1
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. SCIENCE ADVANCES 2024; 10:eadq6150. [PMID: 39576860 PMCID: PMC11584006 DOI: 10.1126/sciadv.adq6150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anticancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 major histocompatibility complex (MHC), revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. One implementation of AlphaFold2 (TCRmodel2) with additional sampling was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Models, Molecular
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/immunology
- Protein Binding
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Crystallography, X-Ray
- Protein Conformation
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Helder V. Ribeiro-Filho
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595215. [PMID: 38826362 PMCID: PMC11142219 DOI: 10.1101/2024.05.21.595215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anti-cancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 MHC, revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. Interestingly, one implementation of AlphaFold2 (TCRmodel2) was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen, as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Helder V. Ribeiro-Filho
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Haugh AM, Osorio RC, Francois RA, Tawil ME, Tsai KK, Tetzlaff M, Daud A, Vasudevan HN. Targeted DNA Sequencing of Cutaneous Melanoma Identifies Prognostic and Predictive Alterations. Cancers (Basel) 2024; 16:1347. [PMID: 38611025 PMCID: PMC11011039 DOI: 10.3390/cancers16071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) can be molecularly classified into four groups: BRAF mutant, NRAS mutant, NF1 mutant and triple wild-type (TWT) tumors lacking any of these three alterations. In the era of immune checkpoint inhibition (ICI) and targeted molecular therapy, the clinical significance of these groups remains unclear. Here, we integrate targeted DNA sequencing with comprehensive clinical follow-up in CM patients. METHODS This was a retrospective cohort study that assessed clinical and molecular features from patients with localized or metastatic CM who underwent targeted next-generation sequencing as part of routine clinical care. A total of 254 patients with CM who had a CLIA-certified targeted sequencing assay performed on their tumor tissue were included. RESULTS Of the 254 patients with cutaneous melanoma, 77 were BRAF mutant (30.3%), 77 were NRAS mutant (30.3%), 47 were NF1 mutant (18.5%), 33 were TWT (13.0%) and the remaining 20 (7.9%) carried mutations in multiple driver genes (BRAF/NRAS/NF1 co-mutated). The majority of this co-mutation group carried mutations in NF1 (n = 19 or 90%) with co-occurring mutations in BRAF or NRAS, often with a weaker oncogenic variant. Consistently, NF1 mutant tumors harbored numerous significantly co-altered genes compared to BRAF or NRAS mutant tumors. The majority of TWT tumors (n = 29, 87.9%) harbor a pathogenic mutation within a known Ras/MAPK signaling pathway component. Of the 154 cases with available TMB data, the median TMB was 20 (range 0.7-266 mutations/Mb). A total of 14 cases (9.1%) were classified as having a low TMB (≤5 mutations/Mb), 64 of 154 (41.6%) had an intermediate TMB (>5 and ≤20 mutations/Mb), 40 of 154 (26.0%) had a high TMB (>20 and ≤50 mutations/Mb) and 36 of 154 (23.4%) were classified as having a very high TMB (>50 mutations/Mb). NRAS mutant melanoma demonstrated significantly decreased overall survival on multivariable analysis (HR for death 2.95, 95% CI 1.13-7.69, p = 0.027, log-rank test) compared with other TCGA molecular subgroups. Of the 116 patients in our cohort with available treatment data, 36 received a combination of dual ICI with anti-CTLA4 and anti-PD1 inhibition as first-line therapy. Elevated TMB was associated with significantly longer progression-free survival following dual-agent ICI (HR 0.26, 95% CI 0.07-0.90, p = 0.033, log-rank test). CONCLUSIONS NRAS mutation in CMs correlated with significantly worse overall survival. Elevated TMB was associated with increased progression-free survival for patients treated with a combination of dual ICI, supporting the potential utility of TMB as a predictive biomarker for ICI response in melanoma.
Collapse
Affiliation(s)
- Alexandra M. Haugh
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Robert C. Osorio
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rony A. Francois
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael E. Tawil
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Katy K. Tsai
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Michael Tetzlaff
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adil Daud
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Harish N. Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Dinter L, Karitzky PC, Schulz A, Wurm AA, Mehnert MC, Sergon M, Tunger A, Lesche M, Wehner R, Müller A, Käubler T, Niessner H, Dahl A, Beissert S, Schmitz M, Meier F, Seliger B, Westphal D. BRAF and MEK inhibitor combinations induce potent molecular and immunological effects in NRAS-mutant melanoma cells: Insights into mode of action and resistance mechanisms. Int J Cancer 2024; 154:1057-1072. [PMID: 38078628 DOI: 10.1002/ijc.34807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Lisa Dinter
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Paula C Karitzky
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Alexander Schulz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Alexander A Wurm
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden, Dresden, Germany
- Mildred Scheel Early Career Center, NCT Dresden, Medical Faculty and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Marie-Christin Mehnert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Mildred Sergon
- Institute of Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Antje Tunger
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-Concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Müller
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Theresa Käubler
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Heike Niessner
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Skin Cancer Center at the University Cancer Center Dresden, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School "Theodor Fontane", Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
5
|
Khaleafi R, Zeleznjak J, Cordela S, Drucker S, Rovis TL, Jonjic S, Bar-On Y. Reovirus infection of tumor cells reduces the expression of NKG2D ligands, leading to impaired NK-cell cytotoxicity and functionality. Front Immunol 2023; 14:1231782. [PMID: 37753084 PMCID: PMC10518469 DOI: 10.3389/fimmu.2023.1231782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, reoviruses have been of major interest in immunotherapy because of their oncolytic properties. Preclinical and clinical trials, in which reovirus was used for the treatment of melanoma and glioblastoma, have paved the way for future clinical use of reovirus. However, little is known about how reovirus infection affects the tumor microenvironment and immune response towards infected tumor cells. Studies have shown that reovirus can directly stimulate natural killer (NK) cells, but how reovirus affects cellular ligands on tumor cells, which are ultimately key to tumor recognition and elimination by NK cells, has not been investigated. We tested how reovirus infection affects the binding of the NK Group-2 member D (NKG2D) receptor, which is a dominant mediator of NK cell anti-tumor activity. Using models of human-derived melanoma and glioblastoma tumors, we demonstrated that NKG2D ligands are downregulated in tumor cells post-reovirus-infection due to the impaired translation of these ligands in reovirus-infected cells. Moreover, we showed that downregulation of NKG2D ligands significantly impaired the binding of NKG2D to infected tumor cells. We further demonstrated that reduced recognition of NKG2D ligands significantly alters NK cell anti-tumor cytotoxicity in human primary NK cells and in the NK cell line NK-92. Thus, this study provides novel insights into reovirus-host interactions and could lead to the development of novel reovirus-based therapeutics that enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Raghad Khaleafi
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jelena Zeleznjak
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shani Drucker
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tihana Lenac Rovis
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Tran TT, Caulfield J, Zhang L, Schoenfeld D, Djureinovic D, Chiang VL, Oria V, Weiss SA, Olino K, Jilaveanu LB, Kluger HM. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight 2023; 8:e157347. [PMID: 36821392 PMCID: PMC10132152 DOI: 10.1172/jci.insight.157347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Targeting tumor-associated blood vessels to increase immune infiltration may enhance treatment effectiveness, yet limited data exist regarding anti-angiogenesis effects on the tumor microenvironment (TME). We hypothesized that dual targeting of angiogenesis with immune checkpoints would improve both intracranial and extracranial disease. We used subcutaneous and left ventricle melanoma models to evaluate anti-PD-1/anti-VEGF and anti-PD-1/lenvatinib (pan-VEGFR inhibitor) combinations. Cytokine/chemokine profiling and flow cytometry were performed to assess signaling and immune-infiltrating populations. An in vitro blood-brain barrier (BBB) model was utilized to study intracranial treatment effects on endothelial integrity and leukocyte transmigration. Anti-PD-1 with either anti-VEGF or lenvatinib improved survival and decreased tumor growth in systemic melanoma murine models; treatment increased Th1 cytokine/chemokine signaling. Lenvatinib decreased tumor-associated macrophages but increased plasmacytoid DCs early in treatment; this effect was not evident with anti-VEGF. Both lenvatinib and anti-VEGF resulted in decreased intratumoral blood vessels. Although anti-VEGF promoted endothelial stabilization in an in vitro BBB model, while lenvatinib did not, both regimens enabled leukocyte transmigration. The combined targeting of PD-1 and VEGF or its receptors promotes enhanced melanoma antitumor activity, yet their effects on the TME are quite different. These studies provide insights into dual anti-PD-1 and anti-angiogenesis combinations.
