1
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. The ischaemic preconditioning paradox and its implications for islet isolation from heart-beating and non heart-beating donors. Sci Rep 2022; 12:19321. [PMID: 36369239 PMCID: PMC9652462 DOI: 10.1038/s41598-022-23862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Heide Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel Acreman
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul R V Johnson
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
He JX, Wang K, Zhou S, Fang XC, Zhang B, Yang Y, Wang N. Protective effect of ischemic postconditioning on ischemia reperfusion injury in steatotic rat livers. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1295. [PMID: 34532432 PMCID: PMC8422122 DOI: 10.21037/atm-21-2275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
Background Hepatic steatosis creates a significant risk of liver resection and transplantation and is extremely susceptible to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (IPostC) has been shown to attenuate I/R injury in normal livers; however, its role in steatotic livers remains unknown. The current study sought to explore whether IPostC could attenuate normothermic I/R injury in rats with steatotic livers and to investigate potential protective measures. Methods Hepatic steatosis was triggered in Wistar rats fed high-fat diets. The role of IPostC was detected in normal and steatotic livers with 30 min of ischemia and 6 h of reperfusion. Blood and liver tissues were collected to assess hepatocyte damage, lipid peroxidation, inflammatory factors, neutrophil accumulation, and adenosine triphosphate (ATP) content. Results Compared to normal livers, steatotic livers were more susceptible to I/R damage, as evidenced by incremental concentrations of liver enzymes in the blood and more severe pathological changes in the liver. Hepatic I/R injury was significantly reduced by IPostC in both normal and steatotic livers. We further found that endogenous protective measures moderated lipid peroxidation, inflammatory cytokine expression and neutrophil accumulation, and reduced follow-up hepatic injury. The ATP content of steatotic livers was also significantly lower than that of Normal livers before and after I/R injury. IPostC greatly preserved the ATP content of normal and steatotic livers with I/R injury. Conclusions IPostC appears to provide important protection against hepatic I/R injury in normal and steatotic livers under normothermic conditions. These data have important clinical implications for liver surgery and transplantation.
Collapse
Affiliation(s)
- Jia-Xing He
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Ke Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Shuai Zhou
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xiong-Chao Fang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Bo Zhang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Ying Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Li X, Chen W, Feng J, Zhao B. The effects of HIF-1α overexpression on renal injury, immune disorders and mitochondrial apoptotic pathways in renal ischemia/reperfusion rats. Transl Androl Urol 2020; 9:2157-2165. [PMID: 33209679 PMCID: PMC7658158 DOI: 10.21037/tau-20-918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Renal ischemia/reperfusion (RI/R) injury are a common pathogenesis of acute kidney injury, which may cause renal parenchyma damage clinically. Hypoxia-inducible factor-1α (HIF-1α) has protective effects on cells in regulating the metabolism, angiogenesis, erythropoiesis, and anti-apoptosis of RI/R injury. However, the specific mechanisms for HIF-1α on RI/R injury are still unclear. This study aims to investigate the effects of HIF-1α overexpression on renal function injury, immune disorder, and mitochondrial apoptosis in RI/R rats. Methods The rat model of RI/R injury was set up. The lentivirus (LV) vector of HIF-1α overexpression was constructed, and then the LV was transfected to the model rats. The rats were randomly divided into four groups: the control group, RI/R group, RI/R + LV group, and RI/R + LV-HIF-1α group for later experiments. The mRNA levels of HIF-1α were detected by RT-PCR. Proteinuria, urea nitrogen, and serum creatinine levels were detected using the relative kit. Pathological damage was detected by HE staining. Apoptosis was detected by TUNEL staining. Levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α) and interleukin-10 (IL-10) were detected by ELISA. Western blotting was used to detect the protein levels of HIF-1α, caspase-3, caspase-9, Bax, Bcl-2, and other proteins. Results Compared with the control group, the mRNA and protein levels of HIF-1α in the RI/R group were increased significantly (P<0.05). Proteinuria, urea nitrogen, serum creatinine levels were increased significantly (P<0.05). The levels of IL-6, IL-1 beta, TNF-α were increased significantly (P<0.05). The ratios of cleaved caspase-3/caspase-3, cleaved caspase-9/caspase-9, and Bax/Bcl-2 were increased significantly (P<0.05). There was a significant increase in apoptosis rate and renal pathological tissue damage (P<0.05). Compared with RI/R+LV group, the mRNA and protein levels of HIF-1α in the RI/R+LV-HIF-1α group were increased significantly (P<0.05). Proteinuria, urea nitrogen, serum creatinine levels were decreased significantly (P<0.05). IL-6, IL-1 beta, TNF-α levels were significantly decreased (P<0.05). IL-10 level was significantly increased (P<0.05). The ratios of cleaved caspase-3/caspase-3, cleaved caspase-9/caspase-9, and Bax/Bcl-2 were significantly reduced (P<0.05), showing that the pathological damage degree and the apoptosis rate was significantly lower. Conclusions HIF-1α overexpression has protective effects on renal ischemia-reperfusion rats by improving pathological injury and immune function, reducing the release of inflammatory factors, and the expression of apoptotic proteins.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wenhui Chen
