1
|
Liu Y, Huang W, Saladin RJ, Hsu JC, Cai W, Kang L. Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook. Mol Pharm 2024. [PMID: 39537365 DOI: 10.1021/acs.molpharmaceut.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein, plays a dual role in physiological and pathological processes. In healthy tissues, Trop2 facilitates development and orchestrates intracellular calcium signaling. However, its overexpression in numerous solid tumors shifts its function toward driving cell proliferation and metastasis, thus leading to a poor prognosis. The clinical relevance of Trop2 is underscored by its utility as both a biomarker for diagnostic imaging and a target for therapy. Notably, the U.S. Food and Drug Administration (FDA) has approved sacituzumab govitecan (SG), a novel Trop2-targeted agent, for treating triple-negative breast cancer (TNBC) and refractory urothelial cancer, highlighting the significance of Trop2 in clinical oncology. Molecular imaging, a powerful tool for visualizing and quantifying biological phenomena at the molecular and cellular levels, has emerged as a critical technique for studying Trop2. This approach encompasses various modalities, including optical imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted antibodies labeled with radioactive isotopes. Incorporating Trop2-targeted molecular imaging into clinical practice is vital for the early detection, prognostic assessment, and treatment planning of a broad spectrum of solid tumors. Our review captures the latest progress in Trop2-targeted molecular imaging, focusing on both diagnostic and therapeutic applications across diverse tumor types, including lung, breast, gastric, pancreatic, prostate, and cervical cancers, as well as salivary gland carcinomas. We critically evaluate the current state by examining the relevant applications, diagnostic accuracy, therapeutic efficacy, and inherent limitations. Finally, we analyze the challenges impeding widespread clinical application and offer insights into strategies for advancing the field, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rachel J Saladin
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
2
|
Sultana R, Chen S, Lim EH, Dent R, Chowbay B. Efficacy and safety of sacituzumab govitecan Trop-2-targeted antibody-drug conjugate in solid tumors and UGT1A1*28 polymorphism: a systematic review and meta-analysis. BJC REPORTS 2024; 2:85. [PMID: 39528547 DOI: 10.1038/s44276-024-00106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Sacituzumab govitecan (SG) is a promising Trop-2-targeted antibody-drug conjugate (ADC) approved for the treatment of metastatic triple-negative breast cancer (TNBC). Early phase clinical trials have demonstrated good clinical activity and safety profile of SG in various tumor types, albeit with differing response rates and durations. The aim of this systematic review and meta-analysis was to evaluate the clinical efficacy and toxicity of SG and the influence of UGT1A1*28 genotype in clinical trials involving solid tumors. METHODS A systematic review of the literature from publicly available databases was performed on February 15, 2024 whereby studies published till 15 February 2024 were retrieved according to PRISMA guidelines [PROSPERO #CRD42022359943]. Data extracted included tumor type, sample size, demographic information, SG dose, UGT1A1*28 status, toxicity events, duration of follow-up, response, and survival outcomes. Risks of bias analysis was refereed using the Joanna Briggs Institute quality assessment tool for the cohort and RCT studies using 11 and 13 parameters, respectively. Statistical analysis was performed using the DerSimonian and Laird inverse variance methods. Heterogeneity was assessed using the I2 statistic and Χ2 tests. P value < 0.05 was considered as statistical significance. RESULTS Eleven eligible clinical trials comprised of 1578 patients harboring various tumor types including TNBC, lung, genitourinary and gastrointestinal malignancies were included in the systematic review and meta-analysis. Pooled incidences of severe adverse events were minimal at <10%, with the exception of grade 3-4 neutropenia at 37.4%. The median PFS and OS across all studies were 4.9 (95%CI: 4.0-5.8) months and 9.6 (95%CI: 7.6-11.6) months, respectively. Objective response rate across all studies evaluated was 17.1% (95%CI: 12.0-22.1). CONCLUSION Our systematic review and meta-analysis confirmed that SG confers good clinical activity in certain solid tumor types and was tolerable with minimal adverse events. The potential utility of UGT1A1*28 genotyping in predicting clinical response and outcomes could not be determined due to the limited number of studies with available UGT1A1 genotype data.
Collapse
Affiliation(s)
- Rehena Sultana
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Sylvia Chen
- Laboratory of Clinical Pharmacology, Division of Cellular & Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Cellular & Molecular Research, National Cancer Centre, Singapore, Singapore.
- Centre for Clinician Scientist Development, Duke-NUS Medical School, Singapore, Singapore.
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
3
|
Li M, Jin M, Peng H, Wang H, Shen Q, Zhang L. Current Status and Future Prospects of TROP-2 ADCs in Lung Cancer Treatment. Drug Des Devel Ther 2024; 18:5005-5021. [PMID: 39525044 PMCID: PMC11550919 DOI: 10.2147/dddt.s489234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is the leading cause of mortality worldwide, and non-small cell lung cancer accounts for the majority of lung cancer cases. Chemotherapy and radiotherapy constitute the mainstays of lung cancer treatment; however, their associated side effects involving the kidneys, nervous system, gastrointestinal tract, and liver further add to dismal outcomes. The advent of antibody‒drug conjugates (ADCs) could change this situation. Trophoblast surface antigen 2 (TROP-2), a human trophoblast surface antigen, is a tumor-associated antigen that is expressed at low levels in normal tissues and is overexpressed in a variety of malignant tumors. The differential expression of the TROP-2 protein in a variety of tumors makes tumor immunotherapy with ADCs targeting TROP-2 a promising approach. Previous studies have shown that the expression of TROP-2 is related to the prognosis of patients with lung cancer and that TROP-2 expression is different across different histological types; however, research on TROP-2 and TROP-2 ADCs in patients with lung cancer is not comprehensive. The aims of this study were to review the mechanism of action and clinical efficacy of TROP-2 and related drugs in the treatment of lung cancer, to elucidate the prognostic value of TROP-2 in lung cancer, and to discuss the future prospects of TROP-2 ADCs to provide a reference for the precise treatment of lung cancer.
Collapse
Affiliation(s)
- Mingyi Li
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haitao Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, 437000, People’s Republic of China
| |
Collapse
|
4
|
Li W, Gao T, Pei R. Selection of trophoblast cell surface antigen 2-targeted aptamer for the development of cytotoxic aptamer-drug conjugate. Int J Biol Macromol 2024; 279:135456. [PMID: 39250993 DOI: 10.1016/j.ijbiomac.2024.135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Trophoblast cell surface antigen 2 expressed in several malignant cancers promotes tumor growth and metastasis via several signal transduction pathways. Trop2 is reputed as a prospective biomarker and therapeutic target. Trophoblast cell surface antigen 2-targeted agents, including antibodies, antibody conjugates and therapeutic combinations, could be utilized to fight cancers. To develop an effective drug targeting strategy, we resorted to a new trophoblast cell surface antigen 2-targeted anticancer treatment through aptamer conjugated with chemotherapeutic drug. This study identified trophoblast cell surface antigen 2-specific ssDNA aptamers using engineered trophoblast cell surface antigen 2 overexpression cells for cell-SELEX. The obtained ssDNA aptamer bound to trophoblast cell surface antigen 2 overexpressed cells with nanomolar affinity and was specific for several tumor cell types which express trophoblast cell surface antigen 2 abundantly. Significant cytotoxicity against HT29 cell by the conjugate of trophoblast cell surface antigen 2 aptamer and Emtansine was observed while resulting negligible therapeutic effect on human normal intestinal epithelial cell line HIEC in vitro, indicating that the conjugate shows potential as a promising therapeutic agent. Furthermore, the isolated aptamer demonstrated the ability for the targeted delivery, resulting excellent therapeutic effectiveness of aptamer-drug conjugate for xenograft tumor model of mice with human colorectal cancer.
Collapse
Affiliation(s)
- Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
5
|
Chen W, Zhang Y, Zhang L, Luo X, Yang X, Zhu Y, Wang G, Huang W, Zhang D, Zeng Y, Li R, Guo C, Wang J, Wu Z, Liu N, Zhang G. Intraoperative evaluation of tumor margins using a TROP2 near-infrared imaging probe to enable human breast-conserving surgery. Sci Transl Med 2024; 16:eado2461. [PMID: 39413161 DOI: 10.1126/scitranslmed.ado2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Intraoperative surgical margin assessment remains a challenge during breast-conserving surgery. Here, we report a combined strategy of immuno-positron emission tomography (PET) for preoperative detection of breast cancer and guided assessment of margins in breast-conserving surgery through second near-infrared (NIR-II) fluorescence imaging of trophoblastic cell surface antigen 2 (TROP2). We demonstrated that the intensity of PET signals in the tumors was nearly five times higher than in normal breast tissue with a zirconium-89 tracer conjugated to sacituzumab govitecan (SG) in a mouse spontaneous breast cancer model, enabling the identification of tumors. We further generated a NIR-II probe of indocyanine green conjugated to SG (ICG-SG) and developed a rapid incubation imaging method for intraoperative margin assessment in a relevant time window for the operation workflow. The ICG-SG NIR-II fluorescence image guidance was first verified to remove tumors completely and accurately in mouse breast cancer models. Moreover, the rapid incubation imaging method was applied to distinguish benign and malignant breast lesions in samples from 26 patients with breast cancer. Therefore, we have developed both nuclide and optical probes targeting TROP2 for rapid and precise identification of tumor margins during breast-conserving surgery in humans.