Collapse
Affiliation(s)
- Thuy T. Tran
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Jasmine Caulfield
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Lin Zhang
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - David Schoenfeld
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Dijana Djureinovic
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Veronica L. Chiang
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
- Yale School of Medicine, Department of Neurosurgery, New Haven, Connecticut, USA
| | - Victor Oria
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Sarah A. Weiss
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Kelly Olino
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
- Yale School of Medicine, Department of Surgery, New Haven, Connecticut, USA
| | - Lucia B. Jilaveanu
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Harriet M. Kluger
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Melanogenesis and the Targeted Therapy of Melanoma. Biomolecules 2022; 12:biom12121874. [PMID: 36551302 PMCID: PMC9775438 DOI: 10.3390/biom12121874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pigment production is a unique character of melanocytes. Numerous factors are linked with melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understanding the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R's central determinant roles and MITF as a master transcriptional regulator in melanogenesis. Moreover, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are becoming the newest therapeutic option in advanced melanoma.
Collapse
|
8
|
Mao R, Ren ZY, Yang F, Yang P, Zhang T. Clinical significance and immune landscape of KIR2DL4 and the senescence-based signature in cutaneous melanoma. Cancer Sci 2022; 113:3947-3959. [PMID: 35848898 DOI: 10.1111/cas.15499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Senescence is an effective barrier to tumor progression. Mutations that inhibit senescence and promote cell division are mandatory for the development of cancer. Therefore, it is particularly important to explore the differences between cutaneous melanoma (CM) patients with severe and mild degrees of senescence. We clustered all the patients with CM in the Cancer Genome Atlas (TCGA) database based on all the genes of the senescence pathway in the cellAge and MSigDB database. The prognosis, immunotherapy effect, tumor microenvironment score, NRAS mutation rate, expression of CD274, CTLA4, and PDCD1, and abundance of CD8+ T and NK cell infiltration in the younger group of patients (YG) were higher than those in the older group (OG). Compared with the American Joint Committee on Cancer (AJCC) stage, the risk scoring system stratified the risk of CM patients and guided immunotherapy more accurately. The nomogram model, which combined the AJCC stage and risk score, greatly improved the ability and accuracy of prognosis prediction. As KIR2DL4 is the core molecule in the risk scoring system (RSS), knocking down the KIR2DL4 of human NK cells in vitro can inhibit the cytotoxicity of NK cells and can also inhibit the secretion of tumor necrosis factor-α and interferon-γ by NK cells. In contrast, upregulation of KIR2DL4 can activate the MEK/ERK signaling pathway, which is the activation pathway of NK cells. OurRSS and nomogram model can accurately stratify the risk of CM patients and effectively predict the effect of immunotherapy and prognosis in CM patients.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yun Ren
- The center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Fan Yang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing, China
| | - Peng Yang
- Department of Pathology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| | - Tongtong Zhang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Li Q, Yuan Q, Jiang N, Zhang Y, Su Z, Lv L, Sang X, Chen R, Feng Y, Chen Q. Dihydroartemisinin regulates immune cell heterogeneity by triggering a cascade reaction of CDK and MAPK phosphorylation. Signal Transduct Target Ther 2022; 7:222. [PMID: 35811310 PMCID: PMC9271464 DOI: 10.1038/s41392-022-01028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022] Open
Abstract
Artemisinin (ART) and dihydroartemisinin (DHA), apart from their profound anti-malaria effect, can also beneficially modulate the host immune system; however, the underlying molecular mechanisms remain unclear. Here, we report that DHA selectively induced T-cell activation, with an increased proportion of Ki67+CD4+ T cells, CD25+CD4+ T cells, interferon (IFN)-γ-producing CD8+ T cells, Brdu+ CD8+ T cells and neutrophils, which was found to enhance cellular immunity to experimental malaria and overcome immunosuppression in mice. We further revealed that DHA upregulated the expression of cell proliferation-associated proteins by promoting the phosphorylation of mitogen-activated protein kinase (MAPK), cyclin-dependent kinases (CDKs), and activator protein 1 in the spleen. This study is the first to provide robust evidence that DHA selectively induced the expansion of subsets of splenic T cells through phosphorylated CDKs and MAPK to enhance cellular immune responses under non-pathological or pathological conditions. The data significantly deepened our knowledge in the mechanism underlying DHA-mediated immunomodulation.
Collapse
|
10
|
Clinical Translation of Combined MAPK and Autophagy Inhibition in RAS Mutant Cancer. Int J Mol Sci 2021; 22:ijms222212402. [PMID: 34830283 PMCID: PMC8623813 DOI: 10.3390/ijms222212402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
RAS (rat sarcoma virus) mutant cancers remain difficult to treat despite the advances in targeted therapy and immunotherapy. Targeted therapies against the components of mitogen-activated protein kinase (MAPK) pathways, including RAS, RAF, MEK, and ERK, have demonstrated activity in BRAF mutant and, in limited cases, RAS mutant cancer. RAS mutant cancers have been found to activate adaptive resistance mechanisms such as autophagy during MAPK inhibition. Here, we review the recent clinically relevant advances in the development of the MAPK pathway and autophagy inhibitors and focus on their application to RAS mutant cancers. We provide analysis of the preclinical rationale for combining the MAPK pathway and autophagy and highlight the most recent clinical trials that have been launched to capitalize on this potentially synthetic lethal approach to cancer therapy.
Collapse
|
11
|
Nagai K, Niihori T, Okamoto N, Kondo A, Suga K, Ohhira T, Hayabuchi Y, Homma Y, Nakagawa R, Ifuku T, Abe T, Mizuguchi T, Matsumoto N, Aoki Y. Duplications in the G3 domain or switch II region in HRAS identified in patients with Costello syndrome. Hum Mutat 2021; 43:3-15. [PMID: 34618388 DOI: 10.1002/humu.24287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Costello syndrome (CS) is an autosomal-dominant disorder characterized by distinctive facial features, hypertrophic cardiomyopathy, skeletal abnormalities, intellectual disability, and predisposition to cancers. Germline variants in HRAS have been identified in patients with CS. Intragenic HRAS duplications have been reported in three patients with a milder phenotype of CS. In this study, we identified two known HRAS variants, p.(Glu63_Asp69dup), p.(Glu62_Arg68dup), and one novel HRAS variant, p.(Ile55_Asp57dup), in patients with CS, including a patient with craniosynostosis. These intragenic duplications are located in the G3 domain and the switch II region. Cells expressing cDNA with these three intragenic duplications showed an increase in ELK-1 transactivation. Injection of wild-type or mutant HRAS mRNAs with intragenic duplications in zebrafish embryos showed significant elongation of the yolk at 11 h postfertilization, which was improved by MEK inhibitor treatment, and a variety of developmental abnormalities at 3 days post fertilization was observed. These results indicate that small in-frame duplications affecting the G3 domain and switch II region of HRAS increase the activation of the ERK pathway, resulting in developmental abnormalities in zebrafish or patients with CS.
Collapse
Affiliation(s)
- Koki Nagai
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Akane Kondo
- Perinatal Medical Center, Shikoku Medical Center for Children and Adults, National Hospital Organization, Kagawa, Japan
| | - Kenichi Suga
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoko Ohhira
- Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Yasunobu Hayabuchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukako Homma
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryuji Nakagawa
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshinobu Ifuku
- Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Taiki Abe
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Abstract
Brain metastases affect a significant percentage of patients with advanced extracranial malignancies. Yet, the incidence of brain metastases remains poorly described, largely due to limitations of population-based registries, a lack of mandated reporting of brain metastases to federal agencies, and historical difficulties with delineation of metastatic involvement of individual organs using claims data. However, in 2016, the Surveillance Epidemiology and End Results (SEER) program released data relating to the presence vs absence of brain metastases at diagnosis of oncologic disease. In 2020, studies demonstrating the viability of utilizing claims data for identifying the presence of brain metastases, date of diagnosis of intracranial involvement, and initial treatment approach for brain metastases were published, facilitating epidemiologic investigations of brain metastases on a population-based level. Accordingly, in this review, we discuss the incidence, clinical presentation, prognosis, and management patterns of patients with brain metastases. Leptomeningeal disease is also discussed. Considerations regarding individual tumor types that commonly metastasize to the brain are provided.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
14
|
Terranova CJ, Tang M, Maitituoheti M, Raman AT, Ghosh AK, Schulz J, Amin SB, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu CJ, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu LE, Wang WL, Lazar AJ, Woodman SE, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Rep 2021; 36:109410. [PMID: 34289358 PMCID: PMC8369408 DOI: 10.1016/j.celrep.2021.109410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The dynamic evolution of chromatin state patterns during metastasis, their relationship with bona fide genetic drivers, and their therapeutic vulnerabilities are not completely understood. Combinatorial chromatin state profiling of 46 melanoma samples reveals an association of NRAS mutants with bivalent histone H3 lysine 27 trimethylation (H3K27me3) and Polycomb repressive complex 2. Reprogramming of bivalent domains during metastasis occurs on master transcription factors of a mesenchymal phenotype, including ZEB1, TWIST1, and CDH1. Resolution of bivalency using pharmacological inhibition of EZH2 decreases invasive capacity of melanoma cells and markedly reduces tumor burden in vivo, specifically in NRAS mutants. Coincident with bivalent reprogramming, the increased expression of pro-metastatic and melanocyte-specific cell-identity genes is associated with exceptionally wide H3K4me3 domains, suggesting a role for this epigenetic element. Overall, we demonstrate that reprogramming of bivalent and broad domains represents key epigenetic alterations in metastatic melanoma and that EZH2 plus MEK inhibition may provide a promising therapeutic strategy for NRAS mutant melanoma patients.