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinfang Feng
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bo Zhao
- Department of Geriatrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
4
|
Ji Z, Wang L, Wang S, Liang G. [Dexmedetomidine hydrochloride up-regulates expression of hypoxia inducible factor-1α to alleviate renal ischemiareperfusion injury in diabetic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:944-949. [PMID: 31511215 DOI: 10.12122/j.issn.1673-4254.2019.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To verify whether dexmedetomidine hydrochloride (Dex) alleviates renal ischemia-reperfusion (IR) injury in diabetic rats by increasing the expression of hypoxia inducible factor-1α (HIF-1α). METHODS A rat model of type 2 diabetes mellitus was established by high-fat diet and streptozotocin injection. The rats were subjected to daily intragastric administration of 0.05 mg/kg digoxin for 7 consecutive days and intraperitoneal injection of Dex 2 h before renal IR injury induced by ligation of the bilateral renal arteries for 60 min followed by reperfusion for 120 min. After reperfusion, blood samples were taken for detection of serum creatinine (Scr) and urea nitrogen (BUN) levels. Western blotting was used to detect the expression of HIF-1α, cleaved caspase-3, Bcl-2, and Bax in the renal tissues; the expression of the HIF-1α, p-eNOS, and eNOS were detected using ELISA. The percentage of apoptotic glomerular cells was assessed using TUNEL assay. RESULTS The levels of Scr, BUN, HIF-1α, p-eNOS, and eNOS and the percentage of apoptotic cells in both normal and diabetic rats increased significantly after renal IR injury (P < 0.05). The expressions of Scr, BUN, p-eNOS, and eNOS decreased while HIF-1α expression increased significantly in Dex-treated rats with renal IR injury (P < 0.05). Compared with the non-diabetic rats, the diabetic rats showed more obvious increase in the expressions of Scr, BUN, p-eNOS, and eNOS following renal IR injury. In the diabetic rats with renal IR injury, Dex treatment prior to the injury significantly lowered the expressions of Scr, BUN, p-eNOS, eNOS, cleaved caspase-3, and Bax, decreased the percentage of apoptotic cells, and increased the levels of HIF-1a and Bcl-2 (P < 0.05). Digoxin treatment significantly antagonized the effects of Dex in the diabetic rats with renal IR injury by increasing the expressions of cleaved caspase-3 and Bax, promoting glomerular cell apoptosis, and decreasing renal expressions of HIF-1 and Bcl-2 (P < 0.05). CONCLUSIONS Dex alleviates renal IR injury in diabetic rats probably by inhibiting renal expression of HIF-1α and glomerular cell apoptosis.
Collapse
Affiliation(s)
- Zhonghua Ji
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Liping Wang
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Shiying Wang
- Health Management Center, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Genqiang Liang
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| |
Collapse
|
5
|
Zhou XB, Zou DX, Gu W, Wang D, Feng JS, Wang JY, Zhou JL. An Experimental Study on Repeated Brief Ischemia in Promoting Sciatic Nerve Repair and Regeneration in Rats. World Neurosurg 2018; 114:e11-e21. [PMID: 29374605 DOI: 10.1016/j.wneu.2018.01.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Research has shown that ischemic preconditioning reduced the severity of ischemia-reperfusion injury in brain in rats, we have a hypothesis that repeated brief ischemia has positive effects on peripheral nerve damage. This study was conducted to investigate the potential protective effects of repeated brief ischemia on peripheral nerve regeneration using a rat model of experimental sciatic nerve transection injury. METHODS Treatment groups (groups A-D) received repeated, brief ischemia every 1 day/2 days/3 days/7 days. After surgery for 4, 8, 12 weeks, we evaluated sciatic functional index test, gastrocnemius muscle wet mass, axon and nerve fiber diameter, density, G-ratio, immunohistochemistry of S-100, vascular endothelial growth factor (VEGF), and the ultrastructure of the nerves. RESULTS Sciatic functional index test and muscle wet mass were improved on the repeated brief ischemia groups. Ischemia treatment resulted in a significant increase in axon and nerve fiber density as well as S-100 and VEGF-positive cell, which indicated that repeated brief ischemia promotes Schwann cell proliferation and reconstruction. CONCLUSIONS This study exhibits the positive effects of repeated brief ischemia in sciatic nerve transection injury, possibly in part because it can improve VEGF and the physiologic state of Schwann cells in the ischemic environment and then accelerate the ability of neurite outgrow.
