1
|
Dietary Fats and Depressive Symptoms in Italian Adults. Nutrients 2023; 15:nu15030675. [PMID: 36771380 PMCID: PMC9919703 DOI: 10.3390/nu15030675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Depression represents one of the major causes of disability worldwide, with an important socioeconomic cost. Although many risk factors have been considered in its pathogenesis, nutrition seems to play a determinant role in its prevention. With regard to individual macronutrients, dietary fats and especially n-3 polyunsaturated fatty acids (n-3 PUFA) are the most studied. However, previous data about other dietary fatty acids, such as n-6 PUFA, are conflicting, and little is known about saturated fatty acids (SFA), especially when considering carbon chain length. Thus, we investigated whether single types and subtypes of dietary fats are related to depressive symptoms in Italian individuals living in the Mediterranean area. METHODS Dietary and socio-demographic data of 1572 individuals were analyzed. Food frequency questionnaires (FFQs) were used to determine the consumption of total dietary fat and each specific class of dietary fat, such as SFA, monounsaturated fatty acid (MUFA), and PUFA. The intake of fatty acids was also assessed according to the carbon-chain length of each single class. The Center for Epidemiologic Studies Depression Scale (CES-D) was used as a screening tool for depressive symptoms. RESULTS After adjustment for potential confounding factors, a significant inverse association between low/moderate levels of PUFA intake and depressive symptoms (Q2 vs. Q1, odds ratio (OR) = 0.60, 95% CI: 0.44, 0.84) was found. On the other hand, moderate saturated fat consumption was associated with depressive symptoms (Q3 vs. Q1, OR = 1.44, 95% CI: 1.02, 2.04). However, when considering carbon chain length, individuals with a lower to moderate intake of short-chain saturated fatty acids (SCSFA) and medium-chain saturated fatty acids (MCSFA) were less likely to have depressive symptoms (Q3 vs. Q1, OR = 0.48, 95% CI: 0.31, 0.75), while moderate intake of arachidic acid (C20:0) was directly associated with depressive symptoms (Q3 vs. Q1, OR = 1.87, 95% CI: 1.26, 2.77). Among single MUFAs, higher myristoleic acid (C14:1) intake was directly associated with depressive symptoms (Q4 vs. Q1, OR = 1.71, 95% CI: 1.12, 2.61), while moderate intake of erucic acid (C22:1) was associated with lower odds of having depressive symptoms (Q3 vs. Q1, OR = 0.54, 95% CI: 0.33, 0.86). When considering individual PUFAs, individuals with moderate and higher intakes of arachidonic acid (C20:4) were less likely to have depressive symptoms (OR = 0.64, 95% CI: 0.45, 0.91; OR = 0.59, 95% CI: 0.38, 0.91, respectively). Similarly, higher eicosapentaenoic acid (C20:5) intake was inversely associated with depressive symptoms (Q4 vs. Q1, OR = 0.35, 95% CI: 0.12, 0.98), while a significant association for docosahexaenoic acid (C22:6) was retrieved only for low intakes (Q2 vs. Q1, OR = 0.33, 95% CI: 0.12, 0.88). CONCLUSIONS Dietary fat intake may be associated with depressive symptoms, underlying the importance of distinguishing between different fat types. This study confirms the pivotal role of PUFAs and reopens the debate on the role of saturated fatty acids, suggesting plausible effects of moderate intakes of short-chain fatty acids.
Collapse
|
2
|
Khosravi M, Sotoudeh G, Ahmadkhaniha R, Majdzadeh R, Raisi F. Erythrocytes polyunsaturated fatty acids mediate relationship between dietary patterns and depression. INT J VITAM NUTR RES 2020; 90:417-424. [DOI: 10.1024/0300-9831/a000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract. Background: This study aimed to examine the association between depression and dietary patterns via the intermediary role of erythrocytes polyunsaturated fatty acids (PUFA). Methods: In this individually matched case-control study, the dietary patterns were extracted for 330 individuals using factor analysis. Furthermore, erythrocyte PUFAs including n-3 and n-6 were assessed using a GC–Mass spectrometry analytical method for 84 people. Depression was diagnosed using the criteria mentioned in the Diagnostic and Statistical Manual of Mental Disorders. The dietary patterns were also extracted using a valid and reliable semi-quantitative food frequency questionnaire. Results: The findings showed that healthy dietary patterns were related to the risk of depression (P = 0.01, odds ratio (OR) = 0.31, 95% confidence interval (CI): 0.14-0.68) by the increase of ratio n-3 /n-6 PUFA (p ≤ 0.03) and decrease of ratio n-6 /n-3 PUFA (p ≤ 0.005). Moreover, the unhealthy dietary patterns were associated with the risk of depression (P = 0.02, OR = 2.7, 95%CI: 1.25-5.9) by the decrease of ratio n-3/n-6 PUFA (p ≤ 0.03) and increase of ratio n-6/n-3 PUFA (p ≤ 0.001). Conclusion: Based on the results, the type of dietary pattern is related to the risk of depression considering the changes in n-3 and n-6 PUFA as well as the ratio of n-3 to n-6 as the mediator variables. Of course, further studies are required in this area.
