1
|
Proteomic analysis of alcohol-associated hepatitis reveals glycoprotein NMB (GPNMB) as a novel hepatic and serum biomarker. Alcohol 2022; 99:35-48. [PMID: 34923085 PMCID: PMC8919678 DOI: 10.1016/j.alcohol.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Alcohol consumption remains a leading cause of liver disease worldwide, resulting in a complex array of hepatic pathologies, including steatosis, steatohepatitis, and cirrhosis. Individuals who progress to a rarer form of alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), require immediate life-saving intervention in the form of liver transplantation. Rapid onset of AH is poorly understood and the metabolic mechanisms contributing to the progression to liver failure remain undetermined. While multiple mechanisms have been identified that contribute to ALD, no cures exist and mortality from AH remains high. To identify novel pathways associated with AH, our group utilized proteomics to investigate AH-specific biomarkers in liver explant tissues. The goal of the present study was to determine changes in the proteome as well as epigenetic changes occurring in AH. Protein abundance and acetylomic analyses were performed utilizing nHPLC-MS/MS, revealing significant changes to proteins associated with metabolic and inflammatory fibrosis pathways. Here, we describe a novel hepatic and serum biomarker of AH, glycoprotein NMB (GPNMB). The anti-inflammatory protein GPNMB was significantly increased in AH explant liver and serum compared to healthy donors by 50-fold and 6.5-fold, respectively. Further, bioinformatics analyses identified an AH-dependent decrease in protein abundance across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. The greatest increases in protein abundance were observed in pathways for focal adhesion, lysosome, phagosome, and actin cytoskeleton. In contrast with the hyperacetylation observed in murine models of ALD, protein acetylation was decreased in AH compared to normal liver across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. Interestingly, immunoblot analysis found epigenetic marks were significantly increased in AH explants, including Histone H3K9 and H2BK5 acetylation. The increased acetylation of histones likely plays a role in the altered proteomic profile observed, including increases in GPNMB. Indeed, our results reveal that the AH proteome is dramatically impacted through unanticipated and unknown mechanisms. Understanding the origin and consequences of these changes will yield new mechanistic insight for ALD as well as identify novel hepatic and serum biomarkers, such as GPNMB.
Collapse
|
2
|
Yin L, Zhang Y, Shi H, Feng Y, Zhang Z, Zhang L. Proteomic profiling of hepatic stellate cells in alcohol liver fibrosis reveals proteins involved in collagen production. Alcohol 2020; 86:81-91. [PMID: 32171770 DOI: 10.1016/j.alcohol.2020.02.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation has central functions in alcohol-induced liver fibrosis. Proteins of HSCs in alcoholic liver fibrosis (ALF) are still not completely understood. Here, we performed a proteomic study to discover proteins related to ALF using HSCs isolated from a rat model. METHODS Sprague-Dawley rats were fed with ethanol for 2 or 6 weeks. Liver histology was assessed using Sirius red and Oil red O staining. HSCs were enriched by using Percoll density gradient centrifugation, and analyzed using flow cytometry. Proteins extracted from HSCs were separated using two-dimensional electrophoresis (2DE). Differentially expressed proteins were identified using liquid chromatography-mass spectrometry (LC-MS). The characteristics of the differentially expressed proteins were analyzed using the UniProtKB database and STRING software. The mRNA levels of two differentially expressed proteins were analyzed using real-time RT-PCR, of which NADH dehydrogenase (ubiquinone) flavoprotein 2, mitochondrial (Ndufv2) was further investigated using Western blot (WB) and immunohistochemical analysis in the ALF model and human liver tissues. The relationship between Ndufv2 and alcohol stimulation was evaluated using WB. Next, Ndufv2 was knocked-down by shRNA in the HSC-T6 cell line. Three genes (encoding collagen, metalloproteinase inhibitor 1 [TIMP-1], and α-smooth muscle actin [a-SMA]) related to HSC activation were detected. RESULTS An ALF model was successfully established, with a liver fibrosis score of 1-2 (S1-2), and some big fat vacuoles development. Twenty-one non-abundant proteins with more than a 2-fold difference were identified using mass spectrometry, including 7 upregulated and 14 downregulated proteins. These differential proteins are a response to antigen presentation, mitochondrial metabolism, ethanol, and collagen degradation. Among them, two upregulated proteins (Ndufv2 and ATP synthase subunit alpha, mitochondrial [ATP5a1]) were involved in mitochondrial metabolism in ALF, and showed concurrent changes in mRNA and protein levels. Ndufv2 was upregulated in HSCs, as shown by WB, in non-parenchymal cells (NPCs) in the rat model and human liver tissues, and detected using immunohistochemistry. Ndufv2 was also upregulated after alcohol stimulation. Following Ndufv2 knockdown, collagen, TIMP-1, and α-SMA were downregulated compared with that in the controls. CONCLUSIONS A proteomic study was performed to discover proteins related to ALF in HSCs isolated from a rat model. Twenty-one differentially expressed proteins were identified, including proteins involved in mitochondrial metabolism and antigen presentation. Ndufv2, an upregulated protein in ALF, might be involved in ALF through regulating the production of fibrosis factors.