Collapse
Affiliation(s)
- Weiling Chen
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Yongqu Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lixin Zhang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xia Yang
- Department of Nuclear Medicine, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Yuanyuan Zhu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Guimei Wang
- Department of Pathology, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Wenhe Huang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Deliang Zhang
- Department of Nuclear Medicine, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ronghui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Cuiping Guo
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazheng Wang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Zhao Wu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Na Liu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Guojun Zhang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
- Department of Breast Surgery, Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunan, Kunming 650118, China
- Cancer Research Center of Xiamen University, Xiamen 361101, China
| |
Collapse
|
6
|
Kim HS, Kim Y, Lee HS. Clinicopathologic Characteristics of Trop Family Proteins (Trop-2 and EpCAM) in Gastric Carcinoma. J Gastric Cancer 2024; 24:391-405. [PMID: 39375055 PMCID: PMC11471318 DOI: 10.5230/jgc.2024.24.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE Trop family proteins, including epithelial cell adhesion molecule (EpCAM) and Trop-2, have garnered attention as potential therapeutic and diagnostic targets for various malignancies. This study aimed to elucidate the clinicopathological significance of these proteins in gastric carcinoma (GC) and to reinforce their potential as biomarkers for patient stratification in targeted therapies. MATERIALS AND METHODS Immunohistochemical (IHC) analyses of EpCAM and Trop-2 were performed on GC and precancerous lesions, following rigorous orthogonal validation of the antibodies to ensure specificity and sensitivity. RESULTS Strong membranous staining (3+) for Trop-2 was observed in 49.3% of the GC cases, whereas EpCAM was strongly expressed in almost all cases (93.2%), indicating its widespread expression in GC. A high Trop-2 expression level, characterized by an elevated H-score, was significantly associated with intestinal type by Lauren classification, gastric mucin type, presence of lymph node metastasis, human epidermal growth factor receptor 2-positivity, and Epstein-Barr virus (EBV)-positivity. Patients with a high Trop-2 expression level exhibited poorer survival outcomes on univariate and multivariate analyses. High EpCAM expression levels were prevalent in differentiated histologic type, microsatellite instability-high, and EBV-negative cancer, and were correlated with high densities of CD3 and CD8 T cells and elevated combined positive score for programmed death-ligand 1. CONCLUSIONS These results highlight the differential expression of Trop-2 and EpCAM and their prognostic implications in GC. The use of meticulously validated antibodies ensured the reliability of our IHC data, thereby offering a robust foundation for future therapeutic strategies targeting Trop family members in GC.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
7
|
Tanegashima K, Tanaka Y, Ito T, Oda Y, Nakahara T. TROP2 Expression and Therapeutic Implications in Cutaneous Squamous Cell Carcinoma: Insights From Immunohistochemical and Functional Analysis. Exp Dermatol 2024; 33:e15196. [PMID: 39422290 DOI: 10.1111/exd.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer, but treatments for advanced cases have limited efficacy. Trophoblast cell-surface antigen 2 (TROP2) is a cell-surface protein that is widely expressed in various tumours, where it exerts significant influence over critical processes such as tumour cell growth, apoptosis, migration, invasion and metastasis. Sacituzumab govitecan, an antibody-drug conjugate (ADC) targeting TROP2, is emerging as a promising strategy for anticancer therapy. In this study, we investigated TROP2 expression in cSCC tissues from 51 patients and evaluated its function in the A431 human SCC cell line. Immunohistochemical analysis revealed TROP2 expression on the plasma membrane of cSCC tissues and A431 cells. A431 cells showed sensitivity to sacituzumab govitecan with a significant concentration-dependent decrease in viable cell number. In addition, Knockdown of TROP2 resulted in decreased expression of cyclin D1 and BCL-2, along with reduced cell viability. Knockdown of TROP2 also resulted in decreased expression of vimentin, along with reduced migratory capacity. These findings suggest that TROP2 plays a crucial role in cSCC cell proliferation and migration, and highlight the potential of sacituzumab govitecan as a promising therapeutic option for cSCC.
Collapse
Affiliation(s)
- Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Cooper AJ, Riely GJ. Can We Find a Place for Trophoblast Cell Surface Antigen 2-Targeted Antibody-Drug Conjugates in Lung Cancer? J Clin Oncol 2024:JCO2401900. [PMID: 39353165 DOI: 10.1200/jco-24-01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
|
9
|
Deng J, Geng Z, Luan L, Jiang D, Lu J, Zhang H, Chen B, Liu X, Xing D. Novel Anti-Trop2 Nanobodies Disrupt Receptor Dimerization and Inhibit Tumor Cell Growth. Pharmaceutics 2024; 16:1255. [PMID: 39458590 PMCID: PMC11510716 DOI: 10.3390/pharmaceutics16101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trop2 (trophoblast cell-surface antigen 2) is overexpressed in multiple malignancies and is closely associated with poor prognosis, thus positioning it as a promising target for pan-cancer therapies. Despite the approval of Trop2-targeted antibody-drug conjugates (ADCs), challenges such as side effects, drug resistance, and limited efficacy persist. Recent studies have shown that the dimeric forms of Trop2 are crucial for its oncogenic functions, and the binding epitopes of existing Trop2-targeted drugs lie distant from the dimerization interface, potentially limiting their antitumor efficacy. Method: A well-established synthetic nanobody library was screened against Trop2-ECD. The identified nanobodies were extensively characterized, including their binding specificity and affinity, as well as their bioactivities in antigen-antibody endocytosis, cell proliferation, and the inhibition of Trop2 dimer assembly. Finally, ELISA based epitope analysis and AlphaFold 3 were employed to elucidate the binding modes of the nanobodies. Results: We identified two nanobodies, N14 and N152, which demonstrated high affinity and specificity for Trop2. Cell-based assays confirmed that N14 and N152 can facilitate receptor internalization and inhibit growth in Trop2-positive tumor cells. Epitope analysis uncovered that N14 and N152 are capable of binding with all three subdomains of Trop2-ECD and effectively disrupt Trop2 dimerization. Predictive modeling suggests that N14 and N152 likely target the epitopes at the interface of Trop2 cis-dimerization. The binding modality and mechanism of action demonstrated by N14 and N152 are unique among Trop2-targeted antibodies. Conclusions: we identified two novel nanobodies, N14 and N152, that specifically bind to Trop2. Importantly, these nanobodies exhibit significant anti-tumor efficacy and distinctive binding patterns, underscoring their potential as innovative Trop2-targeted therapeutics.
Collapse
Affiliation(s)
- Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Jian Lu
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Hanzhong Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Camarda F, Paderno M, Cannizzaro MC, Nero C, Sabatucci I, Fucà G, Musacchio L, Salutari V, Scambia G, Lorusso D. Antibody drug conjugates in recurrent or metastatic cervical cancer: a focus on tisotumab vedotin state of art. Ther Adv Med Oncol 2024; 16:17588359241277647. [PMID: 39323928 PMCID: PMC11423367 DOI: 10.1177/17588359241277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/27/2024] Open
Abstract
Cervical cancer (CC) is still characterized by a poor prognosis despite the progress made in its treatment in recent years. Although immunotherapy has improved outcomes for advanced/recurrent disease, there is a significant gap in addressing patients' needs when they progress after platinum and immunotherapy treatments. In this setting, traditional chemotherapy showed limited effectiveness. In this context, antibody-drug conjugates (ADCs) emerged as a promising tool within targeted cancer therapies. Tisotumab vedotin (TV), an ADC targeting tissue factor, represents the first ADC approved by the US Food and Drug Administration for the treatment of recurrent or metastatic CC with disease progression on or after chemotherapy. In phase I-III published trials, TV has already demonstrated an advantage in terms of objective response rate (17.8%-54.4%) and progression-free survival (3.1-6.9 months) in patients who progressed to the first-line standard therapy. Data concerning the addition of TV to platinum/pembrolizumab first-line chemotherapy are still under analysis and strongly expected. However, several questions are still unresolved: (1) the identification of the most suitable timing for ADCs administration in the treatment sequence of advanced/recurrent CC; (2) the evaluation of combination therapies as a tool to minimize the emergence of resistant clones and to enhance overall effectiveness; and (3) the assessment of tolerability and correct management of special toxicities (e.g. ocular and neurological adverse events). In the near future, an improvement in patient selection via biomarker-driven strategies should be crucial for optimizing both treatment benefits and maintaining an acceptable toxicity profile.