Collapse
Affiliation(s)
- Xiao-Bin Zhou
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China; Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - De-Xin Zou
- Department of Spine Surgery, YanTai-Shan Hospital, Shandong, People's Republic of China
| | - Wei Gu
- Department of Ophthalmology, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Shu Feng
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jiang-Yong Wang
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Cao D, Wang M, Gong J, Wei S, Gong J, Li J. Exogenous vascular endothelial growth factor delivery prior to endothelial precursor cell transplantation in orthotopic liver transplantation-induced hepatic ischemia/reperfusion injury. Liver Transpl 2017; 23:804-812. [PMID: 28187520 DOI: 10.1002/lt.24745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/31/2017] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) promotes angiogenesis in vivo. We hypothesized that exogenous delivery of VEGF prior to bone marrow-derived endothelial precursor cell (EPC) transplantation may improve orthotopic liver transplantation (OLT)-induced hepatic ischemia/reperfusion injury (HIRI). OLT between Sprague Dawley donor rats and inbred LEW Wistar recipient rats was performed in 6 experimental groups to comparatively assess the effects of the VEGF gene: an untreated normal control group, a surgical control group, a liposomal control group, a VEGF group receiving only the liposome-encapsulated VEGF plasmid, an EPC group receiving only EPCs, and an EPC+VEGF group receiving the liposome-encapsulated VEGF plasmid followed by EPCs. VEGF plasmid delivery to liver tissue, endogenous VEGF, and vascular endothelial growth factor receptor (VEGFR) expression, liver transaminase levels, hepatocellular injury levels, apoptosis, apoptotic biomarkers, hepatotrophic mitogens, angiogenesis, and nitric oxide synthase (NOS) activity were assayed after OLT. Exogenous VEGF gene delivery prior to EPC transplantation significantly increased endogenous VEGF and VEGFR expression, significantly reduced liver transaminase levels, significantly reduced hepatocellular injury levels, significantly reduced hepatic apoptosis levels, and significantly reduced several apoptotic biomarkers (ie, B cell lymphoma 2-associated X protein/B cell lymphoma 2 ratio, caspase 3 activity, and heat shock protein 70 expression) in post-OLT-induced HIRI. Moreover, VEGF gene delivery prior to EPC transplantation significantly increased hepatotrophic mitogen expression (ie, epidermal growth factor, heparin-binding epidermal growth factor-like growth factor, hepatocyte growth factor, and transforming growth factor α), angiogenesis, and NOS activity in post-OLT-induced HIRI. In conclusion, exogenous liposomal delivery of the VEGF gene prior to bone marrow-derived EPC transplantation may be an effective strategy in decreasing OLT-induced HIRI. Liver Transplantation 23 804-812 2017 AASLD.