Collapse
Affiliation(s)
- Maryam Khosravi
- Tehran University of Medical Sciences, Tehran, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | | | | | | |
Collapse
|
3
|
The Neuroprotective Effects of Astragaloside IV against H 2O 2-Induced Damage in SH-SY5Y Cells are Associated with Synaptic Plasticity. J CHEM-NY 2020. [DOI: 10.1155/2020/5343619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate whether the neuroprotective effects of astragaloside IV (AS-IV) against hydrogen peroxide (H2O2)-induced damage on human neuroblastoma cell line (SH-SY5Y) are associated with synaptic plasticity. The concentration screening of AS-IV and H2O2 on SH-SY5Y cells and the protective effects of AS-IV on SH-SY5Y cells under H2O2 stress were all determined by MTT assay. The expression of postsynaptic density 95 (PSD-95) and growth-associated protein 43 (GAP-43) were measured by western blot (WB) and inmunofluorescence staining assay under the same treatment conditions. According to the MTT results, the concentration of H2O2 at 50 μmol/L for 3 h was used for the cell damage model, and various concentrations of AS-IV (0.1, 0.2, 0.3, and 0.4 μmol/L) were used to affect SH-SY5Y cells. The MTT results showed that pretreatment of SH-SY5Y cells with AS-IV (0.1, 0.2, 0.3, and 0.4 μmol/L) attenuated the damage induced by H2O2 (50 μmol/L, 51.62% cell viability) and increased cell viability to 64.19, 63.48, 65.86, and 65.81%, respectively. Western blot analysis and immunofluorescence staining showed that the protective effects of AS-IV against SH-SY5Y cell damage caused by H2O2 resulted in reduced expression of PSD-95 and increased expression of GAP-43 in comparison with the H2O2 treatment group. The conclusion shows that AS-IV protected SH-SY5Y cells and enhanced their viability under H2O2 stress. AS-IV may facilitate presynaptic and postsynaptic plasticity to exert protective effects against oxidative damage of SH-SY5Y cells.
Collapse
|
4
|
Molecular Basis of the Beneficial Actions of Resveratrol. Arch Med Res 2020; 51:105-114. [PMID: 32111491 DOI: 10.1016/j.arcmed.2020.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
Resveratrol modulates the transcription factor NF-κB, cytochrome P450 isoenzyme CYP1A1, expression and activity of cyclooxygenase (COX) enzymes, Fas/Fas ligand mediated apoptosis, p53, mTOR and cyclins and various phospho-diesterases resulting in an increase in cytosolic cAMP levels. Cyclic AMP, in turn, activates Epac1/CaMKKβ/AMPK/SIRT1/PGC-1α pathway that facilitates increased oxidation of fatty acids, mitochondrial respiration and their biogenesis and gluconeogenesis. Resveratrol triggers apoptosis of activated T cells and suppresses tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17) and other pro-inflammatory molecules and inhibits expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) that may explain its anti-inflammatory actions. Polyunsaturated fatty acids (PUFAs) and their anti-inflammatory metabolites lipoxin A4, resolvins, protectins and maresins have a significant role in obesity, type 2 diabetes mellitus (T2DM), metabolic syndrome and cancer. We observed that PUFAs (especially arachidonic acid, AA) and BDNF (brain-derived neurotrophic factor) protect against the cytotoxic actions of alloxan, streptozotocin, benzo(a)pyrene (BP) and doxorubicin. Thus, there is an overlap in the beneficial actions of resveratrol, PUFAs and BDNF suggesting that these molecules may interact and augment synthesis and action of each other. This is supported by the observation that resveratrol and PUFAs modulate gut microbiota and influence stem cell proliferation and differentiation. Since resveratrol is not easily absorbed from the gut it is likely that it may act on endocannabinoid and light, odor, and taste receptors located in the gut, which, in turn, convey their messages to the various organs via vagus nerve.
