1
|
Leckie RL, Lehman DE, Gianaros PJ, Erickson KI, Sereika SM, Kuan DCH, Manuck SB, Ryan CM, Yao JK, Muldoon MF. The effects of omega-3 fatty acids on neuropsychological functioning and brain morphology in mid-life adults: a randomized clinical trial. Psychol Med 2020; 50:2425-2434. [PMID: 31581959 PMCID: PMC8109262 DOI: 10.1017/s0033291719002617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The diet of most adults is low in fish and, therefore, provides limited quantities of the long-chain, omega-3 fatty acids (LCn-3FAs), eicosapentaenoic and docosahexaenoic acids (EPA, DHA). Since these compounds serve important roles in the brain, we sought to determine if healthy adults with low-LCn-3FA consumption would exhibit improvements in neuropsychological performance and parallel changes in brain morphology following repletion through fish oil supplementation. METHODS In a randomized, controlled trial, 271 mid-life adults (30-54 years of age, 118 men, 153 women) consuming ⩽300 mg/day of LCn-3FAs received 18 weeks of supplementation with fish oil capsules (1400 mg/day of EPA and DHA) or matching placebo. All participants completed a neuropsychological test battery examining four cognitive domains: psychomotor speed, executive function, learning/episodic memory, and fluid intelligence. A subset of 122 underwent neuroimaging before and after supplementation to measure whole-brain and subcortical tissue volumes. RESULTS Capsule adherence was over 95%, participant blinding was verified, and red blood cell EPA and DHA levels increased as expected. Supplementation did not affect performance in any of the four cognitive domains. Exploratory analyses revealed that, compared to placebo, fish oil supplementation improved executive function in participants with low-baseline DHA levels. No changes were observed in any indicator of brain morphology. CONCLUSIONS In healthy mid-life adults reporting low-dietary intake, supplementation with LCn-3FAs in moderate dose for moderate duration did not affect neuropsychological performance or brain morphology. Whether salutary effects occur in individuals with particularly low-DHA exposure requires further study.
Collapse
Affiliation(s)
- Regina L. Leckie
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David E. Lehman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter J. Gianaros
- Psychology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk I. Erickson
- Psychology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Dora C. H. Kuan
- Psychology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen B. Manuck
- Psychology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jeffrey K. Yao
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
2
|
Walker RE, Ford JL, Boston RC, Savinova OV, Harris WS, Green MH, Shearer GC. Trafficking of nonesterified fatty acids in insulin resistance and relationship to dysglycemia. Am J Physiol Endocrinol Metab 2020; 318:E392-E404. [PMID: 31910030 PMCID: PMC7099405 DOI: 10.1152/ajpendo.00331.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In adipose, insulin functions to suppress intracellular lipolysis and secretion of nonesterified fatty acid (NEFA) into plasma. We applied glucose and NEFA minimal models (MM) following a frequently sampled intravenous glucose tolerance test (FSIVGTT) to assess glucose-specific and NEFA-specific insulin resistance. We used total NEFA and individual fatty acids in the NEFA MM, comparing the model parameters in metabolic syndrome (MetSyn) subjects (n = 52) with optimally healthy controls (OptHC; n = 14). Results are reported as mean difference (95% confidence interval). Using the glucose MM, MetSyn subjects had lower [-73% (-82, -57)] sensitivity to insulin (Si) and higher [138% (44, 293)] acute insulin response to glucose (AIRg). Using the NEFA MM, MetSyn subjects had lower [-24% (-35, -13)] percent suppression, higher [32% (15, 52)] threshold glucose (gs), and a higher [81% (12, 192)] affinity constant altering NEFA secretion (ϕ). Comparing fatty acids, percent suppression was lower in myristic acid (MA) than in all other fatty acids, and the stearic acid (SA) response was so unique that it did not fit the NEFA MM. MA and SA percent of total were increased at 50 min after glucose injection, whereas oleic acid (OA) and palmitic acid (PA) were decreased (P < 0.05). We conclude that the NEFA MM, as well as the response of individual NEFA fatty acids after a FSIVGTT, differ between OptHC and MetSyn subjects and that the NEFA MM parameters differ between individual fatty acids.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Jennifer L Ford
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Raymond C Boston
- Department of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Olga V Savinova
- Sanford Research/University of South Dakota, Sioux Falls, South Dakota
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - William S Harris
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Michael H Green
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
| | - Gregory C Shearer
- Department of Nutritional Sciences; The Pennsylvania State University, University Park, Pennsylvania
- Sanford Research/University of South Dakota, Sioux Falls, South Dakota
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
3
|
Chappus-McCendie H, Chevalier L, Roberge C, Plourde M. Omega-3 PUFA metabolism and brain modifications during aging. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109662. [PMID: 31152862 DOI: 10.1016/j.pnpbp.2019.109662] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
In Canada, 5.5 million (16% of Canadians) adults are >65 years old and projections suggest this number will be approximately 20% of Canadians by 2024. A major concern regarding old age is a decline in health, especially if this entails a loss of self-sufficiency and independence caused by a decline in cognition. The brain contains 60% of fat and is one of the most concentrated organs in long chain omega-3 fatty acids such as docosahexaenoic acid (DHA). During aging, there are physiological modifications in the metabolism of lipids that could also have consequences on brain structure and levels of DHA. This review will hence discuss the physiological modifications in the metabolism of lipids during aging with a focus on long chain omega-3 and omega-6 fatty acids and also outline the structural and functional modifications of the brain during aging including brain lipid modifications and its relation to higher levels of DHA and cognition. Therefore, in this review, we outline the importance of collecting more data on the biology of aging since it might highly improve our understanding about what are «normal» modifications occurring during aging and what can become pathological.
