamine receptors (DRs) and serotonin receptors type 1 (HTR1s) were identified as cancer stem cell therapeutic targets in acute myeloid leukemia. Given their close pathophysiologic relationship, expression of HTR1s and DRs was interrogated in MDS and CMML. Both receptors were differentially expressed in patient samples compared to healthy donors. Treatment with HTR1B antagonists reduced cell viability. HTR1 antagonists showed a synergistic cytotoxic effect with currently approved hypomethylating agents in AML cells. Our results suggest that HTR1B constitutes a novel therapeutic target for MDS and CMML. Due to its druggability, the clinical development of new regimens based on this target is promising.
Collapse
|
13
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection. Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen’s key virulence factors.
Collapse
|
14
|
Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2018; 8:3666-3682. [PMID: 27705921 PMCID: PMC5356910 DOI: 10.18632/oncotarget.12343] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs found throughout the eukaryotes that control the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells and tumorigenesis. Widespread dysregulation of miRNAs have been found in hematological malignancies, including human acute myeloid leukemia (AML). A comprehensive understanding of the role of miRNAs within the complex regulatory networks that are disrupted in malignant AML cells is a prerequisite for the development of therapeutic strategies employing miRNA modulators. Herein, we review the roles of emerging miRNAs and the miRNAs regulatory networks in AML pathogenesis, prognosis, and miRNA-directed therapies.
Collapse
Affiliation(s)
- Qiong Liao
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,School of Medicine and Life Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Xia Li
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
15
|
Germano G, Morello G, Aveic S, Pinazza M, Minuzzo S, Frasson C, Persano L, Bonvini P, Viola G, Bresolin S, Tregnago C, Paganin M, Pigazzi M, Indraccolo S, Basso G. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget 2018; 8:26129-26141. [PMID: 28412727 PMCID: PMC5432245 DOI: 10.18632/oncotarget.15387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
Zinc finger protein 521 (ZNF521) is a multiple zinc finger transcription factor and a strong candidate as regulator of hematopoietic stem cell homeostasis. Recently, independent gene expression profile studies have evidenced a positive correlation between ZNF521 mRNA overexpression and MLL-rearranged acute myeloid leukemia (AML), leaving open the question on the role of ZNF521 in this subtype of leukemia. In this study, we sought to analyze the effect of ZNF521 depletion on MLL-rearranged AML cell lines and MLL-AF9 xenograft primary cells. Knockdown of ZNF521 with short-hairpin RNA (shRNA) led to decreased leukemia proliferation, reduced colony formation and caused cell cycle arrest in MLL-rearranged AML cell lines. Importantly, we showed that loss of ZNF521 substantially caused differentiation of both MLL-rearranged cell lines and primary cells. Moreover, gene profile analysis in ZNF521-silenced THP-1 cells revealed a loss of MLL-AF9-directed leukemic signature and an increase of the differentiation program. Finally, we determined that both MLL-AF9 and MLL-ENL fusion proteins directly interacted with ZNF521 promoter activating its transcription. In conclusion, our findings identify ZNF521 as a critical effector of MLL fusion proteins in blocking myeloid differentiation and highlight ZNF521 as a potential therapeutic target for this subtype of leukemia.
Collapse
Affiliation(s)
- Giuseppe Germano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giulia Morello
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Marica Pinazza
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, University of Padova, Italy
| | - Luca Persano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Paolo Bonvini
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giampietro Viola
- Department of Woman and Child Health, University of Padova, Italy
| | - Silvia Bresolin
- Department of Woman and Child Health, University of Padova, Italy
| | - Claudia Tregnago
- Department of Woman and Child Health, University of Padova, Italy
| | | | - Martina Pigazzi
- Department of Woman and Child Health, University of Padova, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| |
Collapse
|
16
|
Greif PA, Hartmann L, Vosberg S, Stief SM, Mattes R, Hellmann I, Metzeler KH, Herold T, Bamopoulos SA, Kerbs P, Jurinovic V, Schumacher D, Pastore F, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin NP, Schneider S, Graf A, Krebs S, Blum H, Neumann M, Baldus CD, Bohlander SK, Wolf S, Görlich D, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K. Evolution of Cytogenetically Normal Acute Myeloid Leukemia During Therapy and Relapse: An Exome Sequencing Study of 50 Patients. Clin Cancer Res 2018; 24:1716-1726. [PMID: 29330206 DOI: 10.1158/1078-0432.ccr-17-2344] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Purpose: To study mechanisms of therapy resistance and disease progression, we analyzed the evolution of cytogenetically normal acute myeloid leukemia (CN-AML) based on somatic alterations.Experimental Design: We performed exome sequencing of matched diagnosis, remission, and relapse samples from 50 CN-AML patients treated with intensive chemotherapy. Mutation patterns were correlated with clinical parameters.Results: Evolutionary patterns correlated with clinical outcome. Gain of mutations was associated with late relapse. Alterations of epigenetic regulators were frequently gained at relapse with recurring alterations of KDM6A constituting a mechanism of cytarabine resistance. Low KDM6A expression correlated with adverse clinical outcome, particularly in male patients. At complete remission, persistent mutations representing preleukemic lesions were observed in 48% of patients. The persistence of DNMT3A mutations correlated with shorter time to relapse.Conclusions: Chemotherapy resistance might be acquired through gain of mutations. Insights into the evolution during therapy and disease progression lay the foundation for tailored approaches to treat or prevent relapse of CN-AML. Clin Cancer Res; 24(7); 1716-26. ©2018 AACR.
