1
|
Bhattacharya K, Chanu NR, Jha SK, Khanal P, Paudel KR. In silico design and evaluation of a multiepitope vaccine targeting the nucleoprotein of Puumala orthohantavirus. Proteins 2024; 92:1161-1176. [PMID: 38742930 DOI: 10.1002/prot.26703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
The Puumala orthohantavirus is present in the body of the bank vole (Myodes glareolus). Humans infected with this virus may develop hemorrhagic fever accompanying renal syndrome. In addition, the infection may further lead to the failure of an immune system completely. The present study aimed to propose a possible vaccine by employing bioinformatics techniques to identify B and T-cell antigens. The best multi-epitope of potential immunogenicity was generated by combining epitopes. Additionally, the linkers EAAAK, AAY, and GPGPG were utilized in order to link the epitopes successfully. Further, C-ImmSim was used to perform in silico immunological simulations upon the vaccine. For the purpose of conducting expression tests in Escherichia coli, the chimeric protein construct was cloned using Snapgene into the pET-9c vector. The designed vaccine showed adequate results, evidenced by the global population coverage and favorable immune response. The developed vaccine was found to be highly effective and to have excellent population coverage in a number of computer-based assessments. This work is fully dependent on the development of nucleoprotein-based vaccines, which would constitute a significant step forward if our findings were used in developing a global vaccination to combat the Puumala virus.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Nongmaithem Randhoni Chanu
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Faculty of Pharmaceutical Science, Assam Downtown University, Guwahati, Assam, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zamani K, Mohsenpour M, Malboobi MA. Predicting the allergenic risk of Phosphite-NAD +-Oxidoreductase and purple acid phosphatase 17 proteins in genetically modified canola using bioinformatic approaches. Food Chem Toxicol 2023; 182:114094. [PMID: 37925014 DOI: 10.1016/j.fct.2023.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
Recent advancements in the generation of high-throughput multi-omics data have provided a vast array of candidate genes for the genetic engineering of plants. However, as part of their safety assessment, newly expressed proteins in genetically modified crops must be evaluated for potential cross-reactivity with known allergens. In this study, we developed transgenic canola plants expressing the Arabidopsis thaliana PAP17 gene and a novel selectable marker composed of the ptxD gene from Pseudomonas stutzeri. To evaluate the potential allergenic cross-reactivity of the AtPAP17 and PTXD proteins expressed in transgenic canola, we applied a comprehensive approach utilizing sequence-based, motif-based, and 3D structure-based analyses. Our results demonstrate that the risk of conferring cross-reactivity with known allergens is negligible, indicating that the expression of these proteins in transgenic canola poses a low allergenic risk.
Collapse
Affiliation(s)
- Katayoun Zamani
- Department of Genetic Engineering and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31359-33151, Karaj, Iran.
| | - Motahhareh Mohsenpour
- Department of Genetic Engineering and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31359-33151, Karaj, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, Iran
| |
Collapse
|
3
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
4
|
Herman RA, Song P. Comprehensive COMPARE database reduces allergenic risk of novel food proteins. GM CROPS & FOOD 2022; 13:112-118. [PMID: 35674136 PMCID: PMC9196780 DOI: 10.1080/21645698.2022.2079180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensiveness of the allergen database used to bioinformatically compare a novel food protein with known allergens is critical to the ability to assess the allergenic risk of newly expressed proteins in genetically engineered crops. The strength of the relationship between a candidate GE protein's amino acid sequence and that of known allergens is used to predict cross-reactive risk. The number of truly novel allergen sequences added annually to the COMPARE database reflects on the comprehensiveness of our knowledge of allergen amino acid sequence diversity. Here, we investigated the most recent five years of updates to the COMPARE allergen database for truly novel entries. Results indicate that few truly novel sequences are added each year, suggesting that the database and our knowledge of allergen sequence diversity is currently quite comprehensive, and that current in silico prediction of allergenic risk for novel food proteins is robust.