Collapse
Affiliation(s)
- Floriana Camarda
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Maria Chiara Cannizzaro
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camilla Nero
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart-Campus of Rome, Rome, Italy
| | - Ilaria Sabatucci
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Giovanni Fucà
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Lucia Musacchio
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vanda Salutari
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart-Campus of Rome, Rome, Italy
| | - Domenica Lorusso
- Faculty of Medicine and Surgery, Humanitas University, Milan, Italy
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava, 31, 20159 Milan, Italy
| |
Collapse
|
11
|
Tonni E, Oltrecolli M, Pirola M, Tchawa C, Roccabruna S, D'Agostino E, Matranga R, Piombino C, Pipitone S, Baldessari C, Bacchelli F, Dominici M, Sabbatini R, Vitale MG. New Advances in Metastatic Urothelial Cancer: A Narrative Review on Recent Developments and Future Perspectives. Int J Mol Sci 2024; 25:9696. [PMID: 39273642 PMCID: PMC11395814 DOI: 10.3390/ijms25179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The standard of care for advanced or metastatic urothelial carcinoma (mUC) was historically identified with platinum-based chemotherapy. Thanks to the advances in biological and genetic knowledge and technologies, new therapeutic agents have emerged in this setting recently: the immune checkpoint inhibitors and the fibroblast growth factor receptor inhibitors as the target therapy for patients harboring alterations in the fibroblast growth factor receptor (FGFR) pathway. However, chasing a tumor's tendency to recur and progress, a new class of agents has more recently entered the scene, with promising results. Antibody-drug conjugates (ADCs) are in fact the latest addition, with enfortumab vedotin being the first to receive accelerated approval by the U.S. Food and Drug Administration in December 2019, followed by sacituzumab govitecan. Many other ADCs are still under investigation. ADCs undoubtedly represent the new frontier, with the potential of transforming the management of mUC treatment in the future. Therefore, we reviewed the landscape of mUC treatment options, giving an insight into the molecular basis and mechanisms, and evaluating new therapeutic strategies in the perspective of more and more personalized treatments.
Collapse
Affiliation(s)
- Elena Tonni
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marta Pirola
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cyrielle Tchawa
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Sara Roccabruna
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Elisa D'Agostino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Rossana Matranga
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Francesca Bacchelli
- Clinical Trials Office, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
12
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Foersch S, Schmitt M, Litmeyer A, Tschurtschenthaler M, Gress T, Bartsch DK, Pfarr N, Steiger K, Denkert C, Jesinghaus M. TROP2 in colorectal carcinoma: associations with histopathology, molecular phenotype, and patient prognosis. J Pathol Clin Res 2024; 10:e12394. [PMID: 39177576 PMCID: PMC11342791 DOI: 10.1002/2056-4538.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Antibody-drug conjugates (ADCs) directed to trophoblast cell surface antigen 2 (TROP2) have gained approval as a therapeutic option for advanced triple-negative breast cancer, and TROP2 expression has been linked to unfavourable outcomes in various malignancies. In colorectal carcinoma (CRC), there is still a lack of comprehensive studies on its expression frequency and its prognostic implications in relation to the main clinicopathological parameters. We examined the expression of TROP2 in a large cohort of 1,052 CRC cases and correlated our findings with histopathological and molecular parameters, tumour stage, and patient outcomes. TROP2 was heterogeneously expressed in 214/1,052 CRCs (20.3%), with only a fraction of strongly positive tumours. TROP2 expression significantly correlated with an invasive histological phenotype (e.g. increased tumour budding/aggressive histopathological subtypes), advanced tumour stage, microsatellite stable tumours, and p53 alterations. While TROP2 expression was prognostic in univariable analyses of the overall cohort (e.g. for disease-free survival, p < 0.001), it exhibited distinct variations among important clinicopathological subgroups (e.g. right- versus left-sided CRC, microsatellite stable versus unstable CRC, Union for International Cancer Control [UICC] stages) and lost its significance in multivariable analyses that included stage and CRC histopathology. In summary, TROP2 is quite frequently expressed in CRC and associated with an aggressive histopathological phenotype and microsatellite stable tumours. Future clinical trials investigating anti-TROP2 ADCs should acknowledge the observed intratumoural heterogeneity, given that only a subset of TROP2-expressing CRC show strong positivity. The prognostic implications of TROP2 are complex and show substantial variations across crucial clinicopathological subgroups, thus indicating that TROP2 is a suboptimal parameter to predict patient prognosis.
Collapse
Affiliation(s)
| | - Maxime Schmitt
- Institute of PathologyPhilipps‐University Marburg und University Hospital MarburgMarburgGermany
| | - Anne‐Sophie Litmeyer
- Institute of PathologyPhilipps‐University Marburg und University Hospital MarburgMarburgGermany
| | - Markus Tschurtschenthaler
- Internal Medicine II, Klinikum rechts der IsarTechnical University MunichMunichGermany
- Institute for Translational Cancer Research, German Cancer Consortium (DKTK), Partner Site MunichMunichGermany
| | - Thomas Gress
- Department of Gastroenterology, Endocrinology and Infectious DiseasesPhilipps‐University Marburg and University Hospital MarburgMarburgGermany
| | - Detlef K Bartsch
- Department of SurgeryPhilipps‐University Marburg and University Hospital MarburgMarburgGermany
| | - Nicole Pfarr
- Institute of PathologyTechnical University of MunichMunichGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of MunichMunichGermany
| | - Carsten Denkert
- Institute of PathologyPhilipps‐University Marburg und University Hospital MarburgMarburgGermany
| | - Moritz Jesinghaus
- Institute of PathologyPhilipps‐University Marburg und University Hospital MarburgMarburgGermany
- Institute of PathologyTechnical University of MunichMunichGermany
| |
Collapse
|
14
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
15
|
Hu Y, Zhu Y, Qi D, Tang C, Zhang W. Trop2-targeted therapy in breast cancer. Biomark Res 2024; 12:82. [PMID: 39135109 PMCID: PMC11321197 DOI: 10.1186/s40364-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Human trophoblastic cell surface antigen 2 (Trop2) is a glycoprotein, a cellular marker of trophoblastic and stem cells, and a calcium signaling transducer involved in several signaling pathways, leading to the proliferation, invasion, and metastasis of tumors. It is expressed at a low level in normal epithelial cells, but at a high level in many tumors, making it an ideal target for cancer therapy. According to previous literature, Trop2 is broadly expressed in all breast cancer subtypes, especially in triple negative breast cancer (TNBC). Several clinical trials have demonstrated the effectiveness of Trop2-targeted therapy in breast cancer. Sacituzumab govitecan (SG) is a Trop2-targeted antibody-drug conjugate (ADC) that has been approved for the treatment of metastatic TNBC and hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer. This article reviews the structure and function of Trop2, several major Trop2-targeted ADCs, other appealing novel Trop2-targeted agents and relevant clinical trials to provide a landscape of how Trop2-targeted treatments will develop in the future.
Collapse
Affiliation(s)
- Yixuan Hu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dan Qi
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
16
|
Huang W, Zhang Y, Cao M, Wu Y, Jiao F, Chu Z, Zhou X, Li L, Xu D, Pan X, Guan Y, Huang G, Liu J, Xie F, Wei W. ImmunoPET imaging of Trop2 in patients with solid tumours. EMBO Mol Med 2024; 16:1143-1161. [PMID: 38565806 PMCID: PMC11099157 DOI: 10.1038/s44321-024-00059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Jiao
- Department of Oncology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Chu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinyuan Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Dongsheng Xu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
17
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
18
|
Keskinkilic M, Sacks R. Antibody-Drug Conjugates in Triple Negative Breast Cancer. Clin Breast Cancer 2024; 24:163-174. [PMID: 38341370 DOI: 10.1016/j.clbc.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Triple negative breast cancer (TNBC) accounts for 15%-20% of all breast cancer. It is a heterogeneous breast cancer subtype with a poor prognosis. Given these negative features, there is a need for new treatment options beyond conventional chemotherapy in both the early stage and palliative setting. Impressive results have been reported with antibody-drug conjugates (ADCs) that link a cytotoxic payload to a monoclonal antibody, such as sacituzumab govitecan and trastuzumab deruxtecan, in the metastatic stage. The focus of this review is to discuss completed and ongoing trials involving ADCs in TNBC.
Collapse
Affiliation(s)
- Merve Keskinkilic
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ruth Sacks
- Winship Cancer Institute, Emory University, Atlanta GA.
| |
Collapse
|
19
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Grant MJ, Stockhammer P, Austin MR, Nemeth Z, Petrylak DP. Efficacy of Antibody Drug Conjugates Alone and in Combination with other Agents in Metastatic Urothelial Carcinoma: A Scoping Review. Bladder Cancer 2024; 10:9-23. [PMID: 38993528 PMCID: PMC11181835 DOI: 10.3233/blc-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Antibody drug conjugates represent a promising class of antineoplastic agents comprised of a monoclonal antibody linked to a potent cytotoxic payload for targeted delivery of chemotherapy to tumors. Various antibody drug conjugates have demonstrated impressive efficacy in patients with metastatic urothelial carcinoma in clinical trials, leading to two FDA approved therapies and several other agents and combinations in clinical development. MATERIALS AND METHODS A comprehensive systematic review was undertaken utilizing the principles of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Queried databases included Ovid MEDLINE, Ovid Embase, Web of Science Core Collection and Cochrane CENTRAL Trials. The search sought to identify prospective therapeutic clinical trials in humans with metastatic urothelial carcinoma with a single-arm or randomized controlled trial design investigating antibody drug conjugate-containing regimens. RESULTS The literature search yielded 4,929 non-duplicated articles, of which 30 manuscripts and conference abstracts were included, which derived from 15 clinical trials including 19 separate cohorts with efficacy outcome results. Eleven trials investigated ADC monotherapy, while two investigated combination regimens, and the remaining two studies were mixed. Five unique ADC targets were represented including Nectin-4, Trop-2, HER2, Tissue Factor, and SLITRK6. Twelve clinical trial cohorts required prior treatment (63%). Objective response rate was reported for all studies and ranged from 27-52% for ADC monotherapies and 34-75% for ADC plus anti-PD-1 agents. Time to event outcome reporting was highly variable. CONCLUSION In addition to enfortumab vedotin and sacituzumab govitecan, various HER2-targeted antibody drug conjugates and ADC-anti-PD-1 combination regimens have demonstrated efficacy in clinical trials and are poised for clinical advancement.
