1
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
2
|
Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective Effect of Stearidonic Acid on Amyloid β-Induced Neurotoxicity in Rat Hippocampal Cells. Antioxidants (Basel) 2022; 11:2357. [PMID: 36552565 PMCID: PMC9774633 DOI: 10.3390/antiox11122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dietary intake of omega-3 fatty acids found in fish has been reported to reduce the risk of Alzheimer's Disease (AD). Stearidonic acid (SDA), a plant-based omega-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids. However, its role in neuronal degeneration is unknown. This study was designed to evaluate effects of SDA on Amyloid-β(A-β)-induced neurotoxicity in rat hippocampal cells. Results showed that SDA effectively converted to eicosapentaenoic acid (EPA) in hippocampal cells. Aβ-induced apoptosis in H19-7 cells was protected by SDA pretreatment as evidenced by its regulation on the expression of relevant pro- and anti-apoptotic genes, as well as the inhibition on caspase activation. SDA also protected H19-7 cells from Aβ-induced oxidative stress by regulating the expression of relevant pro- and anti-oxidative genes, as well as the improvement in activity of catalase. As for Aβ/LPS-induced neuronal inflammation, SDA pretreatment reduced the release of IL-1β and TNFα. Further, we found that the anti-Aβ effect of SDA involves its inhibition on the expression of amyloid precursor protein and the regulation on MAPK signaling. These results demonstrated that SDAs have neuroprotective effect in Aβ-induced H19-7 hippocampal cells. This beneficial effect of SDA was attributed to its antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Ben Necib R, Manca C, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Hemp seed significantly modulates the endocannabinoidome and produces beneficial metabolic effects with improved intestinal barrier function and decreased inflammation in mice under a high-fat, high-sucrose diet as compared with linseed. Front Immunol 2022; 13:882455. [PMID: 36238310 PMCID: PMC9552265 DOI: 10.3389/fimmu.2022.882455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid–derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.
Collapse
Affiliation(s)
- Rim Ben Necib
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Claudia Manca
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Sébastien Lacroix
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Cyril Martin
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Nicolas Flamand
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- École de nutrition, Faculté Des Sciences De l’Agriculture Et De l’Alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
- *Correspondence: Cristoforo Silvestri,
| |
Collapse
|
4
|
Nguyen TM, Agbohessou PS, Nguyen TH, Tran Thi NT, Kestemont P. Immune responses and acute inflammation in common carp Cyprinus carpio injected by E.coli lipopolysaccharide (LPS) as affected by dietary oils. FISH & SHELLFISH IMMUNOLOGY 2022; 122:1-12. [PMID: 35007746 DOI: 10.1016/j.fsi.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Eicosanoids, resolvins, and lipoxins formed from long-chain polyunsaturated fatty acids (LC-PUFAs) are the main lipid mediators in the inflammatory processes explaining the influence of dietary lipid sources on the immune system. The current study aimed to determine the effects of dietary plant oils instead of fish oil or LC-PUFA supplementation in these oils on fish immune and inflammatory responses under normal and LPS-stimulated conditions. Six iso-nitrogenous (ranging from 30.4 to 31.1%) and iso-lipidic (from 11.2 to 11.6%) diets were formulated using three oil sources: cod liver oil (CLO, as fish oil control); linseed oil (LO, rich in α-linolenic acid, ALA); sesame oil (SO, rich in linoleic acid, LA); a blend of LO and SO (SLO, v:v 1:1); and two pure plant oil diets supplemented with docosahexaenoic acid, DHA (SO + DHA, SOD) or arachidonic acid, ARA (LO + ARA, LOA). Fish were fed the experimental diets to satiation for 42 days. On day 43, they were