Collapse
Affiliation(s)
- Ding Cao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junhua Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sidong Wei
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Prieto I, Monsalve M. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 2017; 12:1020-1025. [PMID: 28511345 PMCID: PMC5430574 DOI: 10.1016/j.redox.2017.04.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive Oxygen Species (ROS) are key mediators of ischemia-reperfusion injury but also required for the induction of the stress response that limits tissue injury and underlies the protection provided by ischemic-preconditioning protocols. Liver steatosis is an important risk factor for liver transplant failure. Liver steatosis is associated with mitochondrial dysfunction and excessive mitochondrial ROS production. Studies aiming at decreasing the sensibility of the steatotic liver to ischemia-reperfusion injury using pre-conditioning protocols, have shown that the steatotic liver has a reduced capacity to respond to these protocols. Recent studies indicate that these effects are related to a reduced capacity of the steatotic liver to respond to elevated ROS levels following reperfusion by inducing a compensatory response. This failure to respond to ROS is associated with reduced levels of antioxidants, mitochondrial damage, hepatocyte cell death, activation of the immune system and induction of pro-fibrotic mediators.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Feyzizadeh S, Badalzadeh R. Application of ischemic postconditioning's algorithms in tissues protection: response to methodological gaps in preclinical and clinical studies. J Cell Mol Med 2017; 21:2257-2267. [PMID: 28402080 PMCID: PMC5618671 DOI: 10.1111/jcmm.13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Ischaemic postconditioning (IPostC) was introduced for the first time by Zhao et al. as a feasible method for reduction of myocardial ischaemia–reperfusion (IR) injury. The cardioprotection by this protocol has been extensively evaluated in various species. Then, further research revealed that IPostC is a safe and convenient approach in limiting IR injury of non‐myocardial tissues such as lung, liver, kidney, intestine, skeletal muscle, brain and spinal cord. IPostC has been conducted with different algorithms, resulting in diverse effects. The possible important factors leading to these differences are the difference in activation levels of signalling pathways and protective mediators by any algorithm, presence or absence of IPostC effectors in each tissue, or intrinsic characteristics of the tissues as well as the methodological biases. Also, the conflicting results have been shown with the application of the same algorithm of IPostC in certain tissues or animal species. The effectiveness of IPostC may depend upon various parameters including the species and the tissues characteristics. For example, different heart rates and metabolic rates of the species and unequal amounts of perfusion and blood flow of the tissues should be considered as the important determinants of IPostC effectiveness and should be thought about in designing IPostC algorithms for future studies. Due to these discrepancies, there is still no optimal single IPostC algorithm applicable to any tissue or any species. This issue is the main topic of the present article.
Collapse
Affiliation(s)
- Saeid Feyzizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ling L, Gu S, Cheng Y. Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction. Mol Med Rep 2017; 15:1188-1194. [PMID: 28138705 PMCID: PMC5367360 DOI: 10.3892/mmr.2017.6143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Stem cell antigen-1-positive (Sca-1+) cardiac stem cells (CSCs) therapy for myocardial regeneration following acute myocardial infarction (AMI) is limited by insufficient cell viability and a high rate of apoptosis, due to the poor regional microenvironment. Resveratrol, which is a compound extracted from red wine, has been reported to protect myocardial tissue post‑AMI by increasing the expression of angiogenic and chemotactic factors. The present study aimed to investigate the effects of resveratrol on Sca‑1+ CSCs, and to optimize Sca‑1+ CSCs therapy for myocardial regeneration post‑AMI. C57/BL6 mice (age, 6 weeks) were divided into two groups, which received intragastric administration of PBS or 2.5 mg/kg.d resveratrol. The endogenous expression of Sca‑1+ CSCs in the heart was assessed on day 7. Furthermore, C57/BL6 mice underwent left anterior descending coronary artery ligation for the construction of an AMI model, and received an injection of 1x106 CSCs into the peri‑ischemic area (n=8/group). Mice received intragastric administration of PBS or resveratrol (2.5 mg/kg.d) for 4 weeks after cell transplantation. Echocardiography was used to evaluate cardiac function 4 weeks after cell transplantation. Capillary density and cardiomyocyte apoptosis in the peri‑ischemic myocardium were assessed by cluster of differentiation 31 immunofluorescent staining and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay, respectively. Western blot analysis was conducted to detect the protein expression levels of vascular endothelial growth factor (VEGF) and stromal cell‑derived factor (SDF)‑1α in the myocardium. Treatment with resveratrol increased the number of endogenous Sca‑1+ CSCs in heart tissue after 7 days (PBS vs. Res, 1.85±0.41/field vs. 3.14±0.26/field, P<0.05). Furthermore, intragastric administration of resveratrol significantly increased left ventricle (LV) function 4 weeks after AMI, as determined by an increase in LV fractional shortening (CSCs vs. Res + CSCs, 28.82±1.58% vs. 31.18±2.02%, P<0.05), reduced LV end‑diastolic diameter (CSCs vs. Res + CSCs, 0.37±0.01 mm vs. 0.35±0.02 mm, P<0.05), and reduced LV end‑systolic diameter (CSCs vs. Res + CSCs, 0.26±0.01 mm vs. 0.23±0.02 mm, P<0.05). These protective effects were predominantly achieved via an increase in capillary density (CSCs vs. Res + CSCs, 281.02±24.08/field vs. 329.75±36.69/field, P<0.05) and a reduction in cardiomyocyte apoptosis (CSCs vs. Res + CSCs, 1.5±0.54/field vs. 0.83±0.40/field, P<0.05) in peri‑ischemic myocardium. Western blot analysis indicated that VEGF and SDF‑1α were upregulated in resveratrol‑treated myocardium after a 7 day treatment or 4 weeks after AMI (7 days VEGF PBS vs. Res, 0.89±0.07 vs. 1.21±0.02, P<0.05; SDF‑1α PBS vs. Res, 0.66±0.04 vs. 1.33±0.04, P<0.05; 4 weeks VEGF CSCs vs. Res + CSCs, 0.54±0.03 vs. 0.93±0.13, P<0.05; SDF‑1α CSCs vs. Res + CSCs, 0.53±0.03 vs. 0.93±0.03, P<0.05). Resveratrol activated endogenous CSCs, increased capillary density and decreased cardiomyocyte apoptosis in the peri‑ischemic myocardium, and augmented the effects of CSCs transplantation. These effects may be caused by the upregulation of VEGF and SDF‑1α.