Collapse
Affiliation(s)
- Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, München, Germany. .,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie M Stief
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphael Mattes
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Department Biology II, LMU Munich, Martinsried, Germany
| | - Klaus H Metzeler
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vindi Jurinovic
- Institute for Medical Information Procesing, Biometry and Epidemiology (IBE), LMU Munich, München, Germany
| | - Daniela Schumacher
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friederike Pastore
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Bräundl
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Zellmeier
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Bianka Ksienzyk
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Nikola P Konstandin
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Martin Neumann
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Claudia D Baldus
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Stephan Wolf
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A -Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Bernhard J Wörmann
- Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Brief Bioinform 2017; 18:761-773. [PMID: 27436122 DOI: 10.1093/bib/bbw063] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/05/2023] Open
Abstract
Abnormal DNA methylation is an important epigenetic regulator involving tumorigenesis. Deciphering cancer common and specific DNA methylation patterns is essential for us to understand the mechanisms of tumor development. The Cancer Genome Atlas (TCGA) project provides a large number of samples of different cancers that enable a pan-cancer study of DNA methylation possible. Here we investigate cancer common and specific DNA methylation patterns among 5480 DNA methylation profiles of 15 cancer types from TCGA. We first define differentially methylated CpG sites (DMCs) in each cancer and then identify 5450 hyper- and 4433 hypomethylated pan-cancer DMCs (PDMCs). Intriguingly, three adjacent hypermethylated PDMC constitute an enhancer region, which potentially regulates two tumor suppressor genes BVES and PRDM1 negatively. Moreover, we identify six distinct motif clusters, which are enriched in hyper- or hypomethylated PDMCs and are associated with several well-known cancer hallmarks. We also observe that PDMCs relate to distinct transcriptional groups. Additionally, 55 hypermethylated and 7 hypomethylated PDMCs are significantly associated with patient survival. Lastly, we find that cancer-specific DMCs are enriched in known cancer genes and cell-type-specific super-enhancers. In summary, this study provides a comprehensive investigation and reveals meaningful cancer common and specific DNA methylation patterns.
Collapse
|
18
|
Sun J, Ren P, Ye L, Li N, Wang D. MLLT3 promotes proliferation of osteosarcoma cells by regulating JNK signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9444-9451. [PMID: 31966817 PMCID: PMC6966015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/14/2017] [Indexed: 06/10/2023]
Abstract
Osteosarcoma was the most common malignant tumor derived from bone/soft tissues and afflicted mainly the adolescents. Surgical removing assisted with chemotherapy/radiotherapy was the major therapeutics regardless of high mortality. MLLT3 was one of the most common partners fused with mixed lineage leukemia gene and caused leukemia. But its role in osteosarcoma was not previously reported. In this study, we found that MLLT3 was expressed abundantly in osteosarcoma tissues and cell lines including U-2OS, MG-63, Saos-2 and HOS. And by Kaplan-Meier analysis, MLLT3 expression was shown to be clinically correlated with survival of osteosarcoma patients. The 5-year survival rate was 64.3% for patients with low MLLT3 expression (n=14) while it was 36.4% for patients with high MLLT3 expression (n=11). The difference was significant (p=0.026). When MLLT3 was knocked-down, the proliferation ability decreased about 38% in HOS cells and 46% in MG-63 cells. But the migration as well as the invasive ability was not affected. In addition, the expression level of β-catenin was comparable in HOS cells with/without knockdown of MLLT3. The specific inhibitor LGK-974 against Wnt/β-catenin signaling showed little additive effect with MLLT3 knockdown on growth ability of HOS cells. But the level of c-Jun, BCL-2, Akt and c-Myc was significantly decreased in HOS cells with MLLT3 knockdown, which indicated that MLLT3 may at least partially regulate JNK signaling in HOS cells. In conclusion, we proved MLLT3 as an oncogene in osteosarcoma through partially regulating the JNK signaling pathway. And MLLT3 may be a promising target for treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Junhua Sun
- Cancer Center, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Peng Ren
- Department of Orthopaedics, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Lan Ye
- Cancer Center, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Na Li