injected with E.coli lipopolysaccharide (LPS) at 100 μg/fish. Fish plasma and tissues such as head kidney and liver were collected on day 42 and one day after LPS injection (day 44) for humoral immune variables and gene expression analyses, respectively. After 42 days of feeding, no influences of dietary oils were found on fish survival, growth, feed utilization, and humoral immune responses. On the other hand, LPS injection significantly stimulated immune responses and induced an acute inflammation in common carp through an increase of the complement activity and the up-regulation of genes involved in the innate immune system (c2), pro-inflammatory response (tlr-4, tnf-α, il-1, il-6, il-8, and cxc), eicosanoid metabolism (pla2, cox-1, 5-lox, and pge2), and anti-inflammatory response (tgf-β1 and nf-fki). Further, the expression of hsp70 was stimulated by LPS injection. The effects of dietary oil sources were observed after LPS injection, with a significant modification in the expression of almost all candidate genes. The highest pro-inflammatory responses induced by LPS were observed in CLO-fed fish while the mixture of plant oils (SLO) and LC-PUFA-supplemented diets induced significantly higher modulations in anti-inflammatory responses (il-10 and nf-kbi), general stress status (hsp70), and cytoprotection (gpx-1) compared to fish oil control and other pure plant oil groups. In conclusion, the immune response of common carp has been modified by the dietary fat sources. The fish oil-based diet supported an increase of the pro-inflammatory responses while the mixture of plant oil or LC-PUFA supplemented diets improved the anti-inflammatory responses and cytoprotection.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Pamphile S Agbohessou
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Thu Hang Nguyen
- Pharmacology Department, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Nang Thu Tran Thi
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
5
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
6
|
Marques E, Darby H, Kraft J. Omega-3 Fatty Acid Fortification of Flax Through Nutri-Priming. Front Nutr 2021; 8:715287. [PMID: 34490329 PMCID: PMC8417600 DOI: 10.3389/fnut.2021.715287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Omega-3 (n-3) fatty acids (FA) play an essential role in human physiology and health. As a result, a variety of n-3 FA-fortified functional foods have become commercially available for human consumption. These fortified functional foods are created through various processes; however, nutri-priming, a potentially promising fortification approach, has not been utilized to develop plant-based n-3 fortified foods. We sought to determine whether nutri-priming is a viable option to enrich seeds and sprouts with n-3 FA. Additionally, we assessed whether n-3 FA nutri-priming would inhibit germination of the primed seeds. To address these goals, we nutri-primed brown flax in three priming solutions, control [0% fish oil (FO)], 10% FO and a 20% FO solution, and determined the FA content and profile of seeds and sprouts and germination percentage of primed seeds. n-3 FA nutri-priming with FO altered the FA profile in seeds and sprouts, with increases in the absolute content of 20:5 n-3, 22:6 n-3, 22:5 n3, 18:4 n-3, and 20:4 n-6. However, n-3 FA nutri-priming did not increase the absolute content of 18:2 n-6, 18:3 n-3, total saturated FA, total monounsaturated FA, total polyunsaturated FA, total n-6 FA, or total n-3 FA. Our results also showed that n-3 nutri-priming decreased the germination percentage of primed seeds, with 10 and 20% FO priming solution reducing germination by 4.3 and 6.2%, respectively. Collectively, n-3 nutri-priming modified the n-3 FA profile in flax; however, the process does not increase the total n-3 FA content and inhibits germination of primed seeds. Further research utilizing different seed types, oil types, and oil concentrations needs to be conducted to fully determine if n-3 nutri-priming is a commercially viable approach for n-3 fortification of seeds and sprouts.