Collapse
Affiliation(s)
- Lin Ling
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shaohua Gu
- Department of Nephrology, The Third People's Hospital of Kunshan, Wuxi, Jiangsu 214000, P.R. China
| | - Yan Cheng
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
10
|
Ren C, Wang P, Wang B, Li N, Li W, Zhang C, Jin K, Ji X. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke. Restor Neurol Neurosci 2016; 33:369-79. [PMID: 25868435 PMCID: PMC4923706 DOI: 10.3233/rnn-140413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: Limb remote ischemic per-conditioning or post-conditioning has been shown to be neuroprotective after cerebral ischemic stroke. However, the effect of combining remote per-conditioning with post-conditioning on ischemic/reperfusion injury as well as the underlying mechanisms are largely unexplored. Methods: Here, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO). The limb ischemic stimulus was immediately applied after onset of focal ischemia (per-conditioning), followed by repeated short episodes of remote ischemia 24 hr after reperfusion (post-conditioning). The infarct volume, motor function, and the expression of neuroglobin (Ngb) were measured at different durations after reperfusion. Results: We found that a single episode of limb remote per-conditioning afforded short-term protection, but combining repeated remote post-conditioning during the 14 days after reperfusion significantly ameliorated cerebral ischemia/reperfusion injury. Interestingly, we also found that ischemic per- and post-conditioning significantly increased expression of Ngb, an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke, at peri-infarct regions from day 1 to day 14 following ischemia/reperfusion. Conclusion: Our results suggest that the conventional per-conditioning combined with post-conditioning may be used as a novel neuroprotective strategy against ischemia-reperfusion injury, and Ngb seems to be one of the important players in limb remote ischemia-mediated neuroprotection.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Pengcheng Wang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Weiguang Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Kunlin Jin
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| |
Collapse
|
11
|
Beyond Preconditioning: Postconditioning as an Alternative Technique in the Prevention of Liver Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8235921. [PMID: 27340509 PMCID: PMC4909928 DOI: 10.1155/2016/8235921] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023]
Abstract
Liver ischemia/reperfusion injury may significantly compromise hepatic postoperative function. Various hepatoprotective methods have been improvised, aiming at attenuating IR injury. With ischemic preconditioning (IPC), the liver is conditioned with a brief ischemic period followed by reperfusion, prior to sustained ischemia. Ischemic postconditioning (IPostC), consisting of intermittent sequential interruptions of blood flow in the early phase of reperfusion, seems to be a more feasible alternative than IPC, since the onset of reperfusion is more predictable. Regarding the potential mechanisms involved, it has been postulated that the slow intermittent oxygenation through controlled reperfusion decreases the burst production of oxygen free radicals, increases antioxidant activity, suppresses neutrophil accumulation, and modulates the apoptotic cascade. Additionally, favorable effects on mitochondrial ultrastructure and function, and upregulation of the cytoprotective properties of nitric oxide, leading to preservation of sinusoidal structure and maintenance of blood flow through the hepatic circulation could also underlie the protection afforded by postconditioning. Clinical studies are required to show whether biochemical and histological improvements afforded by the reperfusion/reocclusion cycles of postconditioning during early reperfusion can be translated to a substantial clinical benefit in liver resection and transplantation settings or to highlight more aspects of its molecular mechanisms.