Collapse
Affiliation(s)
- Christopher J Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; FAS informatics, Department of Molecular Biology, Harvard, Cambridge, MA 02138, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archit K Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samir B Amin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON M5G 2C1, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Junna Oba
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samia Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anand Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dongyu Zhao
- Houston Methodist Academic Institute, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lauren E Haydu
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wei-Lien Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E Woodman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
15
|
Garcia-Alvarez A, Ortiz C, Muñoz-Couselo E. Current Perspectives and Novel Strategies of NRAS-Mutant Melanoma. Onco Targets Ther 2021; 14:3709-3719. [PMID: 34135599 PMCID: PMC8202735 DOI: 10.2147/ott.s278095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest cutaneous cancer. Activating mutations in NRAS are found in 20% of melanomas. NRAS-mutant melanoma is more aggressive and, therefore, has poorer outcomes, compared to non-NRAS-mutant melanoma. Despite promising preclinical data, to date immune checkpoint inhibitors remain the standard of care for locally advanced unresectable or metastatic NRAS melanoma. Data for efficacy of immunotherapy for NRAS melanoma mainly come from retrospective cohorts with divergent conclusions. MEK inhibitors have been the most developed targeted therapy approach. Although associated with an increase in progression-free survival, MEK inhibitors do not provide any benefit in terms of overall survival. Combination strategies with PI3K-AKT-mTOR pathway and CDK4/6 inhibitors seem to increase MEK inhibitors' benefit. Nevertheless, results from clinical trials are still prelaminar. A greater comprehension of the biology and intracellular interactions of NRAS-mutant melanoma will outline novel impactful strategies which could improve prognosis of these subgroup of patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Alvarez
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Carolina Ortiz
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Eva Muñoz-Couselo
- Vall d’Hebron University Hospital, Medical Oncology Department, Melanoma and Other Skin Tumors Unit, Vall Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| |
Collapse
|
16
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
17
|
O'Halloran PJ, Cleary A, Cryan JB, Beausang A, Brett FM, Caird J. Melanoma brain metastases in Ireland: surgical and systemic considerations. Br J Neurosurg 2021; 36:236-240. [PMID: 33904364 DOI: 10.1080/02688697.2021.1918327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
BACKGROUND Cerebral metastases is a common complication in patients with melanoma. There is a paucity of information in the Republic of Ireland regarding the factors associated with melanoma brain metastases (MBM). METHODS Patients diagnosed with melanoma brain metastases in Ireland were retrospectively identified in Beaumont Hospital between 1999 and 2018. Patient demographics; age at diagnosis of primary melanoma, age at detection of MBM, year of detection of MBM, anatomical location of primary melanoma, BRAF mutation analysis and the number of metastases were investigated. Follow-up data were also derived, including overall survival. RESULTS There has being a 158% increase in the incidence of primary melanoma from 1999 compared to 2016. Over the same time period 128 patients with melanoma brain metastases were diagnosed. There was a significant male predominance (n = 77/128; 60%; p < 0.0001). BRAF mutation and leptomeningeal disease were independent prognostic factors in our cohort with a median survival 8 months and 0.5 months, respectively. CONCLUSIONS Male predominance, leptomeningeal disease and BRAF mutation represent important considerations in this population group. The results of this study add to our knowledge concerning outcomes in melanoma brain metastases and may be useful in clinical planning and future treatments.
Collapse
Affiliation(s)
- Philip J O'Halloran
- National Neurosurgery Center, Beaumont Hospital, Dublin, Ireland.,Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anna Cleary
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane B Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Neurosurgery Center, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
18
|
McClure E, Patel A, Carr MJ, Sun J, Zager JS. The combination of encorafenib and binimetinib for the treatment of patients with BRAF-mutated advanced, unresectable, or metastatic melanoma: an update. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1847639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Erin McClure
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ayushi Patel
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Michael J. Carr
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Surgery, University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jonathan S. Zager
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
19
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
20
|
Huang L, Peng B, Nayak Y, Wang C, Si F, Liu X, Dou J, Xu H, Peng G. Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition. Front Cell Dev Biol 2020; 8:836. [PMID: 32984331 PMCID: PMC7477299 DOI: 10.3389/fcell.2020.00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is one of the most common and dangerous skin cancers with a high rate of death every year. Furthermore, N-RAS and B-RAF mutations in melanoma cells increase the difficulties for clinical treatment in patients. Therefore, development of effective and universal drugs against melanoma is urgently needed. Here we demonstrate that baicalein and baicalin, the active components of the Chinese traditional medicinal plant Scutellaria baicalensis Georgi, can significantly inhibit melanoma cell growth and proliferation, suppress tumor cell colony formation and migration, as well as induce apoptosis and senescence in melanoma cells. The anti-tumor effects mediated by baicalein and baicalin are independent of N-RAS and B-RAF mutation statuses in melanoma cells. Mechanistically, we identify that the suppression of baicalein and baicalin on melanoma cells is due to inhibition of tumor cell glucose uptake and metabolism by affecting the mTOR-HIF-1α signaling pathway. In addition, we demonstrated that baicalein and baicalin can suppress tumorigenesis and tumor growth in vivo in the melanoma model. These studies clearly indicate that baicalein and baicalin can control tumor growth and development metabolically and have great potential as novel and universal drugs for melanoma therapy.
Collapse
Affiliation(s)
- Lan Huang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Bo Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Yash Nayak
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Cindy Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Fusheng Si
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Xia Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
21
|
Loo K, Gauvin G, Soliman I, Renzetti M, Deng M, Ross E, Luo B, Wu H, Reddy S, Olszanski AJ, Farma JM. Primary tumor characteristics and next-generation sequencing mutations as biomarkers for melanoma immunotherapy response. Pigment Cell Melanoma Res 2020; 33:878-888. [PMID: 32564504 DOI: 10.1111/pcmr.12909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Considerable advances in melanoma have been realized through immunotherapy. The principal aim was to determine whether primary tumor characteristics or next-generation sequencing (NGS) could serve as markers of immunotherapy response. METHODS AND RESULTS The study cohort consisted of 67 patients who received immunotherapy for recurrent or metastatic melanoma and for whom primary tumor biopsies and pathology reports were available. A subset of 59 patient tumors were profiled using an NGS panel of 50 cancer-related genes. Objective response rate to immunotherapy was assessed using RECIST v1.1 criteria. Progression-free survival (PFS) and overall survival (OS) were used as endpoints. Lymphovascular invasion (LVI) strongly correlated with an increased proportion of immunotherapy responders (p = .002). PFS interval (p = .003) and OS (p = .036) were significantly higher in patients with LVI. NRAS mutation was more strongly correlated with an increased proportion of immunotherapy responders (p =.050). PFS was significantly higher in patients with NRAS mutation (p = .042); no difference in OS (p = .111). DISCUSSION This analysis demonstrates an association between lymphovascular invasion and immunotherapy response. Additionally, NGS mutation analysis demonstrated a potential association between NRAS mutations and immunotherapy response.
