1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
3
|
Liu D, Ji Y, Cheng Q, Zhu Y, Zhang H, Guo Y, Cao X, Wang H. Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food Funct 2022; 13:10461-10475. [PMID: 36134474 DOI: 10.1039/d2fo02102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scope: Atherosclerosis (AS) is the leading cause of ischemic disease. However, the anti-AS effects of astaxanthin and its potential mechanisms remain unclear. This study is aimed to investigate the function of astaxanthin-rich extract (ASTE) on AS and gut microbiota as well as the difference from atorvastatin (ATO) in apolipoprotein E-deficient (ApoE-/-) mice. Methods and results: Wild type (WT) and ApoE-/- mice were divided into seven groups: the low-fat diet (LFD) and high-fat diet (HFD) groups (in both types) as well as three ApoE-/- groups based on HFD added with two doses of ASTE and one dose of ATO, respectively. After 30 weeks of intervention, results showed that ASTE significantly inhibited body weight increase, lipids accumulation in serum/liver, and AS-lesions in the aorta. Furthermore, fundus fluorescein angiography and retinal CD31 immunohistochemical staining showed that ASTE could alleviate the occurrence of AS-retinopathy. H&E staining showed that ASTE could protect the colon's mucosal epithelium from damage. The gas chromatographic and gene expression analyses showed that ASTE promoted the excretion of fecal acidic and neutral sterols from cholesterol by increasing LXRα, CYP7A1, and ABCG5/8 and decreasing FXR, NPC1L1, ACAT2, and MTTP expressions. Remarkably, the ASTE administration maintained the gut barrier by enhancing gene expression of JAM-A, Occludin, and mucin2 in the colon and reshaped gut microbiota with the feature of blooming Akkermansia. Conclusion: Our results suggested that ASTE could prevent AS in both macrovascular and/or microvascular as well as used as novel prebiotics by supporting the bile acid excretion and growth of Akkermansia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yamin Zhu
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Haibo Zhang
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Xiupeng Cao
- The First People's Hospital of Neijiang, Neijiang 641099, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
4
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhu Z, Li J, Tong R, Zhang X, Yu B. Astaxanthin suppresses End MT by LOX-1 pathway in ox-LDL-induced HUVECs. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Astaxanthin (ASX) is carotenoid with the highest antioxidant activity in various cell types and reverse atherosclerosis. However, the roles and detailed mechanisms of ASX in atherosclerosis associated endothelial injury remains unclear. Methods In vitro atherosclerosis model was established in HUVECs by incubation with oxidized low-density lipoprotein (ox-LDL). Cell viability and oxidative stress were measured. The mRNA and protein expressions of lectin-like ox-LDL receptor (LOX-1) and other related genes were determined. Results ox-LDL reduced cell viability of HUVECs, and induced oxidative stress, as evidenced by elevated cellular malondialdehyde (MDA) and decreased superoxide dismutase (SOD). Pretreatment with ASX (50, 100, 200, and 400 μM) markedly reversed the reduction in cell viability and an increase in migration of HUVECs induced by ox-LDL (50 μg/mL). ASX attenuated the increase in the endothelial-to-mesenchymal transition (EndMT) process, as evidenced by increased CD31 and decreased α-SMA and vimentin proteins by ASX treatment in HUVECs. Furthermore, ASX attenuated the increase in MDA and decrease in SOD induced by ox-LDL, increased supernatant NO production, attenuated the increase in iNOS and decrease in eNOS in HUVECs with ox-LDL. ASX enhanced mRNA and protein expressions of the lectin-like ox-LDL receptor (LOX-1), which was dependent on ASX’s antioxidant activity. The inhibitory effect of ASX on EndMT could be abolished by overexpression of LOX-1 in HUVECs induced by ox-LDL. Conclusions Our data speculate that ASX prevents ox-LDL-induced endothelial cell injury and EndMT by inducing antioxidant property (SOD and NO) and decreasing LOX-1 expression.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jinyu Li
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rui Tong
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaorong Zhang
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
6
|
Espinaco BY, Niizawa I, Marino F, Zorrilla SE, Sihufe GA. Storage stability of chia (