Collapse
Affiliation(s)
- Rod A. Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA,CONTACT Rod A. Herman Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana46268
| | - Ping Song
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Herman RA, Zhang JXQ, Roper JM. Slow alignment of GMO allergenicity regulations with science on protein digestibility. GM CROPS & FOOD 2022; 13:126-130. [PMID: 35762305 PMCID: PMC9245576 DOI: 10.1080/21645698.2022.2093552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current science on food allergy supports the dual allergen exposure hypothesis where sensitization to allergenic proteins is favored by dermal and inhalation exposure, and tolerization against allergy is favored by exposure in the gut. This hypothesis is bolstered by the epidemiological evidence showing that regions where children are exposed early in life to allergenic foods have lower rates of allergy. This led medical experts to replace the previous recommendation to exclude commonly allergenic foods from the diets of young children with the current recommendation that such foods be introduced to children early in life. Past beliefs that lowering gut exposure would reduce the likelihood that a protein would be allergenic led regulators and risk assessors to consider digestively stable proteins to be of greater allergenic risk. This resulted in international guidance and government regulations for newly expressed proteins in genetically engineered crops that aligned with this belief. Despite empirical results showing that allergens are no more digestively stable than non-allergens, and that gut exposure favors tolerization over sensitization, regulations have not come into alignment with the current science prompting developers to continue to engineer proteins for increased digestibility. In some rare cases, this could potentially increase sensitization risk.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | - John X Q Zhang
- Regulatory and Stewardship, Corteva Agriscience, Johnston, Iowa, USA
| | - Jason M Roper
- Regulatory and Stewardship, Corteva Agriscience, Newark Delaware, USA
| |
Collapse
|
6
|
Akter S, Shahab M, Sarkar MMH, Hayat C, Banu TA, Goswami B, Jahan I, Osman E, Uzzaman MS, Habib MA, Shaikh AA, Khan MS. Immunoinformatics approach to epitope-based vaccine design against the SARS-CoV-2 in Bangladeshi patients. J Genet Eng Biotechnol 2022; 20:136. [PMID: 36125645 PMCID: PMC9487853 DOI: 10.1186/s43141-022-00410-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. RESULT The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. CONCLUSION This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.
Collapse
Affiliation(s)
- Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Eshrar Osman
- SciTech Consulting and Solutions, Dhaka, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Aftab Ali Shaikh
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh.
| |
Collapse
|
7
|
Chen F, Zhu S, Dai Z, Hao L, Luan C, Guo Q, Meng C, Zhang Y. Effects of COVID-19 and mRNA vaccines on human fertility. Hum Reprod 2021; 37:5-13. [PMID: 34734259 PMCID: PMC8689912 DOI: 10.1093/humrep/deab238] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has precipitated a global health crisis of unprecedented proportions. Because of its severe impact, multiple COVID-19 vaccines are being rapidly developed, approved and manufactured. Among them, mRNA vaccines are considered as ideal candidates with special advantages to meet this challenge. However, some serious adverse events have been reported after their application, significantly increasing concerns about the safety and efficacy of the vaccines and doubts about the necessity of vaccination. Although several fertility societies have announced that COVID-19 mRNA vaccines are unlikely to affect fertility, there is no denying that the current evidence is very limited, which is one of the reasons for vaccine hesitancy in the population, especially in pregnant women. Herein, we provide an in-depth discussion on the involvement of the male and female reproductive systems during SARS-CoV-2 infection or after vaccination. On one hand, despite the low risk of infection in the male reproductive system or fetus, COVID-19 could pose an enormous threat to human reproductive health. On the other hand, our review indicates that both men and women, especially pregnant women, have no fertility problems or increased adverse pregnancy outcomes after vaccination, and, in particular, the benefits of maternal antibodies transferred through the placenta outweigh any known or potential risks. Thus, in the case of the rapid spread of COVID-19, although further research is still required, especially a larger population-based longitudinal study, it is obviously a wise option to be vaccinated instead of suffering from serious adverse symptoms of virus infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, Jining, China
| | - Zhiqing Dai
- Department of Physiology, Jining Medical University, Jining, China
| | - Lanting Hao
- Department of Physiology, Jining Medical University, Jining, China
| | - Chun Luan
- Department of Physiology, Jining Medical University, Jining, China
| | - Qi Guo
- Department of Physiology, Jining Medical University, Jining, China
| | - Chaofan Meng
- Department of Physiology, Jining Medical University, Jining, China
| | - Yankun Zhang
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
8
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
9
|
van Ree R, Sapiter Ballerda D, Berin MC, Beuf L, Chang A, Gadermaier G, Guevera PA, Hoffmann-Sommergruber K, Islamovic E, Koski L, Kough J, Ladics GS, McClain S, McKillop KA, Mitchell-Ryan S, Narrod CA, Pereira Mouriès L, Pettit S, Poulsen LK, Silvanovich A, Song P, Teuber SS, Bowman C. The COMPARE Database: A Public Resource for Allergen Identification, Adapted for Continuous Improvement. FRONTIERS IN ALLERGY 2021; 2:700533. [PMID: 35386979 PMCID: PMC8974746 DOI: 10.3389/falgy.2021.700533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