Collapse
|
5
|
Bathina S, Das UN. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids Health Dis 2019; 18:214. [PMID: 31823816 PMCID: PMC7159172 DOI: 10.1186/s12944-019-1164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objective To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corollary, to know whether plasma BDNF and LXA4 are altered in STZ-induced type 2 DM animals. Materials and methods RIN5F cells, alloxan (AL), streptozotocin (STZ), doxorubicin (DB), and benzo(a)pyrene (BP) were used in this study. Chemical-induced apoptosis and changes in antioxidants, lipid peroxides and nitric oxide (NO) and LXA4 and BDNF levels in RIN5F cells were studied. Alterations in plasma concentrations of BDNF and LXA4 in STZ-induced type 2 diabetes animals was estimated. Results BDNF, LXA4 and AA, EPA and DHA protected (P < 0.001 and P < 0.01 respectively) against AL/STZ/DB/BP-induced toxicity to RIN5F cells in vitro. AL/ STZ/DB/BP inhibited BDNF and LXA4 production by RIN5F cells and were restored to normal by AA, EPA and DHA. Sub-optimal doses of BDNF, LXA4, AA and EPA when used in combination protected against cytotoxic action of AL/STZ/DB/BP on RIN5F cells in vitro by restoring LXA4/BDNF levels and altered antioxidant/lipid peroxides/NO levels (P < 0.01) to normal. STZ (65 mg/kg)-induced type 2 diabetes mellitus animals showed reduced plasma BDNF and LXA4 levels (P < 0.001). Discussion AL/STZ/DB/BP-induced cytotoxicity to RIN5F cells in vitro can be prevented by BDNF, LXA4 and AA. AL/STZ/DB/BP are cytotoxic, possibly, by suppressing the production of LXA4 and BDNF in RIN5F cells. STZ-induced type 2 DM animals have decreased plasma levels of LXA4 and BDNF. Conclusion The results of the present study suggest that BDNF, LXA4, EPA, DHA, AA, GLA and BDNF protect pancreatic β cells from the cytotoxic action of various chemicals and prevent development of diabetes mellitus. LXA4 seems to be the mediator of these cytoprotective actions of BDNF and PUFAs suggesting a close interaction exists among these molecules (BDNF, PUFAs and LXA4). Hence, methods developed to deliver a combination of PUFAs (especially AA), LXA4 and BDNF may prevent development of diabetes mellitus (both type 1 and type 2).
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048, India.,Present Address: Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Undurti N Das
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048, India. .,UND Life Sciences, 2221, NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
6
|
Misiak B, Beszłej JA, Kotowicz K, Szewczuk-Bogusławska M, Samochowiec J, Kucharska-Mazur J, Frydecka D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:177-188. [PMID: 28433456 DOI: 10.1016/j.pnpbp.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022]
Abstract
Overwhelming evidence indicates the involvement of immune-inflammatory processes in the pathophysiology of major depressive disorder (MDD). Peripheral cytokine alterations serve as one of most consistently reported indices of subthreshold inflammatory state observed in MDD. Although cytokines cannot pass directly through the blood-brain barrier, a number of transport mechanisms have been reported. In addition, peripheral cytokines may impact central nervous system via downstream effectors of their biological activity. Animal model studies have provided evidence that cytokines might impact cognitive performance through direct and indirect effects on long-term potentiation, neurogenesis and synaptic plasticity. Therefore, it has been hypothesized that cytokine alterations might contribute to cognitive impairment that is widely observed in MDD and persists beyond episodes of acute relapse in the majority of patients. Although several studies have provided that peripheral cytokine alterations might be related to cognitive deficits in patients with MDD, the quality of evidence still leaves much to be desired due to methodological heterogeneity and limitations. In this article, we provide an overview of studies investigating the association between peripheral cytokine alterations and cognitive performance in MDD, discuss underlying mechanisms and neural substrates. Finally, we propose possible treatment targets related to cytokine alterations taking into account existing evidence for antidepressant efficacy of anti-inflammatory pharmacological treatment modalities.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
7
|
Fernandes MF, Mutch DM, Leri F. The Relationship between Fatty Acids and Different Depression-Related Brain Regions, and Their Potential Role as Biomarkers of Response to Antidepressants. Nutrients 2017; 9:nu9030298. [PMID: 28304335 PMCID: PMC5372961 DOI: 10.3390/nu9030298] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Depression is a complex disorder influenced by a variety of biological and environmental factors. Due to significant heterogeneity, there are remarkable differences in how patients respond to treatment. A primary objective of psychiatric research is to identify biological markers that could be used to better predict and enhance responses to antidepressant treatments. Diet impacts various aspects of health, including depression. The fatty acid composition of the Western diet, which has a high ratio of n-6:n-3 polyunsaturated fatty acids, is associated with increased incidence of depression. The brain is rich in lipids, and dietary fatty acids act within specific brain regions to regulate processes that impact emotional behavior. This manuscript reviews existing evidence demonstrating brain region-specific fatty acid profiles, and posits that specific fatty acids may serve as predictive biomarkers of response to antidepressants. Furthermore, increasing blood levels of certain fats, such as n-3s, via dietary intervention may serve as an adjunct to improve the efficacy of antidepressants. Notably, most of the existing research regarding fats and depression-related brain regions has focused on n-3s, as compared to n-6s, monounsaturated, and saturated fats. This review article will help guide future work investigating the relationships between fatty acids, brain regions, and antidepressant efficacy.