Salvia hispanica
L.) oil incorporated with astaxanthin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brenda Y. Espinaco
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional del Litoral (UNL) Santa Fe Argentina
| | - Ignacio Niizawa
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional del Litoral (UNL) Santa Fe Argentina
| | - Fernanda Marino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional del Litoral (UNL) Santa Fe Argentina
| | - Susana E. Zorrilla
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional del Litoral (UNL) Santa Fe Argentina
| | - Guillermo A. Sihufe
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional del Litoral (UNL) Santa Fe Argentina
| |
Collapse
|
7
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
8
|
Tamiya Y, Hamba H, Mitomo K, Furusawa M, Muramatsu T. High-cholesterol Condition Promotes Apical Periodontitis and Bone Resorption in Rats. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Hidenori Hamba
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College
| | - Keisuke Mitomo
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College
| | | | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College
| |
Collapse
|
9
|
Mularczyk M, Michalak I, Marycz K. Astaxanthin and other Nutrients from Haematococcus pluvialis-Multifunctional Applications. Mar Drugs 2020; 18:E459. [PMID: 32906619 PMCID: PMC7551667 DOI: 10.3390/md18090459] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive compounds of natural origin are gaining increasing popularity. High biological activity and bioavailability, beneficial effects on health and safety of use are some of their most desirable features. Low production and processing costs render them even more attractive. Microorganisms have been used in the food, medicinal, cosmetic and energy industries for years. Among them, microalgae have proved to be an invaluable source of beneficial compounds. Haematococcus pluvialis is known as the richest source of natural carotenoid called astaxanthin. In this paper, we focus on the cultivation methods of this green microalga, its chemical composition, extraction of astaxanthin and analysis of its antioxidant, anti-inflammatory, anti-diabetic and anticancer activities. H. pluvialis, as well as astaxanthin can be used not only for the treatment of human and animal diseases, but also as a valuable component of diet and feed.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland;
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland;
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland
| |
Collapse
|
10
|
Effect of astaxanthin on metabolic cataract in rats with type 1 diabetes mellitus. Exp Mol Pathol 2020; 113:104372. [PMID: 31923424 DOI: 10.1016/j.yexmp.2020.104372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/31/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of astaxanthin on metabolic cataract in rats with type 1 diabetes and its antioxidant capacity to lens. METHODS Rats were randomly divided into four groups (n = 8): control group, diabetes mellitus (DM) group, low-dose astaxanthin (DM + AL) and low-dose astaxanthin (DM + AH) group. A rat model of type I diabetes mellitus was established by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). After successful modeling, rats in the administration group were given different doses of astaxanthin (AST) for 12 weeks. The lens opacity of rats was observed by slit-lamp camera system. The double antibody sandwich method was used to detect the levels of advanced glycation end product (AGE), lipid peroxide/malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) in the lens. Hematoxylin-eosin (HE) staining was used to examine the morphologic changes in the lens. RESULTS The severity of cataract in the lens was obviously increased after induced by STZ, whereas it was significantly decreased after treatment with AST (p < .05, respectively). In addition, in the AST groups, the levels of AGE and MDA in the lens tissue were notably decreased when compared with those in the DM group (p < .05, respectively). However, the levels of GSH, SOD, and CAT were increased in the AST group in comparison with those in the DM group (p < .05, respectively). CONCLUSIONS Astaxanthin may play an antioxidant role in the lens. Additionally, it exerts a protective function in the lens by delaying the development and progression of metabolic cataract and inhibiting the oxidative stress of lens in diabetic rats.