Motivation: The availability of databases identifying allergenic proteins via a transparent and consensus-based scientific approach is of prime importance to support the safety review of genetically-modified foods and feeds, and public safety in general. Over recent years, screening for potential new allergens sequences has become more complex due to the exponential increase of genomic sequence information. To address these challenges, an international collaborative scientific group coordinated by the Health and Environmental Sciences Institute (HESI), was tasked to develop a contemporary, adaptable, high-throughput process to build the COMprehensive Protein Allergen REsource (COMPARE) database, a publicly accessible allergen sequence data resource along with bioinformatics analytical tools following guidelines of FAO/WHO and CODEX Alimentarius Commission. Results: The COMPARE process is novel in that it involves the identification of candidate sequences via automated keyword-based sorting algorithm and manual curation of the annotated sequence entries retrieved from public protein sequence databases on a yearly basis; its process is meant for continuous improvement, with updates being transparently documented with each version; as a complementary approach, a yearly key-word based search of literature databases is added to identify new allergen sequences that were not (yet) submitted to protein databases; in addition, comments from the independent peer-review panel are posted on the website to increase transparency of decision making; finally, sequence comparison capabilities associated with the COMPARE database was developed to evaluate the potential allergenicity of proteins, based on internationally recognized guidelines, FAO/WHO and CODEX Alimentarius Commission
Collapse
Affiliation(s)
- Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dexter Sapiter Ballerda
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
| | - M. Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Laurent Beuf
- Limagrain Field Seeds, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Alexander Chang
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
| | - Gabriele Gadermaier
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Paul A. Guevera
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
| | | | - Emir Islamovic
- Regulatory Science Seeds and Traits, BASF Corporation, Morrisville, NC, United States
| | - Liisa Koski
- Health and Environmental Sciences Institute (HESI), Washington, DC, United States
| | - John Kough
- Office of Pesticide Programs, Microbial Pesticides Branch, US Environmental Protection Agency, Washington, DC, United States
| | | | - Scott McClain
- Syngenta Crop Protection LLC, Research Triangle Park, NC, United States
| | - Kyle A. McKillop
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
| | | | - Clare A. Narrod
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
| | - Lucilia Pereira Mouriès
- Health and Environmental Sciences Institute (HESI), Washington, DC, United States
- *Correspondence: Lucilia Pereira Mouriès
| | - Syril Pettit
- Health and Environmental Sciences Institute (HESI), Washington, DC, United States
| | - Lars K. Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andre Silvanovich
- Bayer U.S., Crop Science Regulatory Science Building FF4, Chesterfield, MO, United States
| | - Ping Song
- Seeds Regulatory Science, Corteva Agriscience LLC, Indianapolis, IN, United States
| | - Suzanne S. Teuber
- Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- Division of Rheumatology, Allergy, and Clinical Immunology, Davis, CA, United States
- Veterans Affairs Northern California Healthcare System, Mather, CA, United States
| | - Christal Bowman
- Formerly: Human Safety Regulatory Toxicology, Bayer CropScience LP, Research Triangle Park, NC, United States
| |
Collapse
|
10
|
Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, Ali N, Zaib S, Khan A, Al-Harrasi A, Khan I. Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health 2021; 14:938-946. [PMID: 34119848 PMCID: PMC8093003 DOI: 10.1016/j.jiph.2021.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Since the SARS-CoV-2 outbreak in December 2019 in Wuhan, China, the virus has infected more than 153 million individuals across the world due to its human-to-human transmission. The USA is the most affected country having more than 32-million cases till date. Sudden high fever, pneumonia and organ failure have been observed in infected individuals. OBJECTIVES In the current situation of emerging viral disease, there is no specific vaccine, or any therapeutics available for SARS-CoV-2, thus there is a dire need to design a potential vaccine to combat the virus by developing immunity in the population. The purpose of present study was to develop a potential vaccine by targeting B and T-cell epitopes using bioinformatics approaches. METHODS B- and T-cell epitopes are predicted from novel M protein-SARS-CoV-2 for the development of a unique multiple epitope vaccine by applying bioinformatics approaches. These epitopes were analyzed and selected for their immunogenicity, antigenicity scores, and toxicity in correspondence to their ability to trigger immune response. In combination to epitopes, best multi-epitope of potential immunogenic property was constructed. The epitopes were joined using EAAAK, AAY and GPGPG linkers. RESULTS The constructed vaccine showed good results of worldwide population coverage and promising immune response. This constructed vaccine was subjected to in-silico immune simulations by C-ImmSim. Chimeric protein construct was cloned into PET28a (+) vector for expression study in Escherichia coli using snapgene. CONCLUSION This vaccine design proved effective in various computer-based immune response analysis as well as showed good population coverage. This study is solely dependent on developing M protein-based vaccine, and these in silico findings would be a breakthrough in the development of an effective vaccine to eradicate SARS-CoV-2 globally.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan.
| | - Sana Tehreem
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sundas Arshad
- Faculty of Science, Technology and Medicine, University of Luxembourg, Luxembourg
| | - Syeda Aniqa Bukhari
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Ramsha Essa
- Center of Excellence in Molecular Biology (CEMB), Punjab University, Lahore, Pakistan
| | - Nouman Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman.