Collapse
Affiliation(s)
- Michael J. Grant
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Paul Stockhammer
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew R. Austin
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Zsuzsanna Nemeth
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Daniel P. Petrylak
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Sawada A, Ohira M, Hatanaka KC, Matsui H, Ichikawa N, Yoshida T, Fukai M, Matsuno Y, Homma S, Hatanaka Y, Taketomi A. Expression Analysis of Early Metastatic Seeding of Colorectal Cancer. Ann Surg Oncol 2024; 31:2101-2113. [PMID: 38063988 DOI: 10.1245/s10434-023-14714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Distant metastasis is the leading cause of death in patients with colorectal cancer (CRC). Tumor dissemination for metastasis formation occurs in advanced cancers and also during early stages of tumorigenesis. Here, we investigated the genes involved in early metastatic seeding of CRC using gene expression analysis. PATIENTS AND METHODS We performed a cDNA microarray using specimens resected from stages I-II CRC with and without metachronous metastatic recurrence. For the candidate genes, we immunohistochemically validated protein expression using a tissue microarray of stages I-III CRC. RESULTS The expression of TROP2, VWCE, and BMP7 was upregulated in the recurrence group rather than in the non-recurrence group. Protein expression analysis revealed significant association of these genes with distant metastatic recurrence. The specimens with high expression of BMP7 showed worse recurrence-free survival (RFS; p = 0.02). Those with high expression of TROP2 and VWCE showed worse overall survival (OS) and RFS (TROP2: p = 0.01 and p = 0.03; VWCE: p < 0.05 and p < 0.001, respectively). In the multivariate analysis, high expression of VWCE and BMP7 was an independent predictor of recurrence [VWCE: hazard ratio (HR) 3.41, p < 0.001; BMP7: HR 2.93, p = 0.005]. In contrast, TROP2 was an independent prognostic factor for OS (HR 4.58, p = 0.03). CONCLUSIONS Gene expression analysis revealed that TROP2, VWCE, and BMP7 were involved in early metastatic seeding. The high expression of these genes may warrant careful surveillance or adjuvant therapy, even in stages I-II CRC cases.
Collapse
Affiliation(s)
- Akifumi Sawada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Ohira
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroki Matsui
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuki Ichikawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadashi Yoshida
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
22
|
Bessede A, Peyraud F, Besse B, Cousin S, Cabart M, Chomy F, Rey C, Lara O, Odin O, Nafia I, Vanhersecke L, Barlesi F, Guégan JP, Italiano A. TROP2 Is Associated with Primary Resistance to Immune Checkpoint Inhibition in Patients with Advanced Non-Small Cell Lung Cancer. Clin Cancer Res 2024; 30:779-785. [PMID: 38048058 PMCID: PMC10870116 DOI: 10.1158/1078-0432.ccr-23-2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Mechanisms of primary resistance to inhibitors of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis in non-small cell lung cancer (NSCLC) are still poorly understood. While some studies suggest the involvement of trophoblast cell surface antigen 2 (TROP2) in modulating tumor cell resistance to therapeutic drugs, its specific role in the context of PD-1/PD-L1 axis blockade is not definitively established. EXPERIMENTAL DESIGN We performed high-throughput analysis of transcriptomic data from 891 NSCLC tumors from patients treated with either the PD-L1 inhibitor atezolizumab or chemotherapy in two large randomized clinical trials. To confirm our results at the protein level, we complemented this transcriptional approach by performing a multiplex immunofluorescence analysis of tumor tissue samples as well as a proteomic profiling of plasma. RESULTS We observed a significant association of TROP2 overexpression with worse progression-free survival and overall survival on PD-L1 blockade, independent of other prognostic factors. Importantly, we found increased TROP2 expression to be predictive of survival in patients treated with atezolizumab but not chemotherapy. TROP2 overexpression was associated with decreased T-cell infiltration. We confirmed these results at the proteomic level both on tumor tissue and in plasma. CONCLUSIONS Our results suggest an important contribution of TROP2 expression to the primary resistance to PD-L1 blockade in NSCLC. TROP2-biomarker-based strategy may be relevant in selecting patients with NSCLC who are more likely to benefit from a combination of immunotherapy and an anti-TROP2 agent.
Collapse
Affiliation(s)
| | - Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France
- Faculty of Medicine, Bordeaux, France
- DITEP, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Medicine, Gustave Roussy, Villejuif, France
| | - Sophie Cousin
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | - François Chomy
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | | | | | | | | | | | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France
- Faculty of Medicine, Bordeaux, France
- DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
23
|
Shi M, Li Z, Wang T, Wang M, Liu Z, Zhao F, Ren D, Zhao J. Third-line Treatment for Metastatic Triple-negative Breast Cancer: A Systematic Review and Network Meta-analysis. Am J Clin Oncol 2024; 47:91-98. [PMID: 38108387 DOI: 10.1097/coc.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Metastatic triple-negative breast cancer (mTNBC) is an invasive histologic subtype with a poor prognosis and rapid progression. Currently, there is no standard therapy for the third-line treatment of mTNBC. In this study, we conducted a network meta-analysis to compare regimens and determine treatment outcomes. METHODS We performed a systematic search of PubMed, EMBASE, the Cochrane Central Register of Controlled Bases, and the minutes of major conferences. Progression-free survival, overall survival, and objective response rate were analyzed through network meta-analysis using the R software (R Core Team). The efficacy of the treatment regimens was compared using hazard ratios, odds ratios, and 95% CIs. RESULTS We evaluated 15 randomized controlled trials involving 6,010 patients. Compared with the physician's choice treatment, sacituzumab govitecan showed significant advantages in progression-free survival and overall survival, with hazard ratio values of 0.41 (95% CI: 0.32-0.52) and 0.48 (95% CI, 0.39-0.60). In terms of objective response rate, sacituzumab govitecan is the best-performing therapy (odds ratio: 10.82; 95% CI: 5.58-20.97). Adverse events among grades 3 to 5 adverse reactions, the incidence of neutropenia and leukopenia in each regimen was higher, whereas the incidence of fever, headache, hypertension, and rash was lower. CONCLUSION Compared with the treatment of the physician's choice, sacituzumab govitecan appears more efficacious and is the preferred third-line treatment for mTNBC.
Collapse
Affiliation(s)
- Mingqiang Shi
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
25
|
Xu C, Zhu M, Wang Q, Cui J, Huang Y, Huang X, Huang J, Gai J, Li G, Qiao P, Zeng X, Ju D, Wan Y, Zhang X. TROP2-directed nanobody-drug conjugate elicited potent antitumor effect in pancreatic cancer. J Nanobiotechnology 2023; 21:410. [PMID: 37932752 PMCID: PMC10629078 DOI: 10.1186/s12951-023-02183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive malignancy with limited treatment options and a poor prognosis. Trophoblast cell surface antigen 2 (TROP2), a cell surface antigen overexpressed in the tumors of more than half of pancreatic cancer patients, has been identified as a potential target for antibody-drug conjugates (ADCs). Almost all reported TROP2-targeted ADCs are of the IgG type and have been poorly studied in pancreatic cancer. Here, we aimed to develop a novel nanobody-drug conjugate (NDC) targeting TROP2 for the treatment of pancreatic cancer. RESULTS In this study, we developed a novel TROP2-targeted NDC, HuNbTROP2-HSA-MMAE, for the treatment of TROP2-positive pancreatic cancer. HuNbTROP2-HSA-MMAE is characterized by the use of nanobodies against TROP2 and human serum albumin (HSA) and has a drug-antibody ratio of 1. HuNbTROP2-HSA-MMAE exhibited specific binding to TROP2 and was internalized into tumor cells with high endocytosis efficiency within 5 h, followed by intracellular translocation to lysosomes and release of MMAE to induce cell apoptosis in TROP2-positive pancreatic cancer cells through the caspase-3/9 pathway. In a xenograft model of pancreatic cancer, doses of 0.2 mg/kg and 1 mg/kg HuNbTROP2-HSA-MMAE demonstrated significant antitumor effects, and a dose of 5 mg/kg even eradicated the tumor. CONCLUSION HuNbTROP2-HSA-MMAE has desirable affinity, internalization efficiency and antitumor activity. It holds significant promise as a potential therapeutic option for the treatment of TROP2-positive pancreatic cancer.