Collapse
|
12
|
Kocak FE, Kucuk A, Ozyigit F, Tosun M, Kocak C, Kocak A, Ekici MF, Yaylak F, Genc O. Protective effects of simvastatin administered in the experimental hepatic ischemia-reperfusion injury rat model. J Surg Res 2015; 199:393-401. [DOI: 10.1016/j.jss.2015.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 11/26/2022]
|
13
|
Everolimus Improves Microcirculatory Derangements in Experimental Postischemic Pancreatitis Modulating the Expression of Vascular Endothelial Growth Factor, Interleukin 6, and Toll-Like Receptor 4. Pancreas 2015; 44:1245-51. [PMID: 26390417 DOI: 10.1097/mpa.0000000000000428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Ischemia/reperfusion injury (IRI) of the pancreas is a serious complication following pancreatic transplantation and hemorrhagic shock. The present study was designed to investigate the influence of the potent mammalian target of rapamycin inhibitor everolimus interfering via microvascular permeability changing key proteins hypoxia-inducible factor (HIF) and vascular endothelial growth factor on pancreatic IRI-induced microvascular disturbances. METHODS Anesthetized male Sprague-Dawley rats were assigned to 3 groups (n = 7/group): (1) sham, (2) 60-minute ischemia/reperfusion of the pancreas (I/R), and (3) I/R and everolimus (10 mg/kg BW orally). Quantification of the effective microvascular permeability (P), functional capillary density (FCD), and leukocyte-endothelial cell interaction (LEI) was performed using digital and analog intravital epifluorescence microscopy. Serum-amylase, lipase, interleukin 6, and vascular endothelial growth factor concentration were quantified using enzyme-linked immunosorbent assay. RESULTS Sham compared with I/R (P: [×10 cm/s] 0.068 ± 0.079 vs 1.516 ± 0.314; FCD: [cm/cm] 357 ± 14 vs 258 ± 13; LEI: [cells/mm] 148 ± 25 vs 349 ± 75) demonstrates a significant increase in microcirculatory damage and all previously mentioned serum parameters. Except amylase, I/R + everolimus led to a statistically significant improvement of almost all increased parameters (P: 0.434 ± 0.296, FCD: 347 ± 16, LEI: 178 ± 30). CONCLUSIONS Everolimus attenuated experimental microvascular and inflammatory IRI of the pancreas. Therefore, these results may warrant further investigation of everolimus as a therapeutic agent following clinical states with pancreatic ischemia/reperfusion.
Collapse
|
14
|
Guo Y, Feng L, Zhou Y, Sheng J, Long D, Li S, Li Y. Systematic review with meta-analysis: HIF-1α attenuates liver ischemia–reperfusion injury. Transplant Rev (Orlando) 2015; 29:127-34. [DOI: 10.1016/j.trre.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/03/2015] [Indexed: 01/17/2023]
|
15
|
Ferrigno A, Pasqua LGD, Bianchi A, Richelmi P, Vairetti M. Metabolic shift in liver: Correlation between perfusion temperature and hypoxia inducible factor-1α. World J Gastroenterol 2015; 21:1108-1116. [PMID: 25632183 PMCID: PMC4306154 DOI: 10.3748/wjg.v21.i4.1108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion.
METHODS: In this study, we correlated hypoxia inducible factor (HIF)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 °C. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; pH of the perfusate was also evaluated; HIF-1α mRNA and protein expression were analyzed by real time-polymerase chain reaction and ELISA, respectively.
RESULTS: Livers perfused at 10 and 20 °C showed no difference in lactate dehydrogenase release after 6 h of perfusion (0.96 ± 0.23 vs 0.93 ± 0.09 mU/min per g) and had lower hepatic damage as compared to 30 and 37 °C (5.63 ± 0.76 vs 527.69 ± 45.27 mU/min per g, respectively, Ps < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 °C than in livers perfused at 30 and 37 °C (0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, Ps < 0.01). No sign of hypoxia was observed at 10 and 20 °C, as highlighted by low lactate release respect to livers perfused at 30 and 37 °C (121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/mL, respectively, Ps < 0.02), and low relative HIF-1α mRNA (0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, Ps < 0.05) and protein (3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, Ps < 0.05) expression.
CONCLUSION: Livers perfused at 10 and 20 °C show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 °C.