- Cancer Center, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Daoqing Wang
- Department of Rehabilitation Medicine, The Second Hospital of Shandong UniversityJinan, Shandong, China
| |
Collapse
|
19
|
|
20
|
Upregulation of CD11b and CD86 through LSD1 inhibition promotes myeloid differentiation and suppresses cell proliferation in human monocytic leukemia cells. Oncotarget 2017; 8:85085-85101. [PMID: 29156705 PMCID: PMC5689595 DOI: 10.18632/oncotarget.18564] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
LSD1 (Lysine Specific Demethylase1)/KDM1A (Lysine Demethylase 1A), a flavin adenine dinucleotide (FAD)-dependent histone H3K4/K9 demethylase, sustains oncogenic potential of leukemia stem cells in primary human leukemia cells. However, the pro-differentiation and anti-proliferation effects of LSD1 inhibition in acute myeloid leukemia (AML) are not yet fully understood. Here, we report that small hairpin RNA (shRNA) mediated LSD1 inhibition causes a remarkable transcriptional activation of myeloid lineage marker genes (CD11b/ITGAM and CD86), reduction of cell proliferation and decrease of clonogenic ability of human AML cells. Cell surface expression of CD11b and CD86 is significantly and dynamically increased in human AML cells upon sustained LSD1 inhibition. Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) analyses of histone marks revealed that there is a specific increase of H3K4me2 modification and an accompanied increase of H3K4me3 modification at the respective CD11b and CD86 promoter region, whereas the global H3K4me2 level remains constant. Consistently, inhibition of LSD1 in vivo significantly blocks tumor growth and induces a prominent increase of CD11b and CD86. Taken together, our results demonstrate the anti-tumor properties of LSD1 inhibition on human AML cell line and mouse xenograft model. Our findings provide mechanistic insights into the LSD1 functions in controlling both differentiation and proliferation in AML.
Collapse
|
21
|
Domingo-Musibay E, Yamamoto M. Gene and virotherapy for hematological malignancies. Int J Hematol 2016; 104:29-41. [PMID: 27289361 PMCID: PMC5089843 DOI: 10.1007/s12185-016-2031-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Recent years have seen a transformation in the treatment of hematological malignancies. Advances in gene therapy and molecular techniques and significant gains in computational abilities have supported the rapid development of safer and better tolerated therapies for many patients with hematologic cancers. In this review, we discuss novel applications of gene therapy, including immunomodulation and gene silencing, and report on the rise of oncolytic viruses for use in the treatment of malignancies arising in cells of the blood, lymph, and marrow. We discuss the relationship of the tropism of wildtype viruses and their oncolytic behavior as well as the tumoricidal and immunostimulatory properties of a number of attenuated and recombinant viruses currently in clinical development in countries around the world. While we have focused on promising virotherapy applications for future development, we also present a historical perspective and identify areas of potential clinical and regulatory practice change. We outline several of the virus systems being developed for applications in hematology, and summarize efficacy data in the context of ongoing or future human clinical testing. We also present the advantages and limitations of gene and virus therapy, including challenges and opportunities for improved treatment tolerability and outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Evidio Domingo-Musibay
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MoosT 11-210, MMC195, 515 Delaware St SE, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Chiew MY, Boo NY, Voon K, Cheong SK, Leong PP. Generation of a MLL-AF9-specific stem cell model of acute monocytic leukemia. Leuk Lymphoma 2016; 58:162-170. [PMID: 27185517 DOI: 10.1080/10428194.2016.1180683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acute monocytic leukemia (AML-M5), a subtype of acute myeloid leukemia (AML), affects mostly young children and has poor prognosis. The mechanisms of treatment failure of AML-M5 are still unclear. In this study, we generated iPSC from THP-1 cells from a patient with AML-M5, using retroviruses encoding the pluripotency-associated genes (OCT3/4, SOX2, KLF4 and c-MYC). These AML-M5-derived iPSC showed features similar with those of human embryonic stem cells in terms of the morphology, gene expression, protein/antigen expression and differentiation capability. Parental-specific markers were down-regulated in these AML-M5-derived iPSCs. Expression of MLL-AF9 fusion gene (previously identified to be associated with pathogenesis of AML-M5) was observed in all iPSC clones as well as parental cells. We conclude that AML-M5-specific iPSC clones have been successfully developed. This disease model may provide a novel approach for future study of pathogenesis and therapeutic intervention of AML-M5.