Collapse
Affiliation(s)
- Maria Fernanda Fernandes
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
8
|
Muralikumar S, Vetrivel U, Narayanasamy A, N Das U. Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Lipids Health Dis 2017; 16:17. [PMID: 28109294 PMCID: PMC5251316 DOI: 10.1186/s12944-016-0404-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors. PPARγ receptor is found to play a crucial role in the modulation of lipid and glucose homeostasis. Its commotion has been reported to play a significant role in a broad spectrum of diseases such as type 2 diabetes mellitus, inflammatory diseases, Alzheimer’s disease, and in some cancers. Hence, PPARγ is an important therapeutic target. Polyunsaturated fatty acids (PUFAs) and their metabolites (henceforth referred to as bioactive lipids) are known to function as agonists of PPARγ. However, agonistic binding modes and affinity of these ligands to PPARγ are yet to be deciphered. Methods In this study, we performed a comparative molecular docking, binding free energy calculation and molecular dynamics simulation to infer and rank bioactive lipids based on the binding affinities with the ligand binding domain (LBD) of PPARγ. Results The results inferred affinity in the order of resolvin E1 > neuroprotectin D1 > hydroxy-linoleic acid > docosahexaenoic acid > lipoxin A4 > gamma-linolenic acid, arachidonic acid > alpha-linolenic acid > eicosapentaenoic acid > linoleic acid. Of all the bioactive lipids studied, resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid showed significant affinity comparable to proven PPARγ agonist namely, rosiglitazone, in terms of Glide XP docking score, H-bond formation with the key residues, binding free energy and stable complex formation with LBD favouring co-activator binding, as inferred through Molecular Dynamics trajectory analysis. Conclusion Hence, these three bioactive lipids (resolvin E1, neuroprotectin D1 and hydroxy-linoleic acid) may be favourably considered as ideal drug candidates in therapeutic modulation of clinical conditions such as type 2 DM, Alzheimer’s disease and other instances where PPARγ is a key player.
Collapse
Affiliation(s)
- Shalini Muralikumar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India.
| | - Angayarkanni Narayanasamy
- Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Undurti N Das
- UND Life Sciences, 2020 S 360th St, # K202, Federal Way, WA, 98003, USA. .,BioScience Research Centre, GVP College of Engineering, Visakhapatnam, 530048, India.
| |
Collapse
|
9
|
Das UN. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Arch Med Sci 2016; 12:1142-1157. [PMID: 27695506 PMCID: PMC5016593 DOI: 10.5114/aoms.2016.61918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD.