Collapse
|
16
|
Zhang M, Li W, Yu L, Wu S. The suppressive effect of resveratrol on HIF-1α and VEGF expression after warm ischemia and reperfusion in rat liver. PLoS One 2014; 9:e109589. [PMID: 25295523 PMCID: PMC4190191 DOI: 10.1371/journal.pone.0109589] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is overexpressed in many human tumors and their metastases, and is closely associated with a more aggressive tumor phenotype. The aim of the present study was to investigate the effect of resveratrol (RES) on the expression of ischemic-induced HIF-1α and vascular endothelial growth factor (VEGF) in rat liver. Methods Twenty-four rats were randomized into Sham, ischemia/reperfusion (I/R), and RES preconditioning groups. I/R was induced by portal pedicle clamping for 60 minutes followed by reperfusion for 60 minutes. The rats in RES group underwent the same surgical procedure as I/R group, and received 20 mg/kg resveratrol intravenously 30 min prior to ischemia. Blood and liver tissue samples were collected and subjected to biochemical assays, RT-PCR, and Western blot assays. Results I/R resulted in a significant (P<0.05) increase in liver HIF-1α and VEGF at both mRNA and protein levels 60 minutes after reperfusion. The mRNA and protein expressions of HIF-1α and VEGF decreased significantly in RES group when compared to I/R group (P<0.05). Conclusion The inhibiting effect of RES on the expressions of HIF-1α and VEGF induced by I/R in rat liver suggested that HIF-1α/VEGF could be a promising drug target for RES in the development of an effective anticancer therapy for the prevention of hepatic tumor growth and metastasis.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wujun Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Liang Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
18
|
Camara-Lemarroy CR. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: Beyond ischemia-reperfusion injury. World J Gastroenterol 2014; 20:3572-3581. [PMID: 24707140 PMCID: PMC3974524 DOI: 10.3748/wjg.v20.i13.3572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions.
Collapse
|
19
|
Lu WC, Li GY, Xie H, Qiu B, Yang RM, Guo ZZ. Erythromycin pretreatment induces tolerance against focal cerebral ischemia through up-regulation of nNOS but not down-regulation of HIF-1α in rats. Neurol Sci 2013; 35:687-93. [PMID: 24277204 DOI: 10.1007/s10072-013-1584-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/12/2013] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to determine whether the antibiotic erythromycin induces tolerance against focal cerebral ischemia, and the possible underlying mechanism including the involvement of neuronal nitric oxide synthase (nNOS) and hypoxia-inducible factor-1α (HIF-1α). In rat focal cerebral ischemia models, we found that erythromycin preconditioning could significantly decrease the cerebral infarct volume and brain edema. Meanwhile, the neurological deficits from day 4 through 7 after surgery were also remarkably decreased after erythromycin preconditioning. Moreover, erythromycin preconditioning induced significantly increased nNOS levels and decreased HIF-1α levels in both mRNA and protein expression. This study for the first time indicated that erythromycin preconditioning could induce focal brain ischemic tolerance and attenuate brain injury of subsequent transient focal cerebral ischemia. The potential mechanism may be due to up-regulation of nNOS, but the HIF-1α system was not involved.
Collapse
Affiliation(s)
- Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Lee SD, Lai TW, Lin SZ, Lin CH, Hsu YH, Li CY, Wang HJ, Lee W, Su CY, Yu YL, Shyu WC. Role of stress-inducible protein-1 in recruitment of bone marrow derived cells into the ischemic brains. EMBO Mol Med 2013; 5:1227-46. [PMID: 23836498 PMCID: PMC3944463 DOI: 10.1002/emmm.201202258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022] Open
Abstract
Stress-inducible protein-1 (STI-1) is the proposed ligand for the cellular prion protein (PrPC), which is thought to facilitate recovery following stroke. Whether STI-1 expression is affected by stroke and how its signalling facilitates recovery remain elusive. Brain slices from patients that died of ischemic stroke were collected for STI-1 immunohistochemistry. These findings were compared to results from cell cultures, mice with or without the PrPC knockout, and rats. Based on these findings, molecular and pharmacological interventions were administered to investigate the underlying mechanisms and to test the possibility for therapy in experimental stroke models. STI-1 was upregulated in the ischemic brains from humans and rodents. The increase in STI-1 expression in vivo was not cell-type specific, as it was found in neurons, glia and endothelial cells. Likewise, this increase in STI-1 expression can be mimicked by sublethal hypoxia in primary cortical cultures (PCCs) in vitro, and appear to have resulted from the direct binding of the hypoxia inducible factor-1α (HIF-1α) to the STI-1 promoter. Importantly, this STI-1 signalling promoted bone marrow derived cells (BMDCs) proliferation and migration in vitro and recruitment to the ischemic brain in vivo, and augmenting its signalling facilitated neurological recovery in part by recruiting BMDCs to the ischemic brain. Our results thus identified a novel mechanism by which ischemic insults can trigger a self-protective mechanism to facilitate recovery. This work identifies HIF-1α-mediated transcription of STI-1 and PrPc interaction as leading to BMDCs recruitment into ischemic brains following stroke in both patients and animal models of stroke, highlighting novel neuroprotective possibilities.