Collapse
Affiliation(s)
- Hillary Chappus-McCendie
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Department of Medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke J1H 4C4, Canada
| | - Laurie Chevalier
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Department of Medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke J1H 4C4, Canada
| | - Claude Roberge
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Department of Medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke J1H 4C4, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Department of Medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke J1H 4C4, Canada.
| |
Collapse
|
4
|
Lambert C, Cubedo J, Padró T, Sánchez-Hernández J, Antonijoan RM, Perez A, Badimon L. Phytosterols and Omega 3 Supplementation Exert Novel Regulatory Effects on Metabolic and Inflammatory Pathways: A Proteomic Study. Nutrients 2017; 9:nu9060599. [PMID: 28608804 PMCID: PMC5490578 DOI: 10.3390/nu9060599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) remains one of the major causes of death and disability worldwide. In addition to drug treatment, nutritional interventions or supplementations are becoming a health strategy for CVD prevention. Phytosterols (PhyS) are natural components that have been shown to reduce cholesterol levels; while poly-unsaturated fatty acids (PUFA), mainly omega-3 (ω3) fatty acids, have shown to reduce triglyceride levels. Here we aimed to investigate whether the proteins in the main lipoproteins (low density lipoproteins (LDL) and high density lipoproteins (HDL)) as well as proteins in the lipid free plasma fraction (LPDP) were regulated by the intake of PhyS-milk or ω3-milk, in overweight healthy volunteers by a proteomic based systems biology approach. The study was a longitudinal crossover trial, including thirty-two healthy volunteers with body mass index (BMI) 25–35 kg/m2 (Clinical Trial: ISRCTN78753338). Basal samples before any intervention and after 4 weeks of intake of PhyS or ω3-milk were analyzed. Proteomic profiling by two dimensional electrophoresis (2-DE) followed by mass spectrometry-(MALDI/TOF), ELISA, Western blot, conventional biochemical analysis, and in-silico bioinformatics were performed. The intake of PhyS-milk did not induce changes in the lipid associated plasma protein fraction, whereas ω3-milk significantly increased apolipoprotein (Apo)- E LDL content (p = 0.043) and induced a coordinated increase in several HDL-associated proteins, Apo A–I, lecitin cholesterol acyltransferase (LCAT), paraoxonase-1 (PON-1), Apo D, and Apo L1 (p < 0.05 for all). Interestingly, PhyS-milk intake induced a reduction in inflammatory molecules not seen after ω3-milk intake. Serum amyloid P component (SAP) was reduced in the LPDP protein fraction (p = 0.001) of subjects taking PhyS-milk and C-C motif chemokine 2 (CCL2)expression detected by reverse transcription polymerase chain reaction (RT-PCR) analysis in white blood cells was significantly reduced (p = 0.013). No changes were observed in the lipid-free plasma proteome with ω3-milk. Our study provides novel results and highlights that the PhyS-milk induces attenuation of the pro-inflammatory pathways, whereas ω3-milk induces improvement in lipid metabolic pathways.
Collapse
Affiliation(s)
- Carmen Lambert
- Cardiovascular Science Institute-ICCC IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Judit Cubedo
- Cardiovascular Science Institute-ICCC IIB-Sant Pau, 08025 Barcelona, Spain.
- Ciber CV, 28029 Madrid, Spain.
| | - Teresa Padró
- Cardiovascular Science Institute-ICCC IIB-Sant Pau, 08025 Barcelona, Spain.
- Ciber CV, 28029 Madrid, Spain.
| | - Joan Sánchez-Hernández
- Ciber DEM, 28029 Madrid, Spain.
- Endocrinology Department, Hospital Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Rosa M Antonijoan
- Medicament ResearchCenter (CIM), Hospital Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Antonio Perez
- Endocrinology Department, Hospital Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - Lina Badimon
- Cardiovascular Science Institute-ICCC IIB-Sant Pau, 08025 Barcelona, Spain.
- Ciber CV, 28029 Madrid, Spain.