Collapse
Affiliation(s)
- Caili Xu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Qian Wang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiajun Cui
- Tanwei College, Tsinghua University, Beijing, 100084, China
| | - Yuping Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Xiting Huang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jing Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Peng Qiao
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Xian Zeng
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China.
| | - Xuyao Zhang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
26
|
Coelho RC, Ruppenthal RD, Graudenz MS. Trop-2 Is Highly Expressed in Early Luminal-Like Breast Cancer. J Histochem Cytochem 2023; 71:529-535. [PMID: 37675806 PMCID: PMC10546983 DOI: 10.1369/00221554231195659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
Trop-2, a transmembrane glycoprotein, has been identified in human epithelial cells as a contributor to tumor growth and unfavorable prognosis in breast cancer (BC). Our study aimed to assess the expression of Trop-2 protein via immunohistochemistry (IHC) and correlate it with clinicopathological features in early luminal-like BC. We conducted a cross-sectional study evaluating Trop-2 protein expression in tissue microarrays using IHC. The expression was evaluated by the H-score and the following categorization was used: H-Score 0 to <100 as low, H-Score 100 to 200 as intermediate, and H-Score >200 to 300 as high. The study included 84 patients with a median age of 57, of whom 70% had invasive ductal carcinomas, 75% were classified as T2, and 47.6% had no affected lymph nodes. Trop-2 expression was high in 56% of patients and intermediate in 38%. None of the patients had an H-Score of zero. No correlation was observed between Trop-2 expression and clinicopathological features, including age, histological subtype, grade, Ki67, tumor size, nodal status, lymphovascular invasion, tumor subtype, and pathological staging. We demonstrated that Trop-2 is highly expressed in early luminal-like BC and is not influenced by clinicopathological features.
Collapse
Affiliation(s)
- Rafael C. Coelho
- Postgraduate Program in Medical Sciences (PPGCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rubia D. Ruppenthal
- Department of Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Pathology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Marcia S. Graudenz
- Postgraduate Program in Medical Sciences (PPGCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Pathology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
27
|
Liatsou E, Schizas D, Frountzas M. The Impact of Trophoblast Cell-Surface Antigen 2 Expression on the Survival of Patients with Gastrointestinal Tumors: A Systematic Review. J Pers Med 2023; 13:1445. [PMID: 37888056 PMCID: PMC10608046 DOI: 10.3390/jpm13101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Trophoblast cell-surface antigen 2 (TROP-2) is a transmembrane glycoprotein expressed in epithelial cells that has been associated with malignant progression in most carcinomas. Accordingly, the genetic complexity of gastrointestinal tumors necessitates the investigation of new biomarkers with potential prognostic value. The aim of this systematic review is to assess the effect of TROP-2 on the overall survival of patients who underwent surgery for gastrointestinal malignancy. METHODS The present systematic review was designed using the PRISMA and AMSTAR guidelines. We searched the Pubmed, EMBASE and CENTRAL databases from their inception to September 2023. RESULTS Ten studies that enrolled 2293 patients were included for qualitative analysis. Six studies evaluated patients with colorectal cancer, two studies included patients with gastric carcinoma, patients with pancreatic cancer were included in one study and one study included hepatobiliary cancer patients. TROP-2 was positive in 1005/2293 samples of the immunohistochemically evaluated biopsies and was associated with poor overall survival in all studies. High intensity was also associated with more aggressive histopathological characteristics, such us deep tissue invasion, lymph node metastasis and cell atypia. The prognostic value of TROP-2 was shown to be enhanced in patients with advanced disease and poor histological differentiation. CONCLUSION TROP-2 was expressed at high levels in gastrointestinal tumors, which was associated with both tumor development and pathological aggressiveness. Therefore, TROP-2 could be used as a biomarker to determine clinical prognosis and as a potential therapeutic target in malignancies of the gastrointestinal tract, but further studies need to validate it.
Collapse
Affiliation(s)
- Efstathia Liatsou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, School of Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, School of Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
28
|
Upadhyay SS, Devasahayam Arokia Balaya R, Parate SS, Dagamajalu S, Keshava Prasad TS, Shetty R, Raju R. An assembly of TROP2-mediated signaling events. J Cell Commun Signal 2023; 17:1105-1111. [PMID: 37014471 PMCID: PMC10409939 DOI: 10.1007/s12079-023-00742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and β-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.
Collapse
Affiliation(s)
- Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | | | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
29
|
Zhang Y, Wang H, Overman M, Katz MH, Wang H. Prognostic significance of trophoblastic cell surface antigen 2 expression and pathologic parameters in patients with ampullary adenocarcinoma. Hum Pathol 2023; 139:117-125. [PMID: 37516386 DOI: 10.1016/j.humpath.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Trophoblastic cell surface antigen 2 (TROP2) has been reported to be up-regulated in several types of carcinomas and is associated with aggressive behavior and poor survival. However, TROP2 expression and its clinical significance in ampullary adenocarcinoma (AA) have not been investigated. We examined TROP2 expression by immunohistochemistry in 112 patients with AAs. The associations of TROP2 expression with clinicopathologic characteristics were evaluated by χ2 analyses or Fisher's exact tests. The associations of TROP2 expression and pathologic parameters with survival were evaluated by the Kaplan-Meier method and univariate and multivariate Cox regression analyses. Eighty-six AAs (76.8%) were positive for TROP2, which showed a membranous and cytoplasmic staining. TROP2 expression was associated with higher frequency (P = .04) and higher number (P = .03) of lymph node metastasis, higher pN stage (P = .03), less frequent adenoma (P = .04), and higher frequency of recurrence/metastasis (P = .004). TROP2 expression was associated with shorter disease-free survival (P = .02) and overall survival (P = .03). TROP2 expression was an independent prognostic factor for disease-free survival (P = .04). We demonstrated that TROP2 was expressed in 76.8% of AAs. TROP2 expression was associated with higher frequency and high number of lymph node metastasis and higher pN stage. More importantly, TROP2 expression was associated with higher frequency of recurrence/metastasis, shorter disease-free and overall survival and was an independent prognostic factor for disease-free survival. Our results suggest that TROP2 may be used both as a prognostic marker and as a therapeutic target for patients with AAs.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew Hg Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Zhao M, DiPeri TP, Raso MG, Zheng X, Rizvi YQ, Evans KW, Yang F, Akcakanat A, Roberto Estecio M, Tripathy D, Dumbrava EE, Damodaran S, Meric-Bernstam F. Epigenetically upregulating TROP2 and SLFN11 enhances therapeutic efficacy of TROP2 antibody drug conjugate sacitizumab govitecan. NPJ Breast Cancer 2023; 9:66. [PMID: 37567892 PMCID: PMC10421911 DOI: 10.1038/s41523-023-00573-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab govitecan (SG). Demethylating agent decitabine decreases DNA methyltransferase expression and TROP2 promoter methylation and subsequently increases TROP2 expression. Decitabine treatment as well as overexpression of TROP2 significantly enhance SG antitumor activity. Decitabine also increases SLFN11, a biomarker of topoisomerase 1 inhibitor (TOP1) sensitivity and is synergistic with SG which has a TOP1 payload, in TROP2-expressing SLFN11-low BC cells. In conclusion, TROP2 and SLFN11 expression can be epigenetically modulated and the combination of demethylating agent decitabine with TROP2 ADCs may represent a novel therapeutic approach for tumors with low TROP2 or SLFN11 expression.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P DiPeri
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yasmeen Qamar Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Roberto Estecio
- Department of Epigenetic and Molecular Carcinogenesis, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Chen C, Chao Y, Zhang C, Hu W, Huang Y, Lv Y, Liu B, Ji D, Liu M, Yang B, Jiang L, Liang Y, Zhang H, Yuan G, Ying X, Ji W. TROP2 translation mediated by dual m 6A/m 7G RNA modifications promotes bladder cancer development. Cancer Lett 2023; 566:216246. [PMID: 37268280 DOI: 10.1016/j.canlet.2023.216246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
RNA modifications, including adenine methylation (m6A) of mRNA and guanine methylation (m7G) of tRNA, are crucial for the biological function of RNA. However, the mechanism underlying the translation of specific genes synergistically mediated by dual m6A/m7G RNA modifications in bladder cancer (BCa) remains unclear. We demonstrated that m6A methyltransferase METTL3-mediated programmable m6A modification of oncogene trophoblast cell surface protein 2 (TROP2) mRNA promoted its translation during malignant transformation of bladder epithelial cells. m7G methyltransferase METTL1 enhanced TROP2 translation by mediating m7G modification of certain tRNAs. TROP2 protein inhibition decreased the proliferation and invasion of BCa cells in vitro and in vivo. Moreover, synergistical knockout of METTL3/METTL1 inhibited BCa cell proliferation, migration, and invasion; however, TROP2 overexpression partially abrogated its effect. Furthermore, TROP2 expression was significantly positively correlated with the expression levels of METTL3 and METTL1 in BCa patients. Overall, our results revealed that METTL3/METTL1-mediated dual m6A/m7G RNA modifications enhanced TROP2 translation and promoted BCa development, indicating a novel RNA epigenetic mechanism in BCa.