Collapse
Affiliation(s)
- Edward Marques
- The Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
| | - Heather Darby
- The Department of Plant and Soil Sciences, The University of Vermont, Burlington, VT, United States
| | - Jana Kraft
- The Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
- The Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, The University of Vermont, Colchester, VT, United States
| |
Collapse
|
7
|
Mihaylova D, Gandova V, Deseva I, Tschuikowa S, Schalow S, Westphal G. Arrhenius Equation Modeling for the Oxidative Stability Evaluation of Echium Oil Enriched with a Natural Preservative. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology University of Food Technologies Plovdiv 4002 Bulgaria
| | - Vanya Gandova
- Department of Analytical Chemistry and Physical Chemistry University of Food Technologies Plovdiv 4002 Bulgaria
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physical Chemistry University of Food Technologies Plovdiv 4002 Bulgaria
| | - Steffi Tschuikowa
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP) Berlin 10115 Germany
| | - Sebastian Schalow
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP) Berlin 10115 Germany
| | - Günter Westphal
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP) Berlin 10115 Germany
| |
Collapse
|
8
|
Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr 2020; 61:1725-1737. [PMID: 32431176 DOI: 10.1080/10408398.2020.1765137] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) like eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are known to be potent biological regulators with therapeutic and preventive effects on human health. Many global health organizations have recommended consuming marine based omega-3 sources for neonatal brain development and reducing the risk of various chronic diseases. However, due to concerns regarding the origin, sustainable supply and safety of the marine sources, alternative n-3 PUFA sources are being explored. Recently, plant-based omega-3 sources are gaining much importance because of their sustainable supply and dietary acceptance. α-linolenic acid (ALA, 18:3n-3) rich seed oils are the major omega-3 fatty acid source available for human consumption. But, efficiency of conversion of ALA to n-3 LC-PUFAs in humans is limited due to a rate-limiting step in the n-3 pathway catalyzed by Δ6-desaturase. Botanical stearidonic acid (SDA, 18:4n-3) rich oils are emerging as a sustainable omega-3 source with efficient conversion rate to n-3 LC-PUFA especially to EPA, as it bypasses the Δ6-desaturase rate limiting step. Several recent studies have identified the major plant sources of SDA and explored its potential health benefits and preventive roles in inflammation, cardiovascular disease (CVD) and cancer. This systematic review summarizes the current state of knowledge on the sources, nutraceutical roles, food-based applications and the future perspectives of botanical SDA.
Collapse
Affiliation(s)
- P Prasad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Anjali
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R V Sreedhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Hong L, Zahradka P, Cordero-Monroy L, Wright B, Taylor CG. Dietary Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA) Operate by Different Mechanisms to Modulate Hepatic Steatosis and Hyperinsulemia in fa/fa Zucker Rats. Nutrients 2019; 11:nu11040917. [PMID: 31022865 PMCID: PMC6521162 DOI: 10.3390/nu11040917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/28/2023] Open
Abstract
Hepatic steatosis, an early stage of non-alcoholic fatty liver disease, is commonly present in obesity and type 2 diabetes, and is associated with reduced hepatic omega-3 polyunsaturated fatty acid (n3-PUFA) status that impacts on the anti-inflammatory and insulin sensitizing functions of n3-PUFA. Our objective was to directly compare plant- and marine-based n3-PUFA (α-linoleic acid (ALA)), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) for their effects on hepatic steatosis, markers of hepatic inflammation and fibrosis, and insulinemia in obese rats. Fa/fa Zucker rats were provided diets containing ALA, EPA, DHA, or linoleic acid (LA, n6-PUFA) for eight weeks and compared to baseline fa/fa rats and lean Zucker rats fed LA-rich diet for eight weeks. Both DHA and EPA groups had liver lipid similar to baseline, however, DHA was more effective than EPA for reducing hepatic fatty acid synthase (FAS), increasing the proportion of smaller lipid droplets, reversing early fibrotic damage, and reducing fasting hyperinsulinemia. EPA was more effective for reducing FoxO1. Dietary ALA did not attenuate hepatic steatosis, most inflammatory markers or FAS. In summary, amongst the n3-PUFA, DHA was the most effective for elevating hepatic DHA levels, and preventing progression of hepatic steatosis via reductions in FAS and a marker of fibrosis.
Collapse
Affiliation(s)
- Lena Hong
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Luis Cordero-Monroy
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Brenda Wright
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
10
|
Wang T, Xue C, Zhang T, Wang Y. The improvements of functional ingredients from marine foods in lipid metabolism. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Ghitman J, Stan R, Ghebaur A, Cecoltan S, Vasile E, Iovu H. Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery. Polymers (Basel) 2018; 10:polym10060579. [PMID: 30966613 PMCID: PMC6403762 DOI: 10.3390/polym10060579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R2 = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-5 Gh. Polizu Street, 011061 Bucharest, Romania.
| | - Adi Ghebaur
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Sergiu Cecoltan
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, 060042 Bucharest, Romania.