- Cardiovascular Research Chair UAB, 08025 Barcelona, Spain.
| |
Collapse
|
5
|
The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:25. [PMID: 27358067 PMCID: PMC4928349 DOI: 10.1186/s13195-016-0194-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
Background Apolipoprotein E (APOE) ɛ4 and low cerebrospinal fluid (CSF) amyloid-β42 (Aβ42) levels are predictors for developing Alzheimer’s disease (AD). The results of several studies indicate an interaction between docosahexaenoic acid (DHA) consumption and cognitive outcomes by APOE genotype. Our objective in the present study was to examine whether APOE ɛ4 genotype and low CSF Aβ42 levels were associated with reduced delivery of DHA to CSF in the Alzheimer’s Disease Cooperative Study-sponsored DHA clinical trial. Methods Phospholipid DHA was assayed in the plasma of 384 participants and CSF of 70 participants at baseline. Forty-four of the 70 participants completed the 18-month follow-up visit after allocation to placebo (n = 15) or DHA (n = 29). Plasma and CSF DHA levels, CSF Aβ42, Tau, and phosphorylated Tau were measured at baseline and after the 18-month intervention. Participants were divided into tertiles based on baseline Aβ42 CSF levels. To assess DHA delivery across the blood-brain barrier, the ratio of CSF to plasma DHA levels was calculated. Results At baseline, there were no significant differences between CSF or plasma phospholipid DHA levels by CSF Aβ42 tertiles or ɛ4 status. After 18 months of DHA supplementation, participants at the lowest Aβ42 tertile had significantly lower CSF DHA levels (p = 0.01) and lower CSF-to-plasma DHA ratios (p = 0.05) compared to the other tertiles. Baseline CSF Aβ42 levels were significantly lower in ɛ4 carriers than in ɛ4 noncarriers (p = 0.01). Participants carrying the ɛ4 allele (n = 25) demonstrated a less pronounced increase in CSF DHA level compared with noncarriers (n = 4), with a possible interaction effect between treatment and APOE genotype (p = 0.07). Conclusions APOE ɛ4 allele and lower CSF Aβ42 levels were associated with less transport of DHA to CSF. Brain amyloid pathology may limit the delivery of DHA to the brain in AD. Trial Registration Clinicaltrials.gov identifier: NCT00440050. Registered on 22 Feb 2007.
Collapse
|
6
|
Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer's disease. J Neuroinflammation 2016; 13:61. [PMID: 26965310 PMCID: PMC4787218 DOI: 10.1186/s12974-016-0525-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 (ω-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain function. It has largely been explored as a potential candidate to treat Alzheimer’s disease (AD). Clinical evidence favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage, DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated receptor γ (PPARγ). In conjunction with activated retinoid X receptors (RXR), PPARγ modulates inflammation, cell survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid β peptide (Aβ) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons, remove amyloid β peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on neuroinflammation and in some AD models. The evidence supports PPARγ as a preferred target for gene modulation. The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.
Collapse
Affiliation(s)
- David Heras-Sandoval
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México.,Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México
| | - Jazmin M Pérez-Rojas
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México.
| |
Collapse
|
7
|
Chouinard-Watkins R, Plourde M. Fatty acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is it contributing to higher risk of cognitive decline and coronary heart disease? Nutrients 2014; 6:4452-71. [PMID: 25333200 PMCID: PMC4210928 DOI: 10.3390/nu6104452] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein E (ApoE) is a protein playing a pivotal role in lipid homeostasis since it regulates cholesterol, triglyceride and phospholipid metabolism in the blood and the brain. APOE gene regulates the expression of this protein and has three different alleles: ε2, ε3 and ε4. Carrying an APOE4 allele is recognised as a genetic risk factor of late-onset Alzheimer’s disease (LOAD) and coronary heart disease (CHD). Consuming fatty fish, rich in long chain omega-3 fatty acids (LC omega-3), seems to be associated with risk reduction of developing LOAD and CHD but this link seems not to hold in APOE4 carriers, at least in LOAD. In CHD trials, APOE4 carriers supplemented with LC omega-3 were categorized as differential responders to the treatment with regards to CHD risk markers. This is potentially because fatty acid metabolism is disturbed in APOE4 carriers compared to the non-carriers. More specifically, homeostasis of LC omega-3 is disrupted in carriers of APOE4 allele and this is potentially because they β-oxidize more LC omega-3 than the non-carriers. Therefore, there is a potential shift in fatty acid selection for β-oxidation towards LC omega-3 which are usually highly preserved for incorporation into cell membranes.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Research Center on Aging, Health and Social Services Centre-University Institute of Geriatrics of Sherbrooke, Department of medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke, J1H 4C4, Canada.
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre-University Institute of Geriatrics of Sherbrooke, Department of medicine, Université de Sherbrooke, 1036 Belvédère Sud, Sherbrooke, J1H 4C4, Canada.
| |
Collapse
|