Collapse
Affiliation(s)
- Cong Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengcheng Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenyu Hu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yifan Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Bixia Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baotong Yang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Lujing Jiang
- Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Yuan
- Private Medical Service & Healthcare Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Belluomini L, Avancini A, Sposito M, Milella M, Rossi A, Pilotto S. Antibody-drug conjugates (ADCs) targeting TROP-2 in lung cancer. Expert Opin Biol Ther 2023; 23:1077-1087. [PMID: 36995069 DOI: 10.1080/14712598.2023.2198087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION The advent of antibody-drug conjugates (ADCs) represents a renewed strategy in the era of precision oncology. Several epithelial tumors harbor overexpression of the trophoblast cell-surface antigen 2 (TROP-2), which represents a predictor of poor prognosis and a promising target for anticancer therapy. AREAS COVERED In this review, we aim to collect the available preclinical and clinical data regarding anti-TROP-2 ADCs in lung cancer obtained through extensive literature research and screening of the available abstract/posters presented at recent meetings. EXPERT OPINION Anti-TROP-2 ADCs represent an innovative upcoming weapon against both non-small cell lung cancer and small cell lung cancer subtypes, pending the results of several ongoing trials. The proper combination and placement of this agent throughout the lung cancer treatment pathway, the identification of potentially predictive biomarkers of benefit, as well as the optimal management and impact of peculiar toxicity (i.e. interstitial lung disease) are the next questions to be answered.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, Milan, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
33
|
Qiu S, Zhang J, Wang Z, Lan H, Hou J, Zhang N, Wang X, Lu H. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim Biophys Acta Rev Cancer 2023; 1878:188902. [PMID: 37121444 DOI: 10.1016/j.bbcan.2023.188902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The development of new antitumor drugs depends mainly upon targeting tumor cells precisely. Trophoblast surface antigen 2 (Trop-2) is a type I transmembrane glycoprotein involved in Ca2+ signaling in tumor cells. It is highly expressed in various tumor tissues than in normal tissues and represents a novel and promising molecular target for caner targeted therapy. Up to now, the mechanisms and functions associated with Trop-2 have been extensively studied in a variety of solid tumors. According to these findings, Trop-2 plays an important role in cell proliferation, apoptosis, cell adhesion, epithelial-mesenchymal transition, as well as tumorigenesis and tumor progression. In addition, Trop-2 related drugs are also being developed widely. There are a number of Trop-2 related ADC drugs that have demonstrated potent antitumor activity and are currently been studied, such as Sacituzumab Govitecan (SG) and Datopotamab Deruxtecan (Dato-Dxd). In this study, we reviewed the progress of Trop-2 research in solid tumors. We also sorted out the composition and rationale of Trop-2 related drugs and summarized the related clinical trials. Finally, we discussed the current status of Trop-2 research and expanded our perspectives on its future research directions. Importantly, we found that Trop-2 targeted ADCs have great potential for combination with other antitumor therapies. Trop-2 targeted ADCs can reprogramme tumor microenvironment through multiple signaling pathways, ultimately activating antitumor immunity.
Collapse
Affiliation(s)
- Shuying Qiu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hui Lan
- Department of Medical Oncology, Affiliated Lishui Hospital of Zhejiang University/Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Jili Hou
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| | - Nan Zhang
- Department of Medical Oncology, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Lombardi P, Filetti M, Falcone R, Altamura V, Paroni Sterbini F, Bria E, Fabi A, Giannarelli D, Scambia G, Daniele G. Overview of Trop-2 in Cancer: From Pre-Clinical Studies to Future Directions in Clinical Settings. Cancers (Basel) 2023; 15:1744. [PMID: 36980630 PMCID: PMC10046386 DOI: 10.3390/cancers15061744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Trophoblast cell surface antigen-2 (Trop-2) is a glycoprotein that was first described as a membrane marker of trophoblast cells and was associated with regenerative abilities. Trop-2 overexpression was also described in several tumour types. Nevertheless, the therapeutic potential of Trop-2 was widely recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. Recently, these efforts have been rewarded with the approval of sacituzumab govitecan from both the Food and Drug Administration (FDA) and European Medicines Agency (EMA), for metastatic triple-negative breast cancer patients. In our work, we briefly summarize the various characteristics of cancer cells overexpressing Trop-2, the pre-clinical activities of specific inhibitors, and the role of anti-Trop-2 therapy in current clinical practice. We also review the ongoing clinical trials to provide a snapshot of the future developments of these therapies.
Collapse
Affiliation(s)
- Pasquale Lombardi
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Filetti
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosa Falcone
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Altamura
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Universitá Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Fabi
- Precision Medicine in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
35
|
Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC. Med Oncol 2023; 40:98. [PMID: 36808012 DOI: 10.1007/s12032-023-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Oral squamous cell carcinoma (OSCC), main head and neck squamous cell carcinomas (HNSCCs), remains a global health concern with unknown pathogenesis. Veillonella parvula NCTC11810 was observed to decrease in saliva microbiome of OSCC patients in this study and the aim was to detect the novel role of Veillonella parvula NCTC11810 in regulating the biological characteristics of OSCC through TROP2/PI3K/Akt pathway. Oral microbial community changes of OSCC patients were detected by 16S rDNA gene sequencing technology. CCK8 assay, Transwell assay, and Annexin V-FITC/PI staining were used for proliferation, invasion, and apoptosis analysis of OSCC cell lines. Expression of proteins were determined by Western blotting analysis. Veillonella parvula NCTC11810 showed decreased in saliva microbiome of TROP2 high-expressed OSCC patients. Culture supernatant of Veillonella parvula NCTC11810 promoted the apoptosis and inhibited the proliferation and invasion ability of HN6 cells, while sodium propionate (SP), the main metabolite of Veillonella parvula NCTC11810, played a similar role through the inhibition of TROP2/PI3K/Akt pathway. Studies above supported the proliferation-inhibiting, invasion-inhibiting, and apoptosis-promoting function of Veillonella parvula NCTC11810 in OSCC cells which provided new insights into oral microbiota and their metabolite as a therapeutic method for OSCC patients with TROP2 high expressing.
Collapse
|
36
|
Fenton SE, VanderWeele DJ. Antibody-drug conjugates and predictive biomarkers in advanced urothelial carcinoma. Front Oncol 2023; 12:1069356. [PMID: 36686762 PMCID: PMC9846350 DOI: 10.3389/fonc.2022.1069356] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The use of antibody-drug conjugates (ADCs) is expanding in several malignancies, including urothelial carcinoma where two of these medications have been approved for use and several others remain under study. ADCs act by binding to specific cell surface proteins, delivering anticancer agents directly to the target cells. Preclinical studies suggest that loss of these surface proteins alters sensitivity to therapy and expression of target proteins vary significantly based on the tumor subtype, prior therapies and other characteristics. However, use of biomarkers to predict treatment response have not been regularly included in clinical trials and clinician practice. In this review we summarize what is known about potential predictive biomarkers for ADCs in UC and discuss potential areas where use of biomarkers may improve patient care.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
37
|
Fontes MS, Vargas Pivato de Almeida D, Cavalin C, Tagawa ST. Targeted Therapy for Locally Advanced or Metastatic Urothelial Cancer (mUC): Therapeutic Potential of Sacituzumab Govitecan. Onco Targets Ther 2022; 15:1531-1542. [PMID: 36575731 PMCID: PMC9790156 DOI: 10.2147/ott.s339348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Urothelial carcinoma is the second most frequent genitourinary malignancy. Despite the poor prognosis, new treatment options have emerged and have expanded the therapeutic landscape for the disease. Although major improvements have been achieved, many patients experience rapid disease progression and low responses in subsequent lines of therapy. Sacituzumab govitecan is an ADC that targets Trop-2, which is highly expressed in urothelial cancers. Promising results in early clinical trials have led to further drug development which confirmed encouraging efficacy. Sacituzumab govitecan has been given accelerated approval in 2021 for patients with locally advanced and metastatic urothelial cancer who previously received a platinum containing chemotherapy and either a programmed death receptor-1 or programmed death ligand inhibitor. The results are promising, with encouraging efficacy and safety, however responses are not universal. There is a growing comprehension of mechanisms of resistance and predictive biomarkers that are crucial to improving outcomes. In this review, we summarize the current knowledge on antibody-drug conjugates and the clinical findings that led to the approval of Sacituzumab govitecan and discuss the therapeutic potential of new combinations, mechanisms of resistance and predictive biomarkers.
Collapse
Affiliation(s)
- Mariane S Fontes
- Oncology Department, Oncoclinicas Group, Rio de Janeiro, Brazil
- LACOG, Latin American Cooperative Oncology Group, Brazil
| | | | | | | |
Collapse
|
38
|
Chen N, Michaels E, Howard F, Nanda R. The evolving therapeutic landscape of antibody-drug conjugates in breast cancer. Expert Rev Anticancer Ther 2022; 22:1325-1331. [PMID: 36408586 PMCID: PMC9833603 DOI: 10.1080/14737140.2022.2147510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a relatively new class of anti-cancer therapies approved for a number of malignancies, including breast cancer. Their unique structure, consisting of a monoclonal antibody connected via a linker to a toxic payload, combines characteristics of both targeted therapy and chemotherapy. AREAS COVERED In this review, we discuss the unique molecular structure and pharmacologic principles of ADCs and present the clinical efficacy and relevant toxicities of ADCs both approved and in development. While HER2 is the most studied target with approved agents for both HER2-positive and HER2-low expressing tumors, novel targets in HER2-negative disease have expanded our therapeutic capabilities significantly. EXPERT OPINION ADCs are a promising, novel drug class with significant efficacy in all breast cancer subtypes. They are generally safe and well-tolerated. However, further research is necessary to improve their therapeutic potential. The development of predictive biomarkers to identify patients with greatest benefit, improved understanding of drug resistance to advance combination therapies, and novel targets are needed to further the field.