Collapse
|
10
|
Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR. Beneficial action of resveratrol: How and why? Nutrition 2016; 32:174-8. [DOI: 10.1016/j.nut.2015.08.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
|
11
|
Kaviarasan K, Jithu M, Arif Mulla M, Sharma T, Sivasankar S, Das UN, Angayarkanni N. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. Metabolism 2015; 64:958-66. [PMID: 26004392 DOI: 10.1016/j.metabol.2015.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The study was conducted to observe the serum and vitreous levels of LXA4, BDNF and Th1/Th2 cytokines in type 2 diabetes mellitus (DM) and changes associated with diabetic retinopathy (DR). Further, the in vitro study was performed to analyze the exposure of BDNF and LXA4 on LPS-induced pro-inflammatory state in ARPE 19 cells. MATERIALS AND METHODS Totally 114 individuals were recruited in a prospective case control study. Of these, 27 were type 2 DM cases with no complications, 30 cases were type 2 DM with non proliferative diabetic retinopathy (NPDR), 30 were type 2 DM with proliferative diabetic retinopathy (PDR), and 27 were healthy control. ELISA was done to estimate the serum and vitreous levels of BDNF, VEGF and PEDF. FACS cytometric Bead Array system was used to analyze the serum cytokines. RESULTS The serum BDNF and LXA4 levels were significantly reduced in both NPDR and PDR cases compared to control (p=0.005, 0.01; p=0.033, 0.015). Serum IL-6 was significantly increased in the PDR group (p=0.04). BDNF showed a significant negative correlation with VEGF levels (r=-0.522, p<0.01) and positive correlation with IL-10 (r=0.67, p<0.05) in serum. A significant odds ratio for the serum BDNF (OR: 3.20, p=0.025) as well as serum IL-6 (OR: 1.244, p=0.042) indicated them as potential risk factors for progression of type 2 DM to DR. A significant decrease in both the LXA4 (p=0.013) and BDNF (p=0.0008) with increase in cytokines IL-6 and IL-10 levels were observed in the vitreous of PDR cases ((p=0.04, 0.01). In vitro studies showed that both LXA4 (10 nmol/L) and BDNF (500 pg) decreased the IL-6 levels (p=0.036, 0.0002), in LPS induced pro-inflammatory condition in ARPE 19 cells, thereby their anti-inflammatory effect. CONCLUSIONS This study reports that low serum BDNF and higher IL-6 levels are potential risk factors for DR in type 2 DM. This study supports the role of BDNF in modulating the pro- and anti-inflammatory cytokines, and low level of BDNF is associated with development of diabetic retinopathy.
Collapse
Affiliation(s)
- Kuppan Kaviarasan
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Mohanlal Jithu
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Mohammad Arif Mulla
- Shri Bhagwan Mahavir Vitreo Retinal Services, Medical Research Foundation, Chennai, 600 006, India
| | - Tarun Sharma
- Shri Bhagwan Mahavir Vitreo Retinal Services, Medical Research Foundation, Chennai, 600 006, India
| | - Shanmuganathan Sivasankar
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, 600 006, India
| | - Undurti Narasimha Das
- Department of Medicine, GVP Hospital and BioScience Research Centre, Visakhapatnam, 530 048, India; UND Life Sciences, 2020 S 360th St, #K-202, Federal Way, WA 98003, USA
| | - Narayanasamy Angayarkanni
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, 600 006, India.
| |
Collapse
|
12
|
Das UN. Polyunsaturated fatty acids in cancer and their influence on biochemical and metabolic events and body composition. Nutrition 2015; 31:582-4. [DOI: 10.1016/j.nut.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
|
13
|
Chui DH, Marcellino M, Marotta F, Sweed H, Solimene U, Vignali AI, Xiao W, Ayala A, Cagnuolo U, Zerbinati N. A double-blind, rct testing beneficial modulation of BDNF in middle-aged, life style-stressed subjects: a clue to brain protection? J Clin Diagn Res 2014; 8:MC01-6. [PMID: 25584253 PMCID: PMC4290272 DOI: 10.7860/jcdr/2014/10301.5141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The aim of this prospective study was to see whether LD-1227, a quality-controlled marine nutraceuticals shown to protect experimental stress-induced hyppocampal degeneration, could beneficially modulate BDNF, as measured in the serum, in otherwise healthy but work-stressed individuals. MATERIALS AND METHODS Forty-eight men and women between the ages of 38 and 62 reporting high-demanding work activity but with an overall positive attitude towards their personal life were recruited. Subjects were divided in two group (24 patients each) and blindly supplemented for 2 month with: a) LD-1227 400mg or b) placebo. A third group of healthy non-stressed subjects was used as well. Blood samples were taken before and after the supplementation period. Unstimulated saliva was collected and tested for amylase while serum levels were used to measure BDNF. State Trait Anxiety Inventory (STAI), Pittsburgh Sleep Quality Index (PSQI) and psychological well-being assessment (PSWB) were measured too. Patients with Val66Met functional polymorphism of BDNF excluded those given their reported association with an impaired release of BDNF. RESULTS RESULTS showed that, as compared to healthy, non-stressed individuals, stressed ones has a trend decrease of BDNF and this was significantly increased by LD 12-1227 supplementation and the same inverse phenomenon occurred to salivary amylase (p<0.05). No change was noted in the PSQI score but, either STAI or PSWB tests scored better in LD-1227 supplemented subjects. CONCLUSION The present data suggest that LD-1227 is beneficially affecting neuromodulation and related symptoms during common stressful life conditions and may have the potential as tools in a neuroprotective clinical strategy.