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania.
| |
Collapse
|
12
|
Li Y, Rong Y, Bao L, Nie B, Ren G, Zheng C, Amin R, Arnold RD, Jeganathan RB, Huggins KW. Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells. Lipids Health Dis 2017; 16:181. [PMID: 28946872 PMCID: PMC5613458 DOI: 10.1186/s12944-017-0574-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/20/2017] [Indexed: 12/02/2022] Open
Abstract
Background Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. Methods 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. Conclusion These results demonstrated that SDA can suppress adipocyte differentiation and lipid accumulation in 3T3-L1 cells through down-regulation of adipogenic transcription factors and genes associated with lipid accumulation. This study suggests the use of SDA as a dietary treatment for obesity. Electronic supplementary material The online version of this article (10.1186/s12944-017-0574-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueru Li
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Yinghui Rong
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Lisui Bao
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Ben Nie
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Guang Ren
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL, USA
| | - Ramesh B Jeganathan
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA.,Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL, USA
| | - Kevin W Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA. .,Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL, USA.
| |
Collapse
|
13
|
Dal Bello B, Torri L, Piochi M, Zeppa G. Healthy yogurt fortified with n-3 fatty acids from vegetable sources. J Dairy Sci 2015; 98:8375-85. [DOI: 10.3168/jds.2015-9688] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022]
|
14
|
Kasbi-Chadli F, Ferchaud-Roucher V, Krempf M, Ouguerram K. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur J Nutr 2015; 55:589-599. [DOI: 10.1007/s00394-015-0879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
|
15
|
Kuhnt K, Fuhrmann C, Köhler M, Kiehntopf M, Jahreis G. Dietary echium oil increases long-chain n-3 PUFAs, including docosapentaenoic acid, in blood fractions and alters biochemical markers for cardiovascular disease independently of age, sex, and metabolic syndrome. J Nutr 2014; 144:447-60. [PMID: 24553695 PMCID: PMC4083239 DOI: 10.3945/jn.113.180802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dietary supplementation with echium oil (EO) containing stearidonic acid (SDA) is a plant-based strategy to improve long-chain (LC) n-3 (ω-3) polyunsaturated fatty acid (PUFA) status in humans. We investigated the effect of EO on LC n-3 PUFA accumulation in blood and biochemical markers with respect to age, sex, and metabolic syndrome. This double-blind, parallel-arm, randomized controlled study started with a 2-wk run-in period, during which participants (n = 80) were administered 17 g/d run-in oil. Normal-weight individuals from 2 age groups (20-35 and 49-69 y) were allotted to EO or fish oil (FO; control) groups. During the 8-wk intervention, participants were administered either 17 g/d EO (2 g SDA; n = 59) or FO [1.9 g eicosapentaenoic acid (EPA); n = 19]. Overweight individuals with metabolic syndrome (n = 19) were recruited for EO treatment only. During the 10-wk study, the participants followed a dietary n-3 PUFA restriction, e.g., no fish. After the 8-wk EO treatment, increases in the LC n-3 metabolites EPA (168% and 79%) and docosapentaenoic acid [DPA (68% and 39%)] were observed, whereas docosahexaenoic acid (DHA) decreased (-5% and -23%) in plasma and peripheral blood mononuclear cells, respectively. Compared with FO, the efficacy of EO to increase EPA and DPA in blood was significantly lower (∼25% and ∼50%, respectively). A higher body mass index (BMI) was associated with lower relative and net increases in EPA and DPA. Compared with baseline, EO significantly reduced serum cholesterol, LDL cholesterol, oxidized LDL, and triglyceride (TG), but also HDL cholesterol, regardless of age and BMI. In the FO group, only TG decreased. Overall, daily intake of 15-20 g EO increased EPA and DPA in blood but had no influence on DHA. EO lowered cardiovascular risk markers, e.g., serum TG, which is particularly relevant for individuals with metabolic syndrome. Natural EO could be a noteworthy source of n-3 PUFA in human nutrition.