Collapse
Affiliation(s)
- Nan Chen
- Department of Internal Medicine, University of Chicago
| | | | | | - Rita Nanda
- Department of Internal Medicine, University of Chicago
| |
Collapse
|
39
|
Wen Y, Ouyang D, Zou Q, Chen Q, Luo N, He H, Anwar M, Yi W. A literature review of the promising future of TROP2: a potential drug therapy target. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1403. [PMID: 36660684 PMCID: PMC9843409 DOI: 10.21037/atm-22-5976] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Previous studies have demonstrated that the oncogene trophoblast cell surface antigen 2 (TROP2) has great application prospects as a therapeutic target. However, few literature reviews have systematically summarized and evaluated its role in cancer therapy. This study aims to summarize the molecular structure, functions, signal transduction pathways, and prognostic value of TROP2, and explore therapeutic agents that target TROP2. Methods A total of 1,376 published literatures from PubMed and 614 published literatures from EMBASE were retrieved by searching "TROP2" or "Trophoblast cell surface antigen 2". The search was conducted on December 12, 2020, and updated on November 20, 2022. The cBioportal and GEPIA (Gene Expression Profiling Interactive Analysis) databases were used to analyze the expression, mutation, and prognostic value of TROP2 in different types of cancer. Key Content and Findings TROP2 is overexpressed in different tumor tissues and plays roles in cell proliferation, invasion, migration, apoptosis, and treatment resistance by binding to or interacting with several molecules. As a therapeutic target, TROP2 is particularly suitable for antibody-based therapies. Monoclonal antibodies, bispecific antibodies, antibody-drug conjugates (ADCs), virus-like particles, and antibody drugs in combination with traditional chemotherapy, immunotherapy, radioimmunotherapy, photoimmunotherapy, and nanoparticles that target TROP2 have thus far been rapidly developed. For example, sacituzumab govitecan (IMMU-132), a TROP2-targeting ADC, was granted accelerated approval for the treatment of metastatic triple-negative breast cancer (TNBC). Anti-TROP2 antibody-conjugated nanoparticles (ST-NPs) are a promising vehicle for delivering doxorubicin in targeted TNBC therapy. Conclusions The availability of TROP2-targeting ADCs makes TROP2 an accessible and promising therapeutic target for advanced metastatic cancers. The present review describes the important role of TROP2 in tumorigenesis and its potential applications as a promising biomarker and therapeutic target that is capable of reversing resistance.
Collapse
Affiliation(s)
- Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongye He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Munawar Anwar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Sakach E, Sacks R, Kalinsky K. Trop-2 as a Therapeutic Target in Breast Cancer. Cancers (Basel) 2022; 14:5936. [PMID: 36497418 PMCID: PMC9735829 DOI: 10.3390/cancers14235936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The emergence of Trop-2 as a therapeutic target has given rise to new treatment paradigms for the treatment of patients with advanced and metastatic breast cancer. Trop-2 is most highly expressed in triple negative breast cancer (TNBC), but the receptor is found across all breast cancer subtypes. With sacituzumab govitecan, the first FDA-approved, Trop-2 inhibitor, providing a survival benefit in patients with both metastatic TNBC and hormone receptor positive breast cancer, additional Trop-2 directed therapies are under investigation. Ongoing studies of combination regimens with immunotherapy, PARP inhibitors, and other targeted agents aim to further harness the effect of Trop-2 inhibition. Current investigations are also underway in the neoadjuvant and adjuvant setting to evaluate the therapeutic benefit of Trop-2 inhibition in patients with early stage disease. This review highlights the significant impact the discovery Trop-2 has had on our patients with heavily pretreated breast cancer, for whom few treatment options exist, and the future direction of novel Trop-2 targeted therapies.
Collapse
Affiliation(s)
- Elizabeth Sakach
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Serrano-López EM, Coronado-Parra T, Marín-Vicente C, Szallasi Z, Gómez-Abellán V, López-Andreo MJ, Gragera M, Gómez-Fernández JC, López-Nicolás R, Corbalán-García S. Deciphering the Role and Signaling Pathways of PKCα in Luminal A Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232214023. [PMID: 36430510 PMCID: PMC9696894 DOI: 10.3390/ijms232214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.
Collapse
Affiliation(s)
- Emilio M. Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Teresa Coronado-Parra
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Microscopy Core Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Consuelo Marín-Vicente
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Cardiovascular Proteomics and Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioinformatics, Semmelweis University, H-1092 Budapest, Hungary
| | - Victoria Gómez-Abellán
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Department of Cellular Biology and Histology, Biology School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
| | - María José López-Andreo
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Molecular Biology Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Marcos Gragera
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Centro Nacional Biotecnología, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Rubén López-Nicolás
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Department of Bromatology and Nutrition, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| |
Collapse
|
42
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang Y, Huang H, Liang B, Ming T, Wen J, Huang B, Xing D. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer. Pharmacol Ther 2022; 239:108296. [PMID: 36208791 DOI: 10.1016/j.pharmthera.2022.108296] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Trop2 is a transmembrane glycoprotein and calcium signal transducer with limited expression in normal human tissues. It is consistently overexpressed in a variety of malignant tumors and participates in several oncogenic signaling pathways that lead to tumor development, invasion, and metastasis. As a result, Trop2 has become an attractive therapeutic target in cancer treatment. The anti-Trop2 antibody-drug conjugate (Trodelvy™, sacituzumab govitecan) has been approved to treat metastatic triple-negative breast cancer. However, it is still unclear whether the success observed in Trop2-positive breast cancer could be replicated in other tumor types, owing to the differences in the expression levels and functions of Trop2 across cancer types. In this review, we summarize the recent progress on the structures and functions of Trop2 and highlight the potential diagnostic and therapeutic value of Trop2 beyond breast cancer. In addition, the promising novel Trop2-targeted agents in the clinic were discussed, which will likely alter the therapeutic landscape of Trop2-positive tumors in the future.
Collapse
Affiliation(s)
- Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Junwen Deng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Haiming Huang
- Shanghai Asia United Antibody Medical Co., Ltd, Shanghai 201203, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Binghuan Huang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
44
|
Hoppe S, Meder L, Gebauer F, Ullrich RT, Zander T, Hillmer AM, Buettner R, Plum P, Puppe J, Malter W, Quaas A. Trophoblast Cell Surface Antigen 2 (TROP2) as a Predictive Bio-Marker for the Therapeutic Efficacy of Sacituzumab Govitecan in Adenocarcinoma of the Esophagus. Cancers (Basel) 2022; 14:cancers14194789. [PMID: 36230712 PMCID: PMC9562858 DOI: 10.3390/cancers14194789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The Trophoblast cell surface antigen 2 (TROP2) is expressed in many carcinomas and may represent a target for treatment. Sacituzumab govitecan (SG) is a TROP2-directed antibody-drug conjugate (ADC). Nearly nothing is known about the biological effectiveness of SG in esophageal adenocarcinoma (EAC). MATERIAL AND METHODS We determined the TROP2 expression in nearly 600 human EAC. In addition, we used the EAC cell lines (ESO-26, OACM5.1C, and FLO-1) and a xenograft mouse model to investigate this relationship. RESULTS Of 598 human EACs analyzed, 88% showed varying degrees of TROP2 positivity. High TROP2 positive ESO-26 and low TROP2 positive OACM5.1C showed high sensitivity to SG in contrast to negative FLO-1. In vivo, the ESO-26 tumor shows a significantly better response to SG than the TROP2-negative FLO-1 tumor. ESO-26 vital tumor cells show similar TROP2 expression on all carcinoma cells as before therapy initiation, FLO-1 is persistently negative. DISCUSSION Our data suggest that sacituzumab govitecan is a new therapy option in esophageal adenocarcinoma and the TROP2 expression in irinotecan-naïve EAC correlates with the extent of treatment response by sacituzumab govitecan. TROP2 is emerging as a predictive biomarker in completely TROP2-negative tumors. This should be considered in future clinical trials.