Collapse
Affiliation(s)
- DH Chui
- Peking University Third Hospital & Neuroscience Research Institute, Beijing, China
| | - M Marcellino
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - F Marotta
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - H Sweed
- Geriatrics and Gerontology Department, Faculty of Medicine - Ain Shams University, Cairo, Egypt
| | - U Solimene
- WHO-cntr for Traditional Medicine & Biotechnology, University of Milano, Italy
| | - AI Vignali
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - W Xiao
- Peking University Third Hospital & Neuroscience Research Institute, Beijing, China
| | - A Ayala
- Geriatrics and Gerontology Department, Faculty of Medicine - Ain Shams University, Cairo, Egypt
| | - U Cagnuolo
- ReGenera Research Group for Aging-Intervention, Milano, Italy
| | - N Zerbinati
- CMP-Medical Center and Laboratories, Regenerative Medicine Unit, Pavia, Italy
| |
Collapse
|
14
|
Ferreira CF, Bernardi JR, Bosa VL, Schuch I, Goldani MZ, Kapczinski F, Salum GA, Dalmaz C, Manfro GG, Silveira PP. Correlation between n-3 polyunsaturated fatty acids consumption and BDNF peripheral levels in adolescents. Lipids Health Dis 2014; 13:44. [PMID: 24593295 PMCID: PMC3974009 DOI: 10.1186/1476-511x-13-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Although several studies have reported an association between mental disorders and serum levels of brain-derived neurotrophic factor (BDNF), this association is still poorly understood. The study of factors associated with both BDNF levels and mental disorders, such as n-3 polyunsaturated fatty acids (n-3 PUFAs), may help to elucidate the mechanisms mediating the relationship between the two variables. Therefore, the present study aimed to evaluate whether the intake n-3 PUFAs correlates with serum levels of BDNF. Findings This study involved 137 adolescents drawn from a community sample, including a group with high levels of anxiety, assessed using the Screen for Children and Anxiety Related Emotional Disorders. Blood samples were collected and serum BDNF levels were measured. n-3 PUFAs were estimated using a food frequency questionnaire for adolescents. Correlations were performed to assess the association between n-3 PUFAs intake and BDNF levels. Effects of potential confounders (total fat consumption, age, gender and anxiety) were examined using linear regression models. There was a direct correlation between n-3 PUFAs consumption and serum BDNF levels, which remained significant even after accounting for potential confounders. Conclusions We were able to detect a correlation between n-3 PUFAs intake and peripheral BDNF levels. Our study was limited by its small sample size, and our external validity may be restricted by the oversampling of anxious adolescents. Our findings may help determine the nature of the association between mental disorders and serum levels of BDNF. However, more studies are needed to elucidate the possible mechanisms by which n-3 PUFAs intake affects BDNF levels, and how this may lead to an increased vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Charles Francisco Ferreira
- Post Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kumar YP, Srinivas GSS, E YM, Malla L, Rao AA. Agonistic approach of omega-3, omega-6 and its metabolites with BDNF: An in-silico study. Bioinformation 2013; 9:908-11. [PMID: 24307768 PMCID: PMC3842576 DOI: 10.6026/97320630009908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is a member of neurotrophic family of growth factors, mainly found in the hippocampus and cerebral cortex of brain. Studies have shown that there is a link between BDNF and cognitive dysfunction, as well as there is a relationship between the PUFAs intake and their effect on BDNF production. Intake of PUFAs, mainly omega-3 and omega-6 has show increase in production of BDNF in brain. In our study we performed docking studies on PUFAs and their metabolites with BDNF using MVD (Molegro Virtual Docker), this has shown that the metabolites of the PUFAs mainly LXA_4, NPD1, HDHA have shown more binding affinity towards BDNF. These metabolites of PUFAs are responsible for modulation of BDNF activity.