Collapse
Affiliation(s)
- Kimberly Loo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Gabrielle Gauvin
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Iman Soliman
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Madelyn Renzetti
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mengying Deng
- Department of Statistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Ross
- Department of Statistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Biao Luo
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Wu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sanjay Reddy
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anthony J Olszanski
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jeffrey M Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
22
|
Hoang VT, Nyswaner K, Torres-Ayuso P, Brognard J. The protein kinase MAP3K19 phosphorylates MAP2Ks and thereby activates ERK and JNK kinases and increases viability of KRAS-mutant lung cancer cells. J Biol Chem 2020; 295:8470-8479. [PMID: 32358059 DOI: 10.1074/jbc.ra119.012365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Identifying additional mitogen-activated protein kinase (MAPK) pathway regulators is invaluable in aiding our understanding of the complex signaling networks that regulate cellular processes, including cell proliferation and survival. Here, using in vitro kinase assays and by expressing WT or kinase-dead MAPK kinase kinase 19 (MAP3K19) in the HEK293T cell line and assessing activation of the extracellular signal-regulated kinase (ERK) and JUN N-terminal kinase (JNK) signaling pathways, we defined MAP3K19 as a novel regulator of MAPK signaling. We also observed that overexpression of WT MAP3K19 activates both the ERK and JNK pathways in a panel of cancer cell lines. Furthermore, MAP3K19 sustained ERK pathway activation in the presence of inhibitors targeting the RAF proto-oncogene Ser/Thr protein kinase (RAF) and MAPK/ERK kinase, indicating that MAP3K19 activates ERK via a RAF-independent mechanism. Findings from in vitro and in-cell kinase assays demonstrate that MAP3K19 is a kinase that directly phosphorylates both MAPK/ERK kinase (MEK) and MAPK kinase 7 (MKK7). Results from an short-hairpin RNA screen indicated that MAP3K19 is essential for maintaining survival in KRAS-mutant cancers; therefore, we depleted or inhibited MAP3K19 in KRAS-mutant cancer cell lines and observed that this reduces viability and decreases ERK and JNK pathway activation. In summary, our results reveal that MAP3K19 directly activates the ERK and JNK cascades and highlight a role for this kinase in maintaining survival of KRAS-mutant lung cancer cells.
Collapse
Affiliation(s)
- Van T Hoang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, Maryland, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, Maryland, USA
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, Maryland, USA
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
23
|
Nagler A, Vredevoogd DW, Alon M, Cheng PF, Trabish S, Kalaora S, Arafeh R, Goldin V, Levesque MP, Peeper DS, Samuels Y. A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment Cell Melanoma Res 2019; 33:334-344. [PMID: 31549767 PMCID: PMC7383499 DOI: 10.1111/pcmr.12825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022]
Abstract
NRAS mutations are the most common alterations among RAS isoforms in cutaneous melanoma, with patients harboring these aggressive tumors having a poor prognosis and low survival rate. The main line of treatment for these patients is MAPK pathway‐targeted therapies, such as MEK inhibitors, but, unfortunately, the response to these inhibitors is variable due to tumor resistance. Identifying genetic modifiers involved in resistance toward MEK‐targeted therapy may assist in the development of new therapeutic strategies, enhancing treatment response and patient survival. Our whole‐genome CRISPR‐Cas9 knockout screen identified the target Kelch domain‐containing F‐Box protein 42 (FBXO42) as a factor involved in NRAS‐mutant melanoma‐acquired resistance to the MEK1/2 inhibitor trametinib. We further show that FBXO42, an E3 ubiquitin ligase, is involved in the TAK1 signaling pathway, possibly prompting an increase in active P38. In addition, we demonstrate that combining trametinib with the TAK1 inhibitor, takinib, is a far more efficient treatment than trametinib alone in NRAS‐mutant melanoma cells. Our findings thus show a new pathway involved in NRAS‐mutant melanoma resistance and provide new opportunities for novel therapeutic options.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Sophie Trabish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Victoria Goldin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
El Zaoui I, Bucher M, Rimoldi D, Nicolas M, Kaya G, Pescini Gobert R, Bedoni N, Schalenbourg A, Sakina E, Zografos L, Leyvraz S, Riggi N, Rivolta C, Moulin AP. Conjunctival Melanoma Targeted Therapy: MAPK and PI3K/mTOR Pathways Inhibition. ACTA ACUST UNITED AC 2019; 60:2764-2772. [DOI: 10.1167/iovs.18-26508] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ikram El Zaoui
- Department of Computational Biology, Unit of Medical Genetics, Lausanne University, Lausanne, Switzerland
| | - Maya Bucher
- Dermatology Unit, CHUV, Lausanne University, Lausanne, Switzerland
| | - Donata Rimoldi
- Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | - Michael Nicolas
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Gurkan Kaya
- Dermatology and Venerology Division, Dermatopathology Laboratory, Geneva University Hospital, Geneva, Switzerland
| | | | - Nicola Bedoni
- Department of Computational Biology, Unit of Medical Genetics, Lausanne University, Lausanne, Switzerland
| | - Ann Schalenbourg
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Ezziat Sakina
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Leonidas Zografos
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Serge Leyvraz
- Charité Cancer Comprehensive Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicolo Riggi
- Experimental Pathology, Lausanne University Pathology Institute, Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, Lausanne University, Lausanne, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
25
|
Sakakibara K, Tsujioka T, Kida JI, Kurozumi N, Nakahara T, Suemori SI, Kitanaka A, Arao Y, Tohyama K. Binimetinib, a novel MEK1/2 inhibitor, exerts anti-leukemic effects under inactive status of PI3Kinase/Akt pathway. Int J Hematol 2019; 110:213-227. [PMID: 31129802 DOI: 10.1007/s12185-019-02667-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
A MEK1/2 inhibitor, binimetinib is promising as a therapeutic agent for malignant melanoma with N-RAS mutation. We examined in vitro effects of binimetinib on 10 human myeloid/lymphoid leukemia cell lines, and found that three of five cell lines with N-RAS mutation and one of five without N-RAS mutation were responsive to treatment with binimetinib. Binimetinib inhibited cell growth mainly by inducing G1 arrest and this action mechanism was assisted by gene set enrichment analysis. To identify signaling pathways associated with binimetinib response, we examined the status of MAP kinase/ERK and PI3Kinase/Akt pathways. The basal levels of phosphorylated ERK and Akt varied between the cell lines, and the amounts of phosphorylated ERK and Akt appeared to be reciprocal of each other. Interestingly, most of the binimetinib-resistant cell lines revealed strong Akt phosphorylation compared with binimetinib-sensitive ones. The effect of binimetinib may not be predicted by the presence/absence of N-RAS mutation, but rather by Akt phosphorylation status. Moreover, combination of binimetinib with a PI3K/Akt inhibitor showed additive growth-suppressive effects. These results suggest that binimetinib shows potential anti-leukemic effects and the basal level of phosphorylated Akt might serve as a biomarker predictive of therapeutic effect.
Collapse
Affiliation(s)
- Kanae Sakakibara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Nami Kurozumi
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takako Nakahara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan
| | - Shin-Ichiro Suemori
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Kitanaka
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yujiro Arao
- Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Kaoru Tohyama
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan. .,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
26
|
Rožanc J, Sakellaropoulos T, Antoranz A, Guttà C, Podder B, Vetma V, Rufo N, Agostinis P, Pliaka V, Sauter T, Kulms D, Rehm M, Alexopoulos LG. Phosphoprotein patterns predict trametinib responsiveness and optimal trametinib sensitisation strategies in melanoma. Cell Death Differ 2018; 26:1365-1378. [PMID: 30323272 DOI: 10.1038/s41418-018-0210-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant melanoma is a highly aggressive form of skin cancer responsible for the majority of skin cancer-related deaths. Recent insight into the heterogeneous nature of melanoma suggests more personalised treatments may be necessary to overcome drug resistance and improve patient care. To this end, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified. In this study, we applied multiplex phosphoproteomic profiling across a panel of 24 melanoma cell lines with different disease-relevant mutations, to predict responsiveness to MEK inhibitor trametinib. Supported by multivariate statistical analysis and multidimensional pattern recognition algorithms, the responsiveness of individual cell lines to trametinib could be predicted with high accuracy (83% correct predictions), independent of mutation status. We also successfully employed this approach to case specifically predict whether individual melanoma cell lines could be sensitised to trametinib. Our predictions identified that combining MEK inhibition with selective targeting of c-JUN and/or FAK, using siRNA-based depletion or pharmacological inhibitors, sensitised resistant cell lines and significantly enhanced treatment efficacy. Our study indicates that multiplex proteomic analyses coupled with pattern recognition approaches could assist in personalising trametinib-based treatment decisions in the future.