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
11
|
Herman RA, Hou Z, Mirsky H, Nelson ME, Mathesius CA, Roper JM. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Res 2021; 30:201-206. [PMID: 33761048 PMCID: PMC8026442 DOI: 10.1007/s11248-021-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Zhenglin Hou
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Jason M Roper
- Corteva Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
12
|
Exaptation of Retroviral Syncytin for Development of Syncytialized Placenta, Its Limited Homology to the SARS-CoV-2 Spike Protein and Arguments against Disturbing Narrative in the Context of COVID-19 Vaccination. BIOLOGY 2021; 10:biology10030238. [PMID: 33808658 PMCID: PMC8003504 DOI: 10.3390/biology10030238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The anti-vaccination movement claims an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin, which plays a role in human placentation and the SARS-CoV-2 spike protein. We argue that because of very low sequence similarity between human syncytin-1 and the SARS-CoV-2 S protein, it is unlikely that any S protein-specific SARS-CoV-2 vaccine would generate an immune response which would affect fertility and pregnancy. However, further evaluation of potential impacts of COVID-19 vaccines on fertility, placentation, pregnancy and general health of mother and newborn is required. Abstract Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.
Collapse
|
13
|
Herman RA, Song P, Mirsky HP, Roper JM. Evidence-based regulations for bioinformatic prediction of allergen cross-reactivity are needed. Regul Toxicol Pharmacol 2020; 120:104841. [PMID: 33333099 DOI: 10.1016/j.yrtph.2020.104841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022]
Abstract
The bioinformatic criteria adopted by regulatory agencies to predict the potential cross reactivity between newly expressed proteins in genetically engineered crops and known allergens involves amino acid identity thresholds and was formulated nearly two decades ago based on the opinion of allergy experts. Over the subsequent years, empirical evidence has been developed indicating that better bioinformatic tools based on amino acid similarity are available to detect real allergen cross-reactive risk while substantially reducing false-positive detections. Although the formulation of safety regulations, in the absence of empirical evidence, may require reliance on expert opinion, such expert opinion should not trump empirical evidence once it becomes available. The failure of regulation to maintain consistency with the best available scientific evidence diminishes its value and creates arbitrary barriers to the use of beneficial technologies by society.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Ping Song
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA
| | - Henry P Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jason M Roper
- Corteva Agriscience, P.O. Box 30 Newark DE, 19714, USA
| |
Collapse
|
14
|
Parisi K, Poon S, Renda RF, Sahota G, English J, Yalpani N, Bleackley MR, Anderson MA, van der Weerden NL. Improving the Digestibility of Plant Defensins to Meet Regulatory Requirements for Transgene Products in Crop Protection. FRONTIERS IN PLANT SCIENCE 2020; 11:1227. [PMID: 32922418 PMCID: PMC7456892 DOI: 10.3389/fpls.2020.01227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 06/01/2023]
Abstract
Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Rosemary F. Renda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Gurinder Sahota
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - James English
- Maxygen LLC, Sunnyvale, CA, United States
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
| | - Nasser Yalpani
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Mark R. Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Nicole L. van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Maurer-Stroh S, Krutz NL, Kern PS, Gunalan V, Nguyen MN, Limviphuvadh V, Eisenhaber F, Gerberick GF. AllerCatPro-prediction of protein allergenicity potential from the protein sequence. Bioinformatics 2020; 35:3020-3027. [PMID: 30657872 PMCID: PMC6736023 DOI: 10.1093/bioinformatics/btz029] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Motivation Due to the risk of inducing an immediate Type I (IgE-mediated) allergic response, proteins intended for use in consumer products must be investigated for their allergenic potential before introduction into the marketplace. The FAO/WHO guidelines for computational assessment of allergenic potential of proteins based on short peptide hits and linear sequence window identity thresholds misclassify many proteins as allergens. Results We developed AllerCatPro which predicts the allergenic potential of proteins based on similarity of their 3D protein structure as well as their amino acid sequence compared with a data set of known protein allergens comprising of 4180 unique allergenic protein sequences derived from the union of the major databases Food Allergy Research and Resource Program, Comprehensive Protein Allergen Resource, WHO/International Union of Immunological Societies, UniProtKB and Allergome. We extended the hexamer hit rule by removing peptides with high probability of random occurrence measured by sequence entropy as well as requiring 3 or more hexamer hits consistent with natural linear epitope patterns in known allergens. This is complemented with a Gluten-like repeat pattern detection. We also switched from a linear sequence window similarity to a B-cell epitope-like 3D surface similarity window which became possible through extensive 3D structure modeling covering the majority (74%) of allergens. In case no structure similarity is found, the decision workflow reverts to the old linear sequence window rule. The overall accuracy of AllerCatPro is 84% compared with other current methods which range from 51 to 73%. Both the FAO/WHO rules and AllerCatPro achieve highest sensitivity but AllerCatPro provides a 37-fold increase in specificity. Availability and implementation https://allercatpro.bii.a-star.edu.sg/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Nora L Krutz