Collapse
|
3
|
Meier EM, Rein-Fischboeck L, Pohl R, Wanninger J, Hoy AJ, Grewal T, Eisinger K, Krautbauer S, Liebisch G, Weiss TS, Buechler C. Annexin A6 protein is downregulated in human hepatocellular carcinoma. Mol Cell Biochem 2016; 418:81-90. [PMID: 27334756 DOI: 10.1007/s11010-016-2735-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Annexin A6 (AnxA6) is a lipid-binding protein highly expressed in the liver, regulating cholesterol homeostasis and signaling pathways with a role in liver physiology. Here, we analyzed whether hepatic AnxA6 levels are affected by pathological conditions that are associated with liver dysfunction and liver injury. AnxA6 levels in the fatty liver of mice fed a high-fat diet, in ob/ob and db/db animals and in human fatty liver are comparable to controls. Similarly, AnxA6 levels appear unaffected in murine nonalcoholic steatohepatitis and human liver fibrosis. Accordingly, adiponectin, lysophosphatidylcholine, palmitate, and TGFbeta, all of which have a role in liver injury, do not affect AnxA6 expression in human hepatocytes. Likewise, adiponectin and IL8 do not alter AnxA6 levels in primary human hepatic stellate cells. However, in hepatic tumors of 18 patients, AnxA6 protein levels are substantially reduced compared to nontumorous tissues. AnxA6 mRNA is even increased in the tumors suggesting that posttranscriptional mechanisms are involved herein. Lipidomic analysis shows trends toward elevated cholesteryl ester and sphingomyelin in the tumor samples, yet the ratio of tumor to nontumorous AnxA6 does not correlate with these lipids. The current study shows that AnxA6 is specifically reduced in human hepatocellular carcinoma suggesting a role of this protein in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Elisabeth M Meier
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Andrew J Hoy
- Department of Physiology, School of Medical Sciences and Bosch Institute, Sydney Medical School, Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Thomas S Weiss
- Regensburg University Hospital, University Children Hospital (KUNO), Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.
| |
Collapse
|
4
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Wang Y, Kou Y, Wang X, Cederbaum A, Wang R. Multifactorial comparative proteomic study of cytochrome P450 2E1 function in chronic alcohol administration. PLoS One 2014; 9:e92504. [PMID: 24658151 PMCID: PMC3962406 DOI: 10.1371/journal.pone.0092504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022] Open
Abstract
With the use of iTRAQ technique, a multifactorial comparative proteomic study can be performed. In this study, to obtain an overview of ethanol, CYP2E1 and gender effects on liver injury and gain more insight into the underlying molecular mechanism, mouse liver proteomes were quantitatively analyzed using iTRAQ under eight conditions including mice of different genders, wild type versus CYP2E1 knockout, and normal versus alcohol diet. A series of statistical and bioinformatic analyses were explored to simplify and clarify multifactorial comparative proteomic data. First, with the Principle Component analysis, six proteins, CYP2E1, FAM25, CA3, BHMT, HIBADH and ECHS1, involved in oxidation reduction, energy and lipid metabolism and amino acid metabolism, were identified as the most differentially expressed gene products across all of the experimental conditions of our chronic alcoholism model. Second, hierarchical clustering analysis showed CYP2E1 knockout played a primary role in the overall differential protein expression compared with ethanol and gender factors. Furthermore, pair-wise multiple comparisons have revealed that the only significant expression difference lied in wild-type and CYP2E1 knockout mice both treated with ethanol. Third, K-mean clustering analysis indicated that the CYP2E1 knockout had the reverse effect on ethanol induced oxidative stress and lipid oxidation. More importantly, IPA analysis of proteomic data inferred that the gene expressions of two upstream regulators, NRF2 and PPARα, regulated by chronic alcohol feeding and CYP2E1 knockout, are involved in ethanol induced oxidative stress and lipid oxidation. The present study provides an effectively comprehensive data analysis strategy to compare multiple biological factors, contributing to biochemical effects of alcohol on the liver. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with data set identifier of PXD000635.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Kou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthur Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|