Collapse
Affiliation(s)
- Jan Rožanc
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.,ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | | | - Asier Antoranz
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece.,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Biswajit Podder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nicole Rufo
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vaia Pliaka
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany.,Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece. .,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
27
|
MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor. Oncotarget 2017; 8:17795-17809. [PMID: 28147313 PMCID: PMC5392287 DOI: 10.18632/oncotarget.14855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy.
Collapse
|
28
|
Muñoz-Couselo E, Adelantado EZ, Ortiz C, García JS, Perez-Garcia J. NRAS-mutant melanoma: current challenges and future prospect. Onco Targets Ther 2017; 10:3941-3947. [PMID: 28860801 PMCID: PMC5558581 DOI: 10.2147/ott.s117121] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma.
Collapse
Affiliation(s)
- Eva Muñoz-Couselo
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ester Zamora Adelantado
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carolina Ortiz
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
29
|
Niessner H, Sinnberg T, Kosnopfel C, Smalley KSM, Beck D, Praetorius C, Mai M, Beissert S, Kulms D, Schaller M, Garbe C, Flaherty KT, Westphal D, Wanke I, Meier F. BRAF Inhibitors Amplify the Proapoptotic Activity of MEK Inhibitors by Inducing ER Stress in NRAS-Mutant Melanoma. Clin Cancer Res 2017; 23:6203-6214. [PMID: 28724666 DOI: 10.1158/1078-0432.ccr-17-0098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/25/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Purpose: NRAS mutations in malignant melanoma are associated with aggressive disease requiring rapid antitumor intervention, but there is no approved targeted therapy for this subset of patients. In clinical trials, the MEK inhibitor (MEKi) binimetinib displayed modest antitumor activity, making combinations a requisite. In a previous study, the BRAF inhibitor (BRAFi) vemurafenib was shown to induce endoplasmic reticulum (ER) stress that together with inhibition of the RAF-MEK-ERK (MAPK) pathway amplified its proapoptotic activity in BRAF-mutant melanoma. The present study investigated whether this effect might extent to NRAS-mutant melanoma, in which MAPK activation would be expected.Experimental Design and Results: BRAFi increased pERK, but also significantly increased growth inhibition and apoptosis induced by the MEKi in monolayer, spheroids, organotypic, and patient-derived tissue slice cultures of NRAS-mutant melanoma. BRAFi such as encorafenib induced an ER stress response via the PERK pathway, as detected by phosphorylation of eIF2α and upregulation of the ER stress-related factors ATF4, CHOP, and NUPR1 and the proapoptotic protein PUMA. MEKi such as binimetinib induced the expression of the proapoptotic protein BIM and activation of the mitochondrial pathway of apoptosis, the latter of which was enhanced by combination with encorafenib. The increased apoptotic rates caused by the combination treatment were significantly reduced through siRNA knockdown of ATF4 and BIM, confirming its critical roles in this process.Conclusions: The data presented herein encourage further advanced in vivo and clinical studies to evaluate MEKi in combination with ER stress inducing BRAFi as a strategy to treat rapidly progressing NRAS-mutant melanoma. Clin Cancer Res; 23(20); 6203-14. ©2017 AACR.
Collapse
Affiliation(s)
- Heike Niessner
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany.
| | - Tobias Sinnberg
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniela Beck
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Christian Praetorius
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Marion Mai
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany
| | - Dagmar Kulms
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Martin Schaller
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Dana Westphal
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Ines Wanke
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, Oncology, University Medical Center, Tübingen, Germany.,Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
30
|
Flem-Karlsen K, Tekle C, Andersson Y, Flatmark K, Fodstad Ø, Nunes-Xavier CE. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells. Pigment Cell Melanoma Res 2017; 30:467-476. [PMID: 28513992 DOI: 10.1111/pcmr.12599] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAFV600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Tekle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
31
|
Hélias-Rodzewicz Z, Funck-Brentano E, Terrones N, Beauchet A, Zimmermann U, Marin C, Saiag P, Emile JF. Variation of mutant allele frequency in NRAS Q61 mutated melanomas. BMC DERMATOLOGY 2017; 17:9. [PMID: 28668077 PMCID: PMC5494128 DOI: 10.1186/s12895-017-0061-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/21/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Somatic mutations of BRAF or NRAS activating the MAP kinase cell signaling pathway are present in 70% of cutaneous melanomas. The mutant allele frequency of BRAF V600E (M%BRAF) was recently shown to be highly heterogeneous in melanomas. The present study focuses on the NRAS Q61 mutant allele frequency (M%NRAS). METHODS Retrospective quantitative analyze of 104 NRAS mutated melanomas was performed using pyrosequencing. Mechanisms of M%NRAS imbalance were studied by fluorescence in situ hybridization (FISH) and microsatellite analysis. RESULTS M%NRAS was increased in 27.9% of cases. FISH revealed that chromosome 1 instability was the predominant mechanism of M%NRAS increase, with chromosome 1 polysomy observed in 28.6% of cases and intra-tumor cellular heterogeneity with copy number variations of chromosome 1/NRAS in 23.8%. Acquired copy-neutral loss of heterozygosity (LOH) was less frequent (19%). However, most samples with high M%NRAS had only one copy of NRAS locus surrounding regions suggesting a WT allele loss. Clinical characteristics and survival of patients with either <60% or ≥60% of M%NRAS were not different. CONCLUSION As recently shown for M%BRAF, M%NRAS is highly heterogeneous. The clinical impacts of high M%NRAS should be investigated in a larger series of patients.
Collapse
Affiliation(s)
- Zofia Hélias-Rodzewicz
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Elisa Funck-Brentano
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Dermatology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Nathalie Terrones
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
| | - Alain Beauchet
- Department of Public Health, Ambroise Paré Hospital Ap-HP, Boulogne-Billancourt, France
| | - Ute Zimmermann
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Cristi Marin
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Philippe Saiag
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Dermatology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Jean-François Emile
- Research Unit EA4340 Biomarkers in Cancerology and Hemato Oncology, Versailles SQY University, Paris-Saclay University, 9, Avenue Charles de Gaulle, 92104 Boulogne-Billancourt, France
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| |
Collapse
|
32
|
Yin G, Fan J, Zhou W, Ding Q, Zhang J, Wu X, Tang P, Zhou H, Wan B, Yin G. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo. Oncotarget 2017; 8:82027-82036. [PMID: 29137241 PMCID: PMC5669867 DOI: 10.18632/oncotarget.18303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo, CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo. CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.
Collapse
Affiliation(s)
- Gang Yin
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Orthopaedics, Changzhou Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213017, China
| | - Jin Fan
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qingfeng Ding
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Wu
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengyu Tang
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Bowen Wan
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guoyong Yin
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
33
|
Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer 2017; 123:2118-2129. [DOI: 10.1002/cncr.30435] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia; Sydney New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
- Royal North Shore Hospital; Sydney New South Wales Australia
| | - Helen Rizos
- Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| |
Collapse
|
34
|
Turner MC, Rossfeld K, Salama AKS, Tyler D, Beasley G. Can binimetinib, encorafenib and masitinib be more efficacious than currently available mutation-based targeted therapies for melanoma treatment? Expert Opin Pharmacother 2017; 18:487-495. [PMID: 28277830 DOI: 10.1080/14656566.2017.1299710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Historically, there were few effective and durable treatments for metastatic melanoma. Recently, mutation based targeted therapies have revolutionized treatment and outcomes for patients with metastatic melanoma. Specifically, inhibitors aimed at BRAF, NRAS, and C-KIT mutations are now commonly used in treatment for patients harboring the specific mutations. Areas covered: A brief review of current BRAF, NRAS, and C-KIT inhibitors provides background for a thorough review of newly developed agents namely binimetinib, a MEK inhibitor, encorafenib a BRAF inhibitor, and masitinib which inhibits C-KIT. Expert opinion: While the 3 novel agents reviewed here have potential for use in melanoma, optimal utilization will occur once a more personalized approach incorporating genomic, proteomic, and immunologic data guides therapeutic decisions.