- The Procter & Gamble Services Company, Strombeek-Bever, Belgium
| | - Petra S Kern
- The Procter & Gamble Services Company, Strombeek-Bever, Belgium
| | - Vithiagaran Gunalan
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Minh N Nguyen
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Vachiranee Limviphuvadh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Frank Eisenhaber
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
16
|
Abstract
Bioinformatic amino acid sequence searches are used, in part, to assess the potential allergenic risk of newly expressed proteins in genetically engineered crops. Previous work has demonstrated that the searches required by government regulatory agencies falsely implicate many proteins from rarely allergenic crops as an allergenic risk. However, many proteins are found in crops at concentrations that may be insufficient to cause allergy. Here we used a recently developed set of high-abundance non-allergenic proteins to determine the false-positive rates for several algorithms required by regulatory bodies, and also for an alternative 1:1 FASTA approach previously found to be equally sensitive to the official sliding-window method, but far more selective. The current investigation confirms these earlier findings while addressing dietary exposure.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| | - Ping Song
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| |
Collapse
|
17
|
Safety assessment of miraculin using in silico and in vitro digestibility analyses. Food Chem Toxicol 2019; 133:110762. [PMID: 31421212 DOI: 10.1016/j.fct.2019.110762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022]
Abstract
Miraculin is a glycoprotein with the ability to make sour substances taste sweet. The safety of miraculin has been evaluated using an approach proposed by the Food and Agriculture Organization of the United Nations and the World Health Organization for assessing the safety of novel proteins. Miraculin was shown to be fully and rapidly digested by pepsin in an in vitro digestibility assay. The proteomic analysis of miraculin's pepsin digests further corroborated that it is highly unlikely that any of the protein will remain intact within the gastrointestinal tract for potential absorption. The potential allergenicity and toxigenicity of miraculin, investigated using in silico bioinformatic analyses, demonstrated that miraculin does not represent a risk of allergy or toxicity to humans with low potential for cross-reactivity with other allergens. The results of a sensory study, characterizing the taste receptor activity of miraculin, showed that the taste-modifying effect of miraculin at the concentration intended for product development has a rapid onset and disappearance with no desensitizing impact on the receptor. Overall, the results of this study demonstrate that the use of miraculin to impact the sensory qualities of orally administered products with a bitter/sour taste profile is not associated with any safety concerns.
Collapse
|
18
|
Volarath P, Zang Y, Kabadi SV. Application of Computational Methods for the Safety Assessment of Food Ingredients. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-16443-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Ladics GS. Assessment of the potential allergenicity of genetically-engineered food crops. J Immunotoxicol 2018; 16:43-53. [PMID: 30409058 DOI: 10.1080/1547691x.2018.1533904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An extensive safety assessment process exists for genetically-engineered (GE) crops. The assessment includes an evaluation of the introduced protein as well as the crop containing the protein with the goal of demonstrating the GE crop is "as-safe-as" non-GE crops in the food supply. One of the evaluations for GE crops is to assess the expressed protein for allergenic potential. Currently, no single factor is recognized as a predictor for protein allergenicity. Therefore, a weight-of-the-evidence approach, which accounts for a variety of factors and approaches for an overall assessment of allergenic potential, is conducted. This assessment includes an evaluation of the history of exposure and safety of the gene(s) source; protein structure (e.g. amino acid sequence identity to human allergens); stability of the protein to pepsin digestion in vitro; heat stability of the protein; glycosylation status; and when appropriate, specific IgE binding studies with sera from relevant clinically allergic subjects. Since GE crops were first commercialized over 20 years ago, there is no proof that the introduced novel protein(s) in any commercialized GE food crop has caused food allergy.