Collapse
|
11
|
Kumar A, Dhaliwal N, Dhaliwal J, Dharavath RN, Chopra K. Astaxanthin attenuates oxidative stress and inflammatory responses in complete Freund-adjuvant-induced arthritis in rats. Pharmacol Rep 2019; 72:104-114. [PMID: 32016833 DOI: 10.1007/s43440-019-00022-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/15/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Astaxanthin (ATX), a natural xanthophyll carotenoid, has shown to exert significant protective effects against various diseases via its antioxidant and anti-inflammatory properties. However, its potential role in arthritis is still not reported. Therefore, the aim of the present study was to investigate the potential anti-arthritic properties of ATX against complete Freund's adjuvant (CFA)-induced arthritis rats. METHODS Adjuvant arthritis was induced by single intraplantar injection of complete Freund's adjuvant (CFA) in the left hind paw of adult female Wistar rats. ATX (25, 50 and 100 mg/kg) and indomethacin (5 mg/kg) were given orally from days 14 to 28. The anti-arthritic activity was evaluated through various nociceptive behavioral tests (mechanical allodynia, mechanical hyperalgesia, cold allodynia, and thermal hyperalgesia), paw edema assessment, and arthritis scores. Serum tumor necrosis factor-α (TNF-α), C-reactive protein (CRP) and cyclic citrullinated peptide (CCP) antibody levels were assessed. Moreover, malondialdehyde (MDA), nitrite, glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were also evaluated. RESULTS Oral administration of ATX (50 and 100 mg/kg) exhibited significant anti-arthritic activity via enhancing the nociceptive threshold, reducing paw edema and improving arthritis scores. Moreover, ATX treatment also markedly suppressed inflammatory and oxidative mediators in adjuvant-administered rats. CONCLUSIONS Our findings suggest that ATX possesses potential anti-arthritic activity, which could be attributed to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Akshay Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Navneet Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India. .,Pharmacology Research Laboratory, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro. Antioxidants (Basel) 2018; 7:antiox7100135. [PMID: 30287735 PMCID: PMC6210693 DOI: 10.3390/antiox7100135] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in that it has many different potential functions. ASX is an antioxidant that is notably more potent than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing properties to potentially reduce the incidence of cancer or inhibit the expansion of tumor cells. In this study, we tested the hypothesis that ASX would inhibit proliferation and migration of breast cancer cells in vitro. We found that application of ASX significantly reduced proliferation rates and inhibited breast cancer cell migration compared to control normal breast epithelial cells. Based on these results, further investigation of the effects of ASX on not only breast cancer cells, but other forms of tumor cells, should be carried out.
Collapse
|
13
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
14
|
Han H, Qiu F, Zhao H, Tang H, Li X, Shi D. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Xu J, Rong S, Gao H, Chen C, Yang W, Deng Q, Huang Q, Xiao L, Huang F. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats. Nutrients 2017; 9:nu9030271. [PMID: 28335388 PMCID: PMC5372934 DOI: 10.3390/nu9030271] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 2, Huangjiahu Road, Wuhan 430065, China.
| | - Hui Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Chang Chen
- Department of Gastroenterology, The First People's Hospital of Yichang, The People's Hospital of China Three Gorges University, 2 Jiefang Road, Yichang 443000, China.
- Department of Gastroenterology, The People's Hospital of China Three Gorges University, 2 Jiefang Road, Yichang 443000, China.
| | - Wei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Lingyun Xiao
- Functional Oil Laboratory Associated by Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co., LTD., 66 Jianzhong Road, Guangzhou 510665, China.