Collapse
Affiliation(s)
- Katrin Kuhnt
- Department of Nutritional Physiology, Institute of Nutrition, and,To whom correspondence should be addressed. E-mail:
| | - Claudia Fuhrmann
- Department of Nutritional Physiology, Institute of Nutrition, and
| | - Melanie Köhler
- Department of Nutritional Physiology, Institute of Nutrition, and
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Friedrich Schiller University, Jena, Germany
| | - Gerhard Jahreis
- Department of Nutritional Physiology, Institute of Nutrition, and
| |
Collapse
|
16
|
Zhukova NV, Novgorodtseva TP, Denisenko YK. Effect of the prolonged high-fat diet on the fatty acid metabolism in rat blood and liver. Lipids Health Dis 2014; 13:49. [PMID: 24628762 PMCID: PMC3995525 DOI: 10.1186/1476-511x-13-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Contradictory data on consequences of prolonged high-fat diet requires a detailed study of the influence of nutritional high-fat load mechanisms on the peculiarity of lipid metabolism in blood and liver. The present study was undertaken to investigate the fatty acid composition of polar and neutral lipids of the blood plasma, erythrocytes and liver in Wistar rats under the conditions of a prolonged high-fat diet. METHODS The study was conducted on 60 adult white male Wistar rats. The animals were fed on a high-fat diet consisted of the beef fat and cholesterol (19% and 2% of the total diet, respectively) up to 180 days. The fatty acid composition of the polar and neutral lipids of plasma, erythrocytes and liver were analyzed by the gas chromatography. Statistical data processing was performed by the methods of descriptive statistics with Statistica 6.0. RESULTS The prolonged unbalanced diet rich in cholesterol and saturated fatty acids resulted in compensatory biosynthesis of the fatty acids in the rat's liver, the inhibition of synthesis of apoproteins and lipoproteins, disruption of the active transport of fatty acids to tissue cells. This launched the accumulation of 20:4n-6, 20:5n-3, 22:5n-3, and 22:6n-3 in the liver and blood plasma and deficiency of 18:2n-6, 20:5n-3 and 22:6n-3 in the erythrocytes. CONCLUSIONS Adaptive adjustment of lipid metabolism un0064er conditions of the high-fat diet induced inhibition of the formation of lipoproteins (VLDL cholesterol) in the liver, compensatory synthesis of 18:1n-9, 20:5n-3, and 20:3n-6 with primary esterification of PUFA n-3 series to neutral lipids.
Collapse
Affiliation(s)
- Natalia V Zhukova
- A.V. Zhirmunsky Institute of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Palchevskogo str., 17, 690041 Vladivostok, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Tatyana P Novgorodtseva
- Vladivostok Branch of the Far Eastern Center of Physiology and Pathology of Respiration of SB RAMN - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia K Denisenko
- Vladivostok Branch of the Far Eastern Center of Physiology and Pathology of Respiration of SB RAMN - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
17
|
Ryu SP. Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats. J Exerc Nutrition Biochem 2014; 18:141-9. [PMID: 25566449 PMCID: PMC4241922 DOI: 10.5717/jenb.2014.18.2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 12/02/2022] Open
Abstract
[Purpose] Many researchers are trying to solve the metabolic syndrome by utilizing a variety of nutritional control and exercise. Of those, silkworm pupae peptides are known to inhibit the synthesis of fat. Therefore, we examine the effect of fat metabolism by supplying silkworm pupae (SP) for 5-week in swim-trained rats. [Methods] Animals were divided into four groups as a group (n = 32) fed a normal diet (CO) with exercise training (CE); a group fed a silkworm pupa diet (SPC) with an exercise training (SPE), respectively. [Results] Abdominal fat pads (abdominal and epididymal) weight were lowest in SPE. The serum triglyceride, total cholesterol concentrations were lower in the SP and the SPE. HDL-cholesterol, however, was not different between groups. Liver AMPK (AMP-activated protein kinase) was increased in the CE and the SPE. Liver PPAR-α (Peroxisome proliferator-activated receptor alpha) was increased in the SPC and SPE. L-FABP (liver fatty acids binding protein) was increased by SP ingestion. Liver CPT-1 (carnitine palmitoyltransferase-1) protein expression was increased by exercise training only. [Conclusion] In the present study showed that the silkworm pupae intake and/or swimming exercise training activates fat metabolism to reduce the concentration of serum lipids. Thus, the silkworm pupae intake leads to a reduction in fat storage, this is considered to be effective in the inhibition of the metabolic syndrome.
Collapse
Affiliation(s)
- Sung Pil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|