Collapse
|
20
|
Song P, Podevin N, Mirsky H, Anderson J, Delaney B, Mathesius C, Rowe L, Herman RA. Q-X1-P-X2 motif search for potential celiac disease risk has poor selectivity. Regul Toxicol Pharmacol 2018; 99:233-237. [PMID: 30266240 DOI: 10.1016/j.yrtph.2018.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/24/2022]
Abstract
The European Food Safety Authority (EFSA) recently published guidelines for assessment of potential celiac disease risk for newly expressed proteins in genetically modified (GM) crops. This novel step-wise approach prescribes, in part, how to conduct sequence identity searches between a newly expressed protein and known celiac disease peptides including a Q/E-X1-P-X2 amino acid motif. To evaluate the specificity of the recommended sequence identity searches in the context of risk assessment, protein sequences from celiac disease causing crops, as well as from crops not associated with celiac disease, were compared with known HLA-DQ restricted epitopes and searched for the presence of motifs followed by peptide analysis. Searches for the presence of the Q/E-X1-P-X2-motif were found to generate a high proportion of false-positive hits irrelevant to celiac disease risk. Identification of a 9mer exact match between a newly expressed protein and the known celiac disease peptides (recommended by the guideline) along with a supplementary sequence comparisons (suggested by FARRP/AllergenOnline) is considered better suited to more specifically capture the potential risk of a newly expressed protein for celiac disease.
Collapse
Affiliation(s)
- Ping Song
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA.
| | - Nancy Podevin
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Henry Mirsky
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Jennifer Anderson
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Bryan Delaney
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Carey Mathesius
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Laura Rowe
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Rod A Herman
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
21
|
Herman RA, Ekmay RD, Schafer BW, Song P, Fast BJ, Papineni S, Shan G, Juberg DR. Food and feed safety of DAS-444Ø6-6 herbicide-tolerant soybean. Regul Toxicol Pharmacol 2018; 94:70-74. [PMID: 29366656 DOI: 10.1016/j.yrtph.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/17/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
Abstract
DAS-444Ø6-6 soybean was genetically engineered (GE) to withstand applications of three different herbicides. Tolerance to glufosinate and glyphosate is achieved through expression of the phosphinothricin acetyltransferase (PAT) and double-mutated maize 5-enolpyruvyl shikimate-3-phosphate synthase (2mEPSPS) enzymes, respectively. These proteins are expressed in currently commercialized crops and represent no novel risk. Tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) is achieved through expression of the aryloxyalkanoate dioxygenase 12 (AAD-12) enzyme, which is novel in crops. The safety of the AAD-12 protein and DAS-444Ø6-6 event was assessed for food and feed safety based on the weight of evidence and found to be as safe as non-GE soybean.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Ricardo D Ekmay
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Barry W Schafer
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Ping Song
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Brandon J Fast
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Sabitha Papineni
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Guomin Shan
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Daland R Juberg
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
22
|
Herman RA, Ladics GS. Allergenic sensitization versus elicitation risk criteria for novel food proteins. Regul Toxicol Pharmacol 2018; 94:283-285. [PMID: 29481837 DOI: 10.1016/j.yrtph.2018.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/16/2023]
Abstract
The value of criteria used in the weight-of-evidence assessment of allergenic risk of genetically modified (GM) crops has been debated. This debate may originate, in part, from not specifying if the criteria are intended to contribute to the assessment of sensitization risk or elicitation risk. Here, this distinction is explicitly discussed in the context of exposure and hazard. GM crops with structural relationships with known allergens or sourced from an organism known to cause allergy (hazard) are screened for IgE-antibody reactivity using serum from sensitized individuals. If IgE reactivity is observed, the GM crop is not developed. While digestive and heat stability impact exposure and thus the elicitation risk to sensitized individuals, these attributes are not interpretable relative to sensitization risk. For novel food proteins with no identified hazard, heat stability cannot be validly assessed because relevant IgE antibodies are not available. Likewise, the uncertain and sometime non-monotonic dose relationship between oral exposure to allergens and sensitization makes digestive stability a poor predictor of sensitization risk. It is hoped that by explicitly distinguishing between sensitization risk and elicitation risk, some of the debate surrounding the weight-of evidence criteria for predicting the allergenic risk of GM crops can be resolved.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, United States.