Collapse
Affiliation(s)
- Megan C Turner
- a Department of Surgery , Duke University , Durham , NC , USA
| | - Kara Rossfeld
- b Department of Surgery , Ohio State University , Columbus , OH , USA
| | | | - Douglas Tyler
- d Department of Surgery , University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Georgia Beasley
- b Department of Surgery , Ohio State University , Columbus , OH , USA
| |
Collapse
|
35
|
Acyl protein thioesterase 1 and 2 (APT-1, APT-2) inhibitors palmostatin B, ML348 and ML349 have different effects on NRAS mutant melanoma cells. Oncotarget 2016; 7:7297-306. [PMID: 26771141 PMCID: PMC4872786 DOI: 10.18632/oncotarget.6907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/22/2015] [Indexed: 12/23/2022] Open
Abstract
Oncogenic NRAS mutations are frequent in melanoma and lead to increased downstream signaling and uncontrolled cell proliferation. Since the direct inhibition of NRAS is not possible yet, modulators of NRAS posttranslational modifications have become an area of interest. Specifically, interfering with NRAS posttranslational palmitoylation/depalmitoylation cycle could disturb proper NRAS localization, and therefore decrease cell proliferation and downstream signaling. Here, we investigate the expression and function of NRAS depalmitoylating acyl protein thioesterases 1 and 2 (APT-1, APT-2) in a panel of NRAS mutant melanoma cells. First, we show that all melanoma cell lines examined express APT-1 and APT-2. Next, we show that siRNA mediated APT-1 and APT-2 knock down and that the specific APT-1 and -2 inhibitors ML348 and ML349 have no biologically significant effects in NRAS mutant melanoma cells. Finally, we test the dual APT-1 and APT-2 inhibitor palmostatin B and conclude that palmostatin B has effects on NRAS downstream signaling and cell viability in NRAS mutant melanoma cells, offering an interesting starting point for future studies.
Collapse
|
36
|
Ulivieri A, Cardillo G, Manente L, Paone G, Mancuso AP, Vigna L, Di Stasio E, Gasbarra R, Girlando S, Leone A. Molecular characterization of a selected cohort of patients affected by pulmonary metastases of malignant melanoma: Hints from BRAF, NRAS and EGFR evaluation. Oncotarget 2016; 6:19868-79. [PMID: 26305188 PMCID: PMC4637326 DOI: 10.18632/oncotarget.4503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/20/2015] [Indexed: 02/06/2023] Open
Abstract
Background Melanoma is highly curable in early stages but holds devastating consequences in advanced phases with a median survival of 6–10 months. Lungs are a common metastasis target, but despite this, limited data are available on the molecular status of pulmonary lesions. Materials and Methods 25 patients with surgically resected melanoma lung metastases were screened for BRAF, NRAS, CKIT and EGFR alterations. The results were correlated with time to lung metastasis (TLM), relapse-free survival after metastasectomy (RFS) and overall survival (OS). Results BRAF or NRAS were mutated in 52% and 20% of cases while CKIT was unaffected. Chromosome 7 polysomy was detected in 47% of cases with 17.5% showing EGFR amplification and concomitant BRAF mutation. NRAS mutated patients developed LM within 5 yrs from primary melanoma with larger lesions compared with BRAF (mean diameter 3.3 ± 2.2cm vs 1.9 ± 1.1cm, p = 0.2). NRAS was also associated with a shorter median RFS and OS after metastasectomy. Moreover, Cox regression analysis revealed that NRAS mutation was the only predictive factor of shorter survival from primary melanoma (p = 0.039, OR = 5.5 (1.1–27.6)). Conclusions Molecular characterization identifies advanced melanoma subgroups with distinct prognosis and therapeutic options. The presence of NRAS mutation was associated to a worse disease evolution.
Collapse
Affiliation(s)
- Alessandra Ulivieri
- Anatomic Pathology Unit, San Camillo-Forlanini Hospitals, Rome, Italy.,Laboratory of Biomedical research "Fondazione Niccolò Cusano per la Ricerca Medico-Scientifica" Niccolò Cusano University of Rome, Rome, Italy
| | | | - Liborio Manente
- Anatomic Pathology Unit, San Camillo-Forlanini Hospitals, Rome, Italy
| | - Gregorino Paone
- Department of Respiratory Diseases, San Camillo-Forlanini Hospitals, Rome, Italy
| | | | - Leonardo Vigna
- Department of Medical Oncology, San Camillo-Forlanini Hospitals, Rome, Italy
| | - Enrico Di Stasio
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Gasbarra
- Anatomic Pathology Unit, San Camillo-Forlanini Hospitals, Rome, Italy
| | | | - Alvaro Leone
- Anatomic Pathology Unit, San Camillo-Forlanini Hospitals, Rome, Italy
| |
Collapse
|
37
|
Gugger A, Barnhill RL, Seifert B, Dehler S, Moch H, Lugassy C, Marques-Maggio E, Rushing EJ, Mihic-Probst D. Cutaneous Melanoma with Brain Metastasis: Report of 193 Patients with New Observations. PLoS One 2016; 11:e0156115. [PMID: 27213536 PMCID: PMC4877095 DOI: 10.1371/journal.pone.0156115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/08/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Brain metastasis is a common endpoint in patients suffering from malignant melanoma. However, little is known about factors that predispose to brain metastases. OBJECTIVE We performed a retrospective clinical and pathological investigation of melanoma patients with brain metastases in order to better characterise this patient population. METHODS 193 melanoma patients with brain metastasis histologically diagnosed between 1990 and 2015 at the University Hospital Zurich were retrospectively identified and further specified for sex, age at diagnosis and detection of brain metastasis, and localisation. In addition, data were extracted regarding the subtype of primary melanoma, Breslow tumour thickness, Clark Level, mutation status, extent of metastatic spread and history of a second melanoma. RESULTS We found a significant male predominance (n = 126/193; 65%; p < 0.001). Breslow tumour thickness showed a wide range from 0.2 to 12.0 mm (n = 99; median 2.3 mm). 14 of 101 melanomas (14%) were classified as T1, thereof 11 (79%) were found in men. In 32 of 193 patients (17%), the primary melanoma was unknown. CONCLUSIONS Of special interest in our series is the high incidence of male predominance (79%) in cases of thin metastasing melanoma (14%), implicating genetic or epigenetic (hormonal) gender differences underlying tumour progression. Additionally, the high percentage of unknown primary melanoma (17%), at least partly representing completely regressed melanomas, indicates the importance of immune surveillance in melanoma progression.
Collapse
Affiliation(s)
- Alenka Gugger
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Raymond L. Barnhill
- Departments of Pathology and Translational Research, Institut Curie, Paris, France
| | - Burkhardt Seifert
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Silvia Dehler
- Cancer Registry Zurich and Zug, Institute of Surgical Pathology, University Hospital Zurich and Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Claire Lugassy
- Departments of Pathology and Translational Research, Institut Curie, Paris, France
| | | | | | - Daniela Mihic-Probst
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, Mauger F, Lebbe C, Chevret S, Tost J, Tazi A. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J 2016; 47:1785-96. [PMID: 27076591 DOI: 10.1183/13993003.01677-2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is constantly activated in Langerhans cell histiocytosis (LCH). Mutations of the downstream kinases BRAF and MAP2K1 mediate this activation in a subset of LCH lesions. In this study, we attempted to identify other mutations which may explain the MAPK activation in nonmutated BRAF and MAP2K1 LCH lesions.We analysed 26 pulmonary and 37 nonpulmonary LCH lesions for the presence of BRAF, MAP2K1, NRAS and KRAS mutations. Grossly normal lung tissue from 10 smoker patients was used as control. Patient spontaneous outcomes were concurrently assessed.BRAF(V600E) mutations were observed in 50% and 38% of the pulmonary and nonpulmonary LCH lesions, respectively. 40% of pulmonary LCH lesions harboured NRAS(Q61K) (/R) mutations, whereas no NRAS mutations were identified in nonpulmonary LCH biopsies or in lung tissue control. In seven out of 11 NRAS(Q61K) (/R)-mutated pulmonary LCH lesions, BRAF(V600) (E) mutations were also present. Separately genotyping each CD1a-positive area from the same pulmonary LCH lesion demonstrated that these concurrent BRAF and NRAS mutations were carried by different cell clones. NRAS(Q61K) (/R) mutations activated both the MAPK and AKT (protein kinase B) pathways. In the univariate analysis, the presence of concurrent BRAF(V600E) and NRAS(Q61K) (/R) mutations was significantly associated with patient outcome.These findings highlight the importance of NRAS genotyping of pulmonary LCH lesions because the use of BRAF inhibitors in this context may lead to paradoxical disease progression. These patients might benefit from MAPK kinase inhibitor-based treatments.