Collapse
Affiliation(s)
- Men Yee Chiew
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Kajang , Malaysia
| | - Nem Yun Boo
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Kajang , Malaysia
| | - Kenny Voon
- b Research Laboratory , International Medical University , Bukit Jalil , Malaysia
| | - Soon Keng Cheong
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Kajang , Malaysia
| | - Pooi Pooi Leong
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Kajang , Malaysia
| |
Collapse
|
23
|
Fleischmann KK, Pagel P, von Frowein J, Magg T, Roscher AA, Schmid I. The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:9. [PMID: 26762252 PMCID: PMC4712549 DOI: 10.1186/s13046-016-0283-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/03/2016] [Indexed: 12/12/2022]
Abstract
Background In this study we explored the role of microRNAs (miRNAs) as mediators of leukemogenic effects of the fusion gene MLL-AF9, which results from a frequent chromosomal translocation in infant and monoblastic acute myeloid leukemia (AML). Methods We performed a specific and efficient knockdown of endogenous MLL-AF9 in the human monoblastic AML cell line THP1. Results The knockdown associated miRNA expression profile revealed 21 MLL-AF9 dependently expressed miRNAs. Gene ontology analyses of target genes suggested an impact of these miRNAs on downstream gene regulation via targeting of transcriptional modulators as well as involvement in many functions important for leukemia maintenance as e.g. myeloid differentiation, cell cycle and stem cell maintenance. Furthermore, we identified one of the most intensely repressed miRNAs, miR-511, to raise CCL2 expression (a chemokine ligand important for immunosurveillance), directly target cyclin D1, inhibit cell cycle progression, increase cellular migration and promote monoblastic differentiation. With these effects, miR-511 may have a therapeutic potential as a pro-differentiation agent as well as in leukemia vaccination approaches. Conclusions Our study provides new insights into the understanding of miRNAs as functional mediators of the leukemogenic fusion gene MLL-AF9 and opens new opportunities to further investigate specific therapeutic options for AML via the miRNA level. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0283-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin K Fleischmann
- Division of Pediatric Hematology and Oncology, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany.
| | - Julia von Frowein
- Division of Pediatric Hematology and Oncology, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| | - Thomas Magg
- Division of Pediatric Hematology and Oncology, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| | - Adelbert A Roscher
- Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| | - Irene Schmid
- Division of Pediatric Hematology and Oncology, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| |
Collapse
|
24
|
ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:165238. [PMID: 26788497 PMCID: PMC4695665 DOI: 10.1155/2015/165238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies.
Collapse
|
25
|
Ney Garcia DR, Liehr T, Emerenciano M, Meyer C, Marschalek R, Pombo-de-Oliveira MDS, Ribeiro RC, Poirot Land MG, Macedo Silva ML. Molecular studies reveal a MLL-MLLT3 gene fusion displaced in a case of childhood acute lymphoblastic leukemia with complex karyotype. Cancer Genet 2015; 208:143-7. [PMID: 25843568 DOI: 10.1016/j.cancergen.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 01/08/2023]
Abstract
Rearrangement of the mixed lineage-leukemia gene (MLL-r) is common in hematological diseases and is generally associated with poor prognosis. The mixed-lineage leukemia gene translocated to, 3 (MLLT3) gene (9p22) is a frequent MLL-r partner (∼18% of leukemias with MLL rearrangement) and is characterized by the translocation t(9;11) (p22;q23), forming an MLL-MLLT3 gene fusion. MLL-r are usually simple reciprocal translocations between two different chromosomes, although karyotypes with complex MLL-r have been observed. We present a rare case of a child with acute lymphoblastic leukemia with a complex karyotype in which the classical t(9;11) (p22;q23) was cryptically relocated into a third chromosome in a balanced three-way translocation. At the genome level, however, the MLL-MLLT3 three-way translocation still displayed both reciprocal fusion transcripts. This argues in favor for a model where a simple two-way t(9;11) (p22;q23) was likely the first step that then evolved in to a more complex karyotype. Multicolor banding techniques can be used to greatly refine complex karyotypes and its chromosomal breakpoints. Also in the presence of putative new rearrangements, Long distance inverse-PCR is an important tool to identify which gene fusion is involved.
Collapse
Affiliation(s)
- Daniela Ribeiro Ney Garcia
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mariana Emerenciano
- Postgraduate Oncology Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Claus Meyer
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | | | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marcelo Gerardin Poirot Land
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Martagão Gesteira Institute of Pediatrics and Child Development, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luiza Macedo Silva
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil; Postgraduate Oncology Program, National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
27
|
Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm 2014; 2014:318793. [PMID: 24976683 PMCID: PMC4058293 DOI: 10.1155/2014/318793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023] Open
Abstract
Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA). To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B) in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.
Collapse
|