| | - Gregory S Ladics
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19711, United States
| |
Collapse
|
23
|
Remington B, Broekman HCH, Blom WM, Capt A, Crevel RWR, Dimitrov I, Faeste CK, Fernandez-Canton R, Giavi S, Houben GF, Glenn KC, Madsen CB, Kruizinga AK, Constable A. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol 2017; 112:97-107. [PMID: 29258956 DOI: 10.1016/j.fct.2017.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
The development and introduction of new dietary protein sources has the potential to improve food supply sustainability. Understanding the potential allergenicity of these new or modified proteins is crucial to ensure protection of public health. Exposure to new proteins may result in de novo sensitization, with or without clinical allergy, or clinical reactions through cross-reactivity. In this paper we review the potential of current methodologies (in silico, in vitro degradation, in vitro IgE binding, animal models and clinical studies) to address these outcomes for risk assessment purposes for new proteins, and especially to identify and characterise the risk of sensitization for IgE mediated allergy from oral exposure. Existing tools and tests are capable of assessing potential crossreactivity. However, there are few possibilities to assess the hazard due to de novo sensitization. The only methods available are in vivo models, but many limitations exist to use them for assessing risk. We conclude that there is a need to understand which criteria adequately define allergenicity for risk assessment purposes, and from these criteria develop a more suitable battery of tests to distinguish between proteins of high and low allergenicity, which can then be applied to assess new proteins with unknown risks.
Collapse
Affiliation(s)
| | - H C H Broekman
- Dep. Dermatology/Allergology, University Medical Centre Utrecht (UMCU), P.O. Box 85500, The Netherlands
| | | | - A Capt
- Bayer SAS, Sophia Antipolis, France
| | - R W R Crevel
- Safety & Environmental Assurance Centre, Unilever, Bedford, UK
| | - I Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, 1000 Bulgaria
| | - C K Faeste
- Norwegian Veterinary Institute, Oslo, Norway
| | - R Fernandez-Canton
- Monsanto Europe S.A., Avenue de Tervuren 270-272, B-1150 Brussels, Belgium
| | - S Giavi
- Allergy Department, 2nd Paediatric Clinic, University of Athens, Athens, Greece
| | | | - K C Glenn
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO 63017, USA
| | - C B Madsen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | - A Constable
- Nestec Ltd, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
24
|
Song P, Herman R, Kumpatla S. 1:1 FASTA update: Using the power of E-values in FASTA to detect potential allergen cross-reactivity. Toxicol Rep 2015; 2:1145-1148. [PMID: 28962455 PMCID: PMC5598423 DOI: 10.1016/j.toxrep.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022] Open
Abstract
In the context of regulatory assessment of transgenic proteins for potential allergenicity, a previous investigation demonstrated that a 1:1 FASTA comparison using an E-value of 1.0E-09 as a criterion is superior to the conventional FASTA search (using the whole sequence as a query) for >35% identity over 80 amino acids, but with improved specificity. A further study, using groups of known cross-reactive peanut allergens, indicates the sensitivity of this approach is superior to the conventional FASTA search and equivalent to 80-mer sliding window FASTA search recommended by WHO/FAO. Specifically, the 1:1 FASTA approach eliminated the technical issues resulting from lack of identification of short query sequences with high identity to known allergens, or high identity over short amino acid stretches, and different E-value settings when searching for >35% identity over 80aa. Based on the performance of this simple application of existing bioinformatics tools, and its ease of implementation and interpretation in the context of a regulatory assessment, we advocate that adoption of this 1:1 FASTA approach as a supplement to the FAO/WHO/ CODEX criterion (>35% identity over 80aa) formulated 13 years ago. Adoption of this approach eliminates many biologically irrelevant homology hits generated by the FAO/WHO/CODEX criterion and improves the safety assessment of GM crops.
Collapse
Affiliation(s)
- Ping Song
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Rod Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Siva Kumpatla
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| |
Collapse
|
25
|
Bushey DF, Bannon GA, Delaney BF, Graser G, Hefford M, Jiang X, Lee TC, Madduri KM, Pariza M, Privalle LS, Ranjan R, Saab-Rincon G, Schafer BW, Thelen JJ, Zhang JX, Harper MS. Characteristics and safety assessment of intractable proteins in genetically modified crops. Regul Toxicol Pharmacol 2014; 69:154-70. [DOI: 10.1016/j.yrtph.2014.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/07/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
26
|
Cecil DL, Holt GE, Park KH, Gad E, Rastetter L, Childs J, Higgins D, Disis ML. Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity. Cancer Res 2014; 74:2710-8. [PMID: 24778415 DOI: 10.1158/0008-5472.can-13-3286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunization against self-tumor antigens can induce T-regulatory cells, which inhibit proliferation of type I CD4(+) T-helper (TH1) and CD8(+) cytotoxic T cells. Type I T cells are required for potent antitumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting insulin-like growth factor-binding protein (IGFBP-2) and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and interleukin (IL)-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly TH1 whereas the C-terminus stimulated TH2 and mixed TH1/TH2 responses. Epitope-specific TH2 demonstrated a higher functional avidity for antigen than epitopes, which induced IFN-γ (P = 0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T cell lines expanded from the C-terminus vaccinated animals secreted significantly more type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T cells secreted TH1 cytokines and significantly inhibited tumor growth, as compared with naïve T cells, when adoptively transferred (P = 0.005). To determine whether removal of TH2-inducing epitopes had any effect on the vaccinated antitumor response, we immunized mice with the N-terminus, C-terminus, and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (P < 0.001) as compared with the C-terminus vaccine, which had no antitumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the antitumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes.