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| |
Collapse
|
16
|
Lin Y, Cheng X, Mao J, Wu D, Ren B, Xu SY, Fang ZF, Che LQ, Wu CM, Li J. Effects of different dietary n-6/n-3 polyunsaturated fatty acid ratios on boar reproduction. Lipids Health Dis 2016; 15:31. [PMID: 26884231 PMCID: PMC4756391 DOI: 10.1186/s12944-016-0193-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-3 and N-6 polyunsaturated fatty acids are widely used in reproduction, yet few studies have addressed the effects of dietary n-6/n-3 ratios on boar reproduction. The present study aimed to determine the effects of different dietary n-6/n-3 ratios on the reproductive performance of breeding boars. Thirty-two boars with body weights of 15.0 ± 1.4 kg were divided into four treatments (C, T1, T2, T3) and fed diets with different n-6/n-3 fatty acid ratios (29.06:1, 20.07:1, 1:1, 1:17.96, respectively) for 174 days. RESULTS The highest testis index was observed for treatment T2. Sperm density and total sperm number per ejaculate in the T2 treatment were significantly higher than those in all other treatments, whereas the sperm deformity rate was the lowest. Interestingly, the fatty acid compositions and ratios of sperm were consistent with dietary treatments. Acid phosphatase and fructose concentration of seminal plasma, and the total superoxide dismutase and glutathione peroxidase of sperm in T2 were higher than those in other treatments. The concentration of testosterone and prostaglandin E2 increased in boars fed on diets supplemented with fatty acids as compared with boars subjected to the C group treatment, reaching a peak at n-6/n-3 fatty acid ratios of 1:1. Furthermore, higher expression of Δ(6)-fatty acid desaturase and peroxisome proliferator activated receptor-α in spermatozoa of the T2 treatment were observed, indicating more vigorous metabolism and intensive hormonal regulation. CONCLUSIONS Our data suggest that the ideal n-6/n-3 ratio in the diet of breeding boars is 1:1, and proper balancing of n-6/n-3 fatty acids plays an important role in male reproduction.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China.
| | - Xu Cheng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Jiude Mao
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Bo Ren
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Sheng-Yu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Zheng-Feng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Lian-Qiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Cai-Mei Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625001, China
| |
Collapse
|
17
|
Mohana T, Navin AV, Jamuna S, Sakeena Sadullah MS, Niranjali Devaraj S. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins -In-vivo and in-vitro study. Food Chem Toxicol 2015; 82:96-105. [PMID: 25981678 DOI: 10.1016/j.fct.2015.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Monocyte to macrophage differentiation is a key event in the progression of atherosclerosis. An understanding on the fundamental molecular mechanisms and the identification of regulatory mechanisms behind this differentiation may aid in the identification of new therapeutic strategies. Inhibition of this phenomenon will form first line of defense in the prevention and treatment of atherosclerosis. In the current study we explored hypercholesterolemia induced monocyte to macrophage differentiation in-vivo (Wistar rats) leading to atherosclerosis and OxyLDL, M-CSF induced monocyte differentiation in-vitro (U937 cells). Oligomeric proanthocyanidin (OPC) isolated from Crataegus oxyacantha was tested for its efficacy in downregulating this differentiation and in preventing atherogenic disturbances. Cholesterol cholic acid diet induced an increased monocyte to macrophage differentiation by upregulating MCP1 and VCAM1 which induced the inflammatory cytokines that further substantiated the monocyte conversion and infiltration into the vascular walls. On addition of OxyLDL and M-CSF to U937 cells, macrophage markers CD36 and CD 68, PPARγ, MMP2 and 9 were elevated, suggesting differentiation. OPC downregulated this differentiation and thus could prevent the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Thiruchenduran Mohana
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | | | - Sanker Jamuna
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | | | | |
Collapse
|
18
|
Nunes DO, Almenara CCP, Broseghini-Filho GB, Silva MASC, Stefanon I, Vassallo DV, Padilha AS. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats. Lipids Health Dis 2014; 13:107. [PMID: 24993607 PMCID: PMC4226993 DOI: 10.1186/1476-511x-13-107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. METHODS Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. RESULTS Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. CONCLUSIONS These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alessandra S Padilha
- Department of Physiological Sciences, Federal University of Espirito Santo, Av, Marechal Campos, 1468, Maruípe, 29040-091 Vitória, ES, Brazil.
| |
Collapse
|