Collapse
Affiliation(s)
- Sascha Hoppe
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Lydia Meder
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Florian Gebauer
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Roland T. Ullrich
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Thomas Zander
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Reinhard Buettner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Patrick Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Julian Puppe
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Wolfram Malter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Correspondence: ; Tel.: +49-0221-478-5257; Fax: +49-0221-478-6360
| |
Collapse
|
45
|
Jeon Y, Jo U, Hong J, Gong G, Lee HJ. Trophoblast cell-surface antigen 2 (TROP2) expression in triple-negative breast cancer. BMC Cancer 2022; 22:1014. [PMID: 36153494 PMCID: PMC9509625 DOI: 10.1186/s12885-022-10076-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Trophoblast cell-surface antigen 2 (TROP2) is related to tumor proliferation enhancement and poor prognosis. An antibody targeting TROP2 was developed to treat metastatic triple-negative breast cancer (TNBC) which has a limited treatment modality. To characterize the TROP2 expressing tumors in TNBC, we analyzed TROP2 expression in three cohorts; (1) primary tumor without neoadjuvant chemotherapy, (2) primary tumor with neoadjuvant chemotherapy, and (3) metastatic tumor. Methods A total of 807 TNBC cases were evaluated for TROP2 immunohistochemical expression. We evaluated the TROP2 H-score distribution in the three cohorts. Tumors were divided into two groups based on TROP2 expression (high vs. low). We analyzed the relationship between clinicopathologic features and markers, including epidermal growth factor receptor, cytokeratin 5/6, p53, and Ki-67, and prognostic significance at high vs. low TROP2 expression. Results There was no difference in TROP2 H-score distribution between the three cohorts. Moderate-to-strong membranous expression of TROP2 in at least 10% of tumor cells was present in 662 cases (82.0%) in Cohort 1, 59 cases (89.4%) in Cohort 2, and 23 cases (88.5%) in Cohort 3. There was no significant difference in clinicopathologic features between high vs. low TROP2 in all cohorts. TROP2 H-score was an independent poor prognostic factor for overall survival in Cohort 3. Conclusions TNBC showed similar TROP2 expression regardless of neoadjuvant treatment or primary tumor/metastasis. Although the prognostic significance of TROP2 expression in metastatic TNBC has been revealed, further evaluation of the predictive value of TROP2 expression for targeted therapy is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10076-7.
Collapse
|
46
|
Zhu H, Fang X, Tuhin IJ, Tan J, Ye J, Jia Y, Xu N, Kang L, Li M, Lou X, Zhou JE, Wang Y, Yan Z, Yu L. CAR T cells equipped with a fully human scFv targeting Trop2 can be used to treat pancreatic cancer. J Cancer Res Clin Oncol 2022; 148:2261-2274. [PMID: 35445870 DOI: 10.1007/s00432-022-04017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T cell therapy has demonstrated clinical success in treating haematologic malignancies but has not been effective against solid tumours thus far. Trop2 is a tumour-related antigen broadly overexpressed on a variety of tumours and has been reported as a promising target for pancreatic cancers. Our study aimed to determine whether CAR T cells designed with a fully human Trop2-specific single-chain fragment variable (scFv) can be used in the treatment of Trop2-positive pancreatic tumours. METHODS We designed Trop2-targeted chimeric antigen receptor engineered T cells with a novel human anti-Trop2 scFv (2F11) and then investigated the cytotoxicity, degranulation, and cytokine secretion profiles of the anti-Trop2 CAR T cells when they were exposed to Trop2 + cancer cells in vitro. We also studied the antitumour efficacy and toxicity of Trop2-specific CAR T cells in vivo using a BxPC-3 pancreatic xenograft model. RESULTS Trop2-targeted CAR T cells designed with 2F11 effectively killed Trop2-positive pancreatic cancer cells and produced high levels of cytotoxic cytokines in vitro. In addition, Trop2-targeted CAR T cells, which persistently circulate in vivo and efficiently infiltrate into tumour tissues, significantly blocked and even eliminated BxPC-3 pancreatic xenograft tumour growth without obvious deleterious effects observed after intravenous injection into NSG mice. Moreover, disease-free survival was efficiently prolonged. CONCLUSION These results show that Trop2-targeted CAR T cells equipped with a fully human anti-Trop2 scFv could be a potential treatment strategy for pancreatic cancer and could be useful for clinical evaluation.
Collapse
Affiliation(s)
- Hongjia Zhu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Xiaoyan Fang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Israth Jahan Tuhin
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Jing Ye
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Liqing Kang
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Minghao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - XiaoYan Lou
- Shanghai Unicar Therapy Biomedicine Technology Co., Ltd., Shanghai, 201612, People's Republic of China
| | - Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
47
|
Cortesi M, Zanoni M, Maltoni R, Ravaioli S, Tumedei MM, Pirini F, Bravaccini S. TROP2 (trophoblast cell-surface antigen 2): a drug target for breast cancer. Expert Opin Ther Targets 2022; 26:593-602. [PMID: 35962580 DOI: 10.1080/14728222.2022.2113513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common diagnosed cancer and the second leading cause of cancer-associated death in women, with the triple negative (TNBC) subtype being characterized by the poorest prognosis. New therapeutic targets are urgently needed to overcome the high metastatic potential, aggressiveness and poor survival of these tumors. Trop2 transmembrane glycoprotein, acting as an intracellular calcium signal transducer, recently emerged as a new potential target in epithelial cancers, in particular in breast cancer. AREAS COVERED We summarize the key features of Trop2 structure and function, describing the therapeutic strategies targeting this protein in cancer. Particular attention is paid to antibody-drug conjugates (ADCs), actually representing the most successful strategy. EXPERT OPINION ADCs targeting Trop2 recently received an accelerated FDA approval for the therapy of metastatic TNBC. The prospects for these novel ADCs in BC subtypes other than TNBC are discussed, taking into account the main pitfalls relative to Trop2 structure and function.
Collapse
Affiliation(s)
- Michela Cortesi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Maria Maddalena Tumedei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Piero Maroncelli, 40, 47014, Meldola, Italy
| |
Collapse
|
48
|
Identification and Characterization of Specific Nanobodies against Trop-2 for Tumor Targeting. Int J Mol Sci 2022; 23:ijms23147942. [PMID: 35887287 PMCID: PMC9316174 DOI: 10.3390/ijms23147942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Trophoblast cell-surface antigen 2 (Trop-2) is a tumor-associated antigen that is connected with the development of various tumors and has been identified as a promising target for tumor immunotherapy. To date, the immunotherapy against Trop-2 mainly relies on the specific targeting by monoclonal antibody in antibody-drug conjugate (ADC). Alternatively, the single domain antibodies of nanobodies (Nbs) possesses unique properties such as smaller size, better tissue penetration, etc., to make them good candidates for tumor targeting. Thus, it was proposed to develop anti-Trop-2 Nbs for tumor targeting in this study. Generally, three consecutive rounds of bio-panning were performed against immobilized recombinant Trop-2, and yielded three Nbs (Nb60, Nb65, and Nb108). The affinity of selected Nbs was determined in the nanomolar range, especially the good properties of Nb60 were verified as a promising candidate for tumor labeling. The binding to native Trop-2 was confirmed by flow cytometry against tumor cells. The inhibitory effects of the selected Nbs on tumor cell proliferation and migration were confirmed by wound healing and Transwell assay. The clear localization of the selected Nbs on the surface of tumor cells verified the potent labeling efficiency. In conclusion, this study provided several Nbs with the potential to be developed as targeting moiety of drug conjugates.
Collapse
|
49
|
Fu J. Management of a rare ovarian carcinosarcoma: A case report and literature review. Exp Ther Med 2022; 24:583. [PMID: 35949347 PMCID: PMC9353508 DOI: 10.3892/etm.2022.11520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian carcinosarcoma (OCS) is a rare and lethal gynecological cancer. The present study reports on the case of a 61-year-old post-menopausal female with abdominal distension who was detected to have a large OCS. The patient underwent cytoreductive surgery, including sub-extensive hysterectomy, bilateral adnexectomy, sigmoid colon and partial rectal resection, and lymph node dissection. Postoperative pathology of the bilateral adnexal masses revealed carcinosarcoma. The main components of the carcinoma included serous carcinoma and a small amount of squamous cell carcinoma. The sarcoma components mainly contained fibrosarcoma, as well as a small amount of chondrosarcoma and rhabdomyosarcoma. Infiltrating cells in cancer tissues or metastasis were observed in the serosal surface, muscular and subserosal layers of the uterus, as well as the sigmoid colon and part of the rectum. The patient was diagnosed postoperatively with International Federation of Gynecology and Obstetrics stage IIIC ovarian carcinosarcoma and T3cN1M0 based on the TNM system. The patient then received six cycles of combination chemotherapy using carboplatin, paclitaxel plus bevacizumab. As severe myelosuppression occurred during and after chemotherapy, and bevacizumab was expensive, bevacizumab therapy was not maintained after chemotherapy. However, following chemotherapy, the patient received niraparib oral maintenance therapy. At 6 months after the sixth chemotherapy, cancer antigen 125 levels dropped to 4.55 U/ml (within normal range). Short-term follow-up of 6 months after the end of chemotherapy indicated that the patient had a remission prognosis based on the ultrasonography, computed tomography, magnetic resonance imaging examinations and serum tumor marker levels. The present study indicated that combined chemotherapy and targeted therapy after cytoreductive surgery may be a promising way for the treatment of OCS.
Collapse
Affiliation(s)
- Jun Fu
- Department of Gynecology and Obstetrics, Ningbo Women and Children's Hospital, Haishu, Ningbo, Zhejiang 315012, P.R. China
| |
Collapse
|
50
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|