Collapse
Affiliation(s)
- Denise L Cecil
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Gregory E Holt
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Kyong Hwa Park
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Ekram Gad
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Lauren Rastetter
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Jennifer Childs
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Doreen Higgins
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| | - Mary L Disis
- Authors' Affiliations: Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami, Miami, Florida; and Division of Oncology/Hematology, Department of Internal Medicine, Korea University, Seoul, Korea
| |
Collapse
|
27
|
|
28
|
Mirsky HP, Cressman RF, Ladics GS. Comparative assessment of multiple criteria for the in silico prediction of cross-reactivity of proteins to known allergens. Regul Toxicol Pharmacol 2013; 67:232-9. [PMID: 23933007 DOI: 10.1016/j.yrtph.2013.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Genetically modified crops are becoming important components of a sustainable food supply and must be brought to market efficiently while also safeguarding the public from cross-reactivity of novel proteins to known allergens. Bioinformatic assessments can help to identify proteins warranting further experimental checks for cross-reactivity. This study is a large-scale in silico evaluation of assessment criteria, including searches for: alignments between a query and an allergen having ≥ 35% identity over a length ≥ 80; any sequence (of some minimum length) found in both a query and an allergen; any alignment between a query and an allergen with an E-value below some threshold. The criteria and an allergen database (AllergenOnline) are used to assess 27,243 Viridiplantae proteins for potential allergenicity. (A protein is classed as a "real allergen" if it exceeds a test-specific level of identity to an AllergenOnline entry; assessment of real allergens in the query set is against a reduced database from which the identifying allergen has been removed.) Each criterion's ability to minimize false positives without increasing false negative levels of current methods is determined. At best, the data show a reduction in false positives to ∼6% (from ∼10% under current methods) without any increase in false negatives.
Collapse
Affiliation(s)
- Henry P Mirsky
- DuPont Pioneer, Route 141, Henry Clay Bldg, #400, Wilmington, DE 19880-0400, USA.
| | | | | |
Collapse
|
29
|
Madduri KM, Schafer BW, Hasler JM, Lin G, Foster ML, Embrey SK, Sastry-Dent L, Song P, Larrinua IM, Gachotte DJ, Herman RA. Preliminary safety assessment of a membrane-bound delta 9 desaturase candidate protein for transgenic oilseed crops. Food Chem Toxicol 2012; 50:3776-84. [DOI: 10.1016/j.fct.2012.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 11/24/2022]
|
30
|
Bragin AO, Demenkov PS, Kolchanov NA, Ivanisenko VA. Accuracy of protein allergenicity prediction can be improved by taking into account data on allergenic protein discontinuous peptides. J Biomol Struct Dyn 2012; 31:59-64. [PMID: 22804354 DOI: 10.1080/07391102.2012.691362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Allergy poses major health problems in industrialized countries, affecting over 20% of the population. Proteins from transgenic foods, cosmetics, animal hair, and other ubiquitous sources can be allergens. For this reason, development of improved methods for the prediction of potential allergenicity of proteins is timely. The currently available approaches to allergenicity prediction are numerous. Some approaches relied heavily on information on protein three-dimensional (3D) structure for allergenicity prediction. They required knowledge about 3D structure of query protein, thereby considerably restricting analysis to only those proteins whose 3D structure was known. As a consequence, many proteins with unknown structure could be overlooked. We developed a new method for allergenicity prediction, using information on protein 3D structure only for training. Three-dimensional structures of known allergenic proteins were used for representing protein surface as patches designated as discontinuous peptides. Allergenicity was predicted through search of such peptides in query protein sequences. It was demonstrated that the information on the discontinuous peptides made feasible better prediction of allergenic proteins. The allergenicity prediction method is available at http://www-bionet.sscc.ru/psd/cgi-bin/programs/Allergen/allergen.cgi .
Collapse
Affiliation(s)
- Anatoly O Bragin
- Institute of Cytology and Genetics, Lavrentiev ave.10, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
31
|
Suggested improvements for the allergenicity assessment of genetically modified plants used in foods. Curr Allergy Asthma Rep 2011; 11:317-24. [PMID: 21487714 PMCID: PMC3130127 DOI: 10.1007/s11882-011-0195-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety.
Collapse
|