Collapse
Affiliation(s)
- Samia Mourah
- Assistance Publique - Hôpitaux de Paris, Laboratoire de Pharmacologie Biologique, Hôpital Saint-Louis; Université Paris-Diderot, Sorbonne Paris Cité; INSERM U976, Paris, France
| | - Alexandre How-Kit
- Laboratoire de Génomique fonctionnelle, Fondation Jean Dausset - CEPH, Paris, France
| | - Véronique Meignin
- Assistance Publique - Hôpitaux de Paris, Service de Pathologie, Hôpital Saint-Louis; INSERM UMR_S1165, Paris, France
| | - Dominique Gossot
- Département Thoracique, Institut Mutualiste Montsouris, Paris, France
| | - Gwenaël Lorillon
- Assistance Publique - Hôpitaux de Paris, Centre National de Référence de l'Histiocytose Langerhansienne, Service de Pneumologie, Hôpital Saint-Louis, Paris, France
| | - Emmanuelle Bugnet
- Assistance Publique - Hôpitaux de Paris, Centre National de Référence de l'Histiocytose Langerhansienne, Service de Pneumologie, Hôpital Saint-Louis, Paris, France
| | - Florence Mauger
- Laboratoire Epigénétique et Environnement, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Celeste Lebbe
- Assistance Publique - Hôpitaux de Paris, Département de Dermatologie, Hôpital Saint-Louis; Université Paris-Diderot, Sorbonne Paris Cité; INSERM U976, Paris, France
| | - Sylvie Chevret
- Assistance Publique - Hôpitaux de Paris; Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France Université Paris-Diderot, Sorbonne Paris Cité; INSERM UMR 1153 CRESS, Equipe de Recherche en Biostatistiques et Epidémiologie Clinique, Paris, France
| | - Jörg Tost
- Laboratoire Epigénétique et Environnement, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Abdellatif Tazi
- Assistance Publique - Hôpitaux de Paris, Centre National de Référence de l'Histiocytose Langerhansienne, Service de Pneumologie, Hôpital Saint-Louis, Paris, France Université Paris-Diderot, Sorbonne Paris Cité; INSERM UMR 1153 CRESS, Equipe de Recherche en Biostatistiques et Epidémiologie Clinique, Paris, France
| |
Collapse
|
39
|
Vu HL, Aplin AE. Targeting mutant NRAS signaling pathways in melanoma. Pharmacol Res 2016; 107:111-116. [PMID: 26987942 DOI: 10.1016/j.phrs.2016.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a devastating form of skin cancer and its incidence is increasing faster than any other preventable cancer in the United States. The mutant NRAS subset of melanoma is more aggressive and associated with poorer outcomes compared to non-NRAS mutant melanoma. The aggressive nature and complex molecular signaling conferred by this transformation has evaded clinically effective treatment options. This review examines the major downstream effectors of NRAS relevant in melanoma and the associated advances made in targeted therapies that focus on these effector pathways. We outline the history of MEK inhibition in mutant NRAS melanoma and recent advances with newer MEK inhibitors. Since MEK inhibitors will likely be optimized when combined with other targeted therapies, we focus on recently identified targets that can be used in combination with MEK inhibitors.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
40
|
|
41
|
Chakrabarti M, Jang H, Nussinov R. Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. J Phys Chem B 2016; 120:667-79. [PMID: 26761128 PMCID: PMC7815164 DOI: 10.1021/acs.jpcb.5b11110] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human HRAS, KRAS, and NRAS genes encode four isoforms of Ras, a p21 GTPase. Mutations in KRAS account for the majority of RAS-driven cancers. The KRAS has two splice variants, K-Ras4A and K-Ras4B. Due to their reversible palmitoylation, K-Ras4A and N-Ras have bimodal signaling states. K-Ras4A and K-Ras4B differ in four catalytic domain residues (G151R/D153E/K165Q/H166Y) and in their disordered C-terminal hypervariable region (HVR). In K-Ras4A, the HVR is not as strongly positively charged as in K-Ras4B (+6e vs +9e). Here, we performed all-atom molecular dynamics simulations to elucidate isoform-specific differences between the two splice variants. We observe that the catalytic domain of GDP-bound K-Ras4A has a more exposed nucleotide binding pocket than K-Ras4B, and the dynamic fluctuations in switch I and II regions also differ; both factors may influence guanine-nucleotide exchange. We further observe that like K-Kas4B, full-length K-Ras4A exhibits nucleotide-dependent HVR fluctuations; however, these fluctuations differ between the GDP-bound forms of K-Ras4A and K-Ras4B. Unlike K-Ras4B where the HVR tends to cover the effector binding region, in K-Ras4A, autoinhibited states are unstable. With lesser charge, the K-Ras4A HVR collapses on itself, making it less available for binding the catalytic domain. Since the HVRs of N- and H-Ras are weakly charged (+1e and +2e, respectively), autoinhibition may be a unique feature of K-Ras4B.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Jiang W, Jia P, Hutchinson KE, Johnson DB, Sosman JA, Zhao Z. Clinically relevant genes and regulatory pathways associated with NRASQ61 mutations in melanoma through an integrative genomics approach. Oncotarget 2016; 6:2496-508. [PMID: 25537510 PMCID: PMC4385866 DOI: 10.18632/oncotarget.2954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
Therapies such as BRAF inhibitors have become standard treatment for melanoma patients whose tumors harbor activating BRAFV600 mutations. However, analogous therapies for inhibiting NRAS mutant signaling have not yet been well established. In this study, we performed an integrative analysis of DNA methylation, gene expression, and microRNA expression data to identify potential regulatory pathways associated with the most common driver mutations in NRAS (Q61K/L/R) through comparison of NRASQ61-mutated melanomas with pan-negative melanomas. Surprisingly, we found dominant hypomethylation (98.03%) in NRASQ61-mutated melanomas. We identified 1,150 and 49 differentially expressed genes and microRNAs, respectively. Integrated functional analyses of alterations in all three data types revealed important signaling pathways associated with NRASQ61 mutations, such as the MAPK pathway, as well as other novel cellular processes, such as axon guidance. Further analysis of the relationship between DNA methylation and gene expression changes revealed 9 hypermethylated and down-regulated genes and 112 hypomethylated and up-regulated genes in NRASQ61 melanomas. Finally, we identified 52 downstream regulatory cascades of three hypomethylated and up-regulated genes (PDGFD, ZEB1, and THRB). Collectively, our observation of predominant gene hypomethylation in NRASQ61 melanomas and the identification of NRASQ61-linked pathways will be useful for the development of targeted therapies against melanomas harboring NRASQ61 mutations.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katherine E Hutchinson
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeffrey A Sosman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Rutter CE, Johung KL, Yao X, Lu AY, Jilaveanu LB, Yu JB, Contessa JN, Kluger HM, Chiang VL, Bindra RS. Demonstration of differential radiosensitivity based upon mutation profile in metastatic melanoma treated with stereotactic radiosurgery. JOURNAL OF RADIOSURGERY AND SBRT 2016; 4:97-106. [PMID: 29296434 PMCID: PMC5658871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/29/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND Metastatic melanoma often involves the brain. Radiotherapy is an important treatment of melanoma brain metastases, although melanoma radiosensitivity is considered heterogeneous. Thus, identifying subsets with differential radiosensitivity is essential. MATERIALS AND METHODS Patients with metastatic melanoma were identified in a prospective stereotactic radiosurgery (SRS) database. Tumor were tested for alterations in B-RAF, N-RAS, and c-KIT. Standardized imaging following SRS was reviewed for recurrence. Differences in local and distant failure were determined using modified Cox proportional hazards models. RESULTS 102 patients and 1,028 brain metastases were included. N-RAS mutated patients were significantly less likely to develop local recurrence after SRS than wild type patients (HR 0.17, 95% CI 0.04-0.72, p=0.017). B-RAF and c-KIT mutations were not associated with altered rates of local recurrence. Lower local recurrence rates for N-RAS mutated tumors persisted on multivariate analysis (HR 0.18, 95% CI 0.04-0.84p=0.029). CONCLUSIONS N-RAS mutation is associated with improved local control following SRS. Local recurrence is more common in wild type patients and those with B-RAF or c-KIT mutations. Further research is needed to validate these findings and integrate into practice.
Collapse
Affiliation(s)
- Charles E. Rutter
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kimberly L. Johung
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaopan Yao
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA
| | - Alex Y. Lu
- Yale School of Medicine, New Haven, CT 06510, USA
| | - Lucia B. Jilaveanu
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA
| | - James B. Yu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph N. Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Harriet M. Kluger
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
44
|
Metastatic melanoma treatment: Combining old and new therapies. Crit Rev Oncol Hematol 2015; 98:242-53. [PMID: 26616525 DOI: 10.1016/j.critrevonc.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023] Open
Abstract
Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma.