Collapse
Affiliation(s)
- Yadla Phani Kumar
- C R RAO Advanced Institute of Mathematics Statistics and Computer Science, University of Hyderabad campus, Gachibowli, Hyderabad-500046
| | - G Sri Shanmukha Srinivas
- C R RAO Advanced Institute of Mathematics Statistics and Computer Science, University of Hyderabad campus, Gachibowli, Hyderabad-500046
| | - Yadu Mitravinda E
- C R RAO Advanced Institute of Mathematics Statistics and Computer Science, University of Hyderabad campus, Gachibowli, Hyderabad-500046
| | - Lalitha Malla
- Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh - 533 003
| | - Allam Appa Rao
- C R RAO Advanced Institute of Mathematics Statistics and Computer Science, University of Hyderabad campus, Gachibowli, Hyderabad-500046
- Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh - 533 003
| |
Collapse
|
16
|
Shen JH, Ma Q, Shen SR, Shen SG, Xu GT, Das UN. Effect of α-linolenic acid on streptozotocin-induced diabetic retinopathy indices in vivo. Arch Med Res 2013; 44:514-20. [PMID: 24120388 DOI: 10.1016/j.arcmed.2013.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/20/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Both oxidative stress and inflammation play a significant role in the pathobiology of diabetic retinopathy. Increased consumption of polyunsaturated fatty acids (PUFAs) may prevent or postpone the occurrence of diabetic retinopathy. Hence, the effect of α-linolenic acid (ALA), an essential fatty acid, on oxidative stress, inflammatory indices and production of vascular endothelial growth factor (VEGF) in streptozotocin-induced diabetic retinopathy indices in vivo was studied. METHODS Serum and retina concentrations of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), plasma and retina concentrations of lipid peroxides and antioxidant enzymes were estimated in streptozotocin (STZ)-induced diabetic animals. RESULTS STZ-induced diabetic rats had significantly higher levels of VEGF in the serum and retina and IL-6 in the serum, whereas BDNF was lower in the serum, all of which reverted to near normal in ALA-treated diabetic animals. STZ treatment decreased serum glutathione peroxidase levels, which was restored to normal by both pre- and post-ALA treatment groups. CONCLUSIONS STZ-induced changes in serum glutathione peroxidase, BDNF, VEGF and IL-6 that reverted to near control by ALA treatment, especially in ALA + STZ group, lending support to the concept that both oxidative stress and inflammation participate in DR and ALA treatment is of benefit in its prevention.
Collapse
Affiliation(s)
- Jun-hui Shen
- Laboratory of Clinical Visual Science, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China; Department of Food Science and Nutrition, School of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Das UN. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 2013; 29:1175-85. [PMID: 23911220 DOI: 10.1016/j.nut.2013.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/12/2012] [Accepted: 01/12/2013] [Indexed: 12/20/2022]
Abstract
Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process.
Collapse
|
18
|
Das UN. Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids 2013; 88:201-10. [PMID: 23295193 DOI: 10.1016/j.plefa.2012.11.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023]
Abstract
In both type 1 and type 2 diabetes mellitus, increased production of pro-inflammatory cytokines and reactive oxygen species (ROS) occurs that induce apoptosis of β cells and cause peripheral insulin resistance respectively though the degree of their increased production is higher in type 1 and less in type 2 diabetes mellitus. Despite this, the exact mechanism(s) that lead to increased production of pro-inflammatory cytokines: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and ROS is not known. Studies showed that plasma concentrations of arachidonic acid (AA) and lipoxin A4 (LXA4) are low in alloxan-induced type 1 diabetes mellitus in experimental animals and patients with type 2 diabetes mellitus. Prior administration of AA, eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively) and transgenic animals that produce increased amounts of EPA and DHA acids were protected from chemical-induced diabetes mellitus that was associated with enhanced formation of LXA4 and resolvins, while protectin D1 ameliorated peripheral insulin resistance. AA, LXA4, resolvins and protectins inhibit IL-6 and TNF-α production and suppress ROS generation. Thus, AA and lipoxins, resolvins and protectins may function as endogenous anti-diabetic molecules implying that their administration could be useful in the prevention and management of both types of diabetes mellitus.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road 321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
19
|
Nutritional factors in the pathobiology of autism. Nutrition 2013; 29:1066-9. [PMID: 23410630 DOI: 10.1016/j.nut.2012.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/27/2012] [Indexed: 11/24/2022]
|