Collapse
Affiliation(s)
- Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim JC, Shim JK, Lee S, Yoo YC, Yang SY, Kwak YL. Effect of combined remote ischemic preconditioning and postconditioning on pulmonary function in valvular heart surgery. Chest 2012; 142:467-475. [PMID: 22281799 DOI: 10.1378/chest.11-2246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the lung-protective effect of combined remote ischemic preconditioning (RIPCpre) and postconditioning (RIPCpost) in patients undergoing complex valvular heart surgery. METHODS In this randomized, placebo-controlled, double-blind trial, 54 patients were assigned to an RIPCpre plus RIPCpost group or a control group (1:1). Patients in the RIPCpre plus RIPCpost group received three 10-min cycles of right-side lower-limb ischemia of 250 mm Hg at both 10 min after anesthetic induction and weaning from cardiopulmonary bypass. The primary end point was to compare postoperative Pao(2)/Fio(2). Secondary end points were to compare pulmonary variables, incidence of acute lung injury, and inflammatory cytokines. RESULTS In both groups, Pao(2)/Fio(2) at 24 h postoperation was significantly decreased compared with each corresponding baseline value. However, intergroup comparisons of pulmonary variables, including Pao(2)/Fio(2) and incidence of acute lung injury, revealed no significant differences. Serum levels of IL-6, IL-8, IL-10, and tumor necrosis factor-α were all significantly increased in both groups compared with each corresponding baseline value, without any significant intergroup differences. There were also no significant differences in transpulmonary gradient of IL-6, IL-10, and tumor necrosis factor-α between the groups. CONCLUSIONS RIPCpre plus RIPCpost as tested in this randomized controlled trial did not provide significant pulmonary benefit following complex valvular cardiac surgery.
Collapse
Affiliation(s)
- Jong-Chan Kim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sak Lee
- Division of Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Chul Yoo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - So-Young Yang
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Koch S. Moving Towards Preconditioning for Neurological Disorders: Are We Ready for Clinical Trials? Transl Stroke Res 2012; 4:15-8. [DOI: 10.1007/s12975-012-0220-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/11/2012] [Indexed: 11/24/2022]
|
23
|
Knudsen AR, Kannerup AS, Dich R, Funch-Jensen P, Grønbaek H, Kruhøffer M, Mortensen FV. Ischemic pre- and postconditioning has pronounced effects on gene expression profiles in the rat liver after ischemia/reperfusion. Am J Physiol Gastrointest Liver Physiol 2012; 303:G482-9. [PMID: 22679003 DOI: 10.1152/ajpgi.00337.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemic pre (IPC)- and postconditioning (IPO) protect the liver against ischemia/reperfusion injuries (IRI). Conditioning involves several different trigger factors, mediators, and effectors, many of which are affected during the early phase of reperfusion, ultimately resulting in decreased liver injuries. The aim of the present study was to investigate the genomic response induced by IPC and IPO in ischemia/reperfusion-damaged rat liver biopsies. Forty-eight male Wistar rats were divided into five groups: sham (n = 8), IRI (n = 10), IPC (n = 10), IPO (n = 10), and IPC + IPO (n = 10). The rat livers were subjected to 30 min of ischemia. Liver biopsies and blood samples were taken after 30 min of reperfusion. The biopsies were analyzed using cDNA microarrays with validation by quantitative RT-PCR. The significance analysis of microarray was used to identify genes with changed expression levels. A comparison analysis of the intervention groups showed a highly increased number of genes, with significantly different expression in the conditioned groups compared with the IRI group. A total of 172 genes were identified as the most highly affected, and these genes showed similar patterns with regard to the up- and downregulated expression levels within the conditioned groups. Pathway analysis of the 172 genes identified four networks that were involved in increased gene expression, cellular growth, and proliferation. In conclusion, the present study demonstrated that IPC, IPO, and IPC + IPO had pronounced effects on the expression levels of a large number of genes during early reperfusion. IPC, IPO, and IPC + IPO seem to mediate their protective effects by regulating the same genes and genetic networks. These identified networks are known to be involved in maintaining cellular homeostasis.
Collapse
|
24
|
Wang X, Ma S, Qi G. Effect of hypoxia-inducible factor 1-alpha on hypoxia/reoxygenation-induced apoptosis in primary neonatal rat cardiomyocytes. Biochem Biophys Res Commun 2012; 417:1227-34. [DOI: 10.1016/j.bbrc.2011.12.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 12/21/2022]
|