Collapse
|
45
|
Ebrahimi A, Nodushan SMHT, Mousavian A, Mokarizadeh A, Abbasi M, Yahaghi E, Rasaei SM. RETRACTED ARTICLE: Diagnostic and prognostic potentials of KLF6 and HER3 expression alterations in cutaneous malignant melanoma. Tumour Biol 2015; 37:10.1007/s13277-015-4236-y. [PMID: 26474591 DOI: 10.1007/s13277-015-4236-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ali Ebrahimi
- Students' Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Alireza Mousavian
- Department of Orthopedics Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aram Mokarizadeh
- Cellular and Molecular Research Center and Department of Immunology, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Abbasi
- School of Medicine, Shahed University, Tehran, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
46
|
Abstract
Aberrant activation of the three-layered protein kinase cascade, Raf/MEK/ERK, is often detected in human cancer, which is mainly attributed to the oncogenic alterations of RAF, or its upstream activators RAS or cell surface receptor tyrosine kinases. Deregulated activity of the Raf/MEK/ERK pathway drives uncontrolled tumor cell proliferation and survival, thus providing a rational therapeutic target for the treatment of many cancers. While Raf, MEK1/2, and ERK1/2 are equally important targets for the design of therapeutic small molecular weight inhibitors, the effort to develop MEK1/2-specific inhibitors has been greatly successful. Particularly, MEK1/2 have been relatively advantageous for the design of highly selective adenosine triphosphate (ATP)-noncompetitive inhibitors. Indeed, a plethora of highly selective and potent MEK1/2 inhibitors are now available and many of those inhibitors have been evaluated for their therapeutic potential. Herein, we review different MEK1/2 inhibitors that have been studied for their inhibitory mechanisms and therapeutic potential in cancer. Some of the key structural features of MEK1/2 that are important for the efficacy of these inhibitors are also discussed. In addition, we discuss current challenges and future prospective in using these advanced MEK1/2 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
47
|
Ewald F, Nörz D, Grottke A, Bach J, Herzberger C, Hofmann BT, Nashan B, Jücker M. Vertical Targeting of AKT and mTOR as Well as Dual Targeting of AKT and MEK Signaling Is Synergistic in Hepatocellular Carcinoma. J Cancer 2015; 6:1195-205. [PMID: 26535060 PMCID: PMC4622849 DOI: 10.7150/jca.12452] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer, and the third most common cause of cancer related death worldwide. The multi-kinase inhibitor Sorafenib represents the only systemic treatment option until today, and results from clinical trials with allosteric mTOR inhibitors were sobering. Since the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways are frequently upregulated in HCC, we have analyzed the effects of AKT inhibitor MK-2206, MEK inhibitor AZD6244 (ARRY 142886) and mTOR kinase inhibitor AZD8055, given as single drugs or in combination, on proliferation and apoptosis of three HCC cell lines in vitro. We show that all three inhibitor combinations synergistically inhibit proliferation of the three HCC cell lines, with the strongest synergistic effect observed after vertical inhibition of AKT and mTORC1/2. We demonstrate that AKT kinase activity is restored 24h after blockade of mTORC1/2 by increased phosphorylation of T308, providing a rationale for combined targeting of AKT and mTOR inhibition in HCC. Our data suggest that a combination of inhibitors targeting those respective pathways may be a viable approach for future application in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Florian Ewald
- 1. Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf
| | - Dominik Nörz
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Astrid Grottke
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Johanna Bach
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christiane Herzberger
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bianca T Hofmann
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Björn Nashan
- 1. Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf
| | - Manfred Jücker
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
48
|
Basu D, Salgado CM, Bauer BS, Johnson D, Rundell V, Nikiforova M, Khakoo Y, Gunwaldt LJ, Panigrahy A, Reyes-Múgica M. Nevospheres from neurocutaneous melanocytosis cells show reduced viability when treated with specific inhibitors of NRAS signaling pathway. Neuro Oncol 2015; 18:528-37. [PMID: 26354928 DOI: 10.1093/neuonc/nov184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neurocutaneous melanocytosis (NCM) is characterized by clonal nevomelanocytic proliferations in the CNS and skin. Given the scarcity of effective therapeutic targets, testing new drugs requires a reliable and reproducible in vitro cellular model of the disease. METHODS We generated nevomelanocytic spheroids in vitro from lesions of the spinal cord, brain, and skin from 4 NCM patients. Nevomelanocytic cells were grown as monolayers or spheroids and their growth characteristics were evaluated. Cultured cell identity was confirmed by demonstration of the same NRAS mutation found in the original lesions and by immunophenotyping. Nevomelanocytic spheroids were treated with inhibitors of specific mediators of the NRAS signaling pathway (vemurafenib, MEK162, GDC0941, and GSK2126458). Drug sensitivity and cell viability were assessed. RESULTS Cultured cells were growth-factor dependent, grew as spheroids on Geltrex matrix, and maintained their clonogenicity in vitro over passages. Skin-derived cells formed more colonies than CNS-derived cells. Inhibitors of specific mediators of the NRAS signaling pathway reduced viability of NRAS mutated cells. The highest effect was obtained with GSK2126458, showing a viability reduction below 50%. CONCLUSIONS NRAS mutated cells derived from clinical NCM samples are capable of continuous growth as spheroid colonies in vitro and retain their genetic identity. Drugs targeting the NRAS signaling pathway reduce in vitro viability of NCM cells. NCM lesional spheroids represent a new and reliable experimental model of NCM for use in drug testing and mechanistic studies.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Cláudia M Salgado
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Bruce S Bauer
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Donald Johnson
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Veronica Rundell
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Marina Nikiforova
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Yasmin Khakoo
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Lorelei J Gunwaldt
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Ashok Panigrahy
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| | - Miguel Reyes-Múgica
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (D.B., C.M.S., M.R.M.); Department of Plastic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (L.J.G.); Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (A.P.); Division of Plastic and Reconstructive Surgery, NorthShore University HealthSystem, Northbrook, Illinois (B.S.B., D.J., V.R.); Division of Molecular Genomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (M.N.); Department of Pediatrics and Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (Y.K.); Department of Pediatrics, Weill Cornell Medical College, New York, New York (Y.K.)
| |
Collapse
|
49
|
Langdon CG, Held MA, Platt JT, Meeth K, Iyidogan P, Mamillapalli R, Koo AB, Klein M, Liu Z, Bosenberg MW, Stern DF. The broad-spectrum receptor tyrosine kinase inhibitor dovitinib suppresses growth of BRAF-mutant melanoma cells in combination with other signaling pathway inhibitors. Pigment Cell Melanoma Res 2015; 28:417-30. [PMID: 25854919 PMCID: PMC5215495 DOI: 10.1111/pcmr.12376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew A. Held
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - James T. Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Breast Medical Oncology Group, Yale University School of Medicine, New Haven, CT, USA
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Pinar Iyidogan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Andrew B. Koo
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Klein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongzhi Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcus W. Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - David F. Stern
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
50
|
Yao W, Yue P, Zhang G, Owonikoko TK, Khuri FR, Sun SY. Enhancing therapeutic efficacy of the MEK inhibitor, MEK162, by blocking autophagy or inhibiting PI3K/Akt signaling in human lung cancer cells. Cancer Lett 2015; 364:70-8. [PMID: 25937299 DOI: 10.1016/j.canlet.2015.04.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
Human non-small cell lung cancer (NSCLC) displays activated MEK/ERK signaling due to a high frequency of K-Ras mutation and is thus a potential candidate for MEK-targeted therapy. The current study focuses on demonstrating the activity of MEK162 (binimetinib), a MEK inhibitor under clinical testing, against NSCLC and exploring possible mechanism-driven strategies to enhance its therapeutic efficacy. MEK162 inhibits the growth of human NSCLC cell lines with varied potencies through induction of G1 cell cycle arrest and apoptosis. Moreover, it induces autophagy and accordingly the combination of MEK162 with the autophagy inhibitor, chloroquine, synergistically inhibits the growth of NSCLC cells and enhances apoptosis. MEK162 activates Akt signaling while effectively inhibiting MEK/ERK signaling. Accordingly, the combination of MEK162 and BKM120 (buparlisib), a pan-PI3K inhibitor, abrogates induced Akt activation and significantly augments therapeutic efficacy against the growth of NSCLC cells both in vitro and in vivo. Hence our findings warrant further evaluation of these rational combinations in the clinic.
Collapse
Affiliation(s)
- Weilong Yao
- Department of Respiration, Xiangya Hospital and Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|