1
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
2
|
Zhang D, Wang R, Xiao J, Zhu S, Li X, Han S, Li Z, Zhao Y, Shohag MJI, He Z, Li S. An integrated physiology, cytology, and proteomics analysis reveals a network of sugarcane protoplast responses to enzymolysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1066073. [PMID: 36518493 PMCID: PMC9744229 DOI: 10.3389/fpls.2022.1066073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
The protoplast experimental system eis an effective tool for functional genomics and cell fusion breeding. However, the physiological and molecular mechanisms of protoplast response to enzymolysis are not clear, which has become a major obstacle to protoplast regeneration. Here, we used physiological, cytological, proteomics and gene expression analysis to compare the young leaves of sugarcane and enzymolized protoplasts. After enzymatic digestion, we obtained protoplasts with viability of > 90%. Meanwhile, the content of malondialdehyde, an oxidation product, increased in the protoplasts following enzymolysis, and the activity of antioxidant enzymes, such as peroxidase (POD), catalase (CAT), acid peroxidase (APX), and O2-, significantly decreased. Cytologic analysis results showed that, post enzymolysis, the cell membranes were perforated to different degrees, the nuclear activity was weakened, the nucleolus structure was not obvious, and the microtubules depolymerized and formed several short rod-like structures in protoplasts. In this study, a proteomics approaches was used to identify proteins of protoplasts in response to the enzymatic digestion process. GO, KEGG, and KOG enrichment analyses revealed that the abundant proteins were mainly involved in bioenergetic metabolism, cellular processes, osmotic stress, and redox homeostasis of protoplasts, which allow for protein biosynthesis or degradation. RT-qPCR analysis revealed that the expression of osmotic stress resistance genes, such as DREB, WRKY, MAPK4, and NAC, was upregulated, while that of key regeneration genes, such as CyclinD3, CyclinA, CyclinB, Cdc2, PSK, CESA, and GAUT, was significantly downregulated in the protoplasts. Hierarchical clustering and identification of redox proteins and oxidation products showed that these proteins were involved in dynamic networks in response to oxidative stress after enzymolysis. Our findings can facilitate the development of a standard system to produce regenerated protoplasts using molecular markers and antibody detection of enzymolysis.
Collapse
Affiliation(s)
- Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Shuifang Zhu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Xinzhu Li
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shijian Han
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Zhigang Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - M. J. I. Shohag
- Institute of Food and Agricultural Sciences (IFAS) Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Zhenli He
- Institute of Food and Agricultural Sciences (IFAS) Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Suli Li,
| |
Collapse
|
3
|
Deveshwar P, Sharma S, Prusty A, Sinha N, Zargar SM, Karwal D, Parashar V, Singh S, Tyagi AK. Analysis of rice nuclear-localized seed-expressed proteins and their database (RSNP-DB). Sci Rep 2020; 10:15116. [PMID: 32934280 PMCID: PMC7492263 DOI: 10.1038/s41598-020-70713-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023] Open
Abstract
Nuclear proteins are primarily regulatory factors governing gene expression. Multiple factors determine the localization of a protein in the nucleus. An upright identification of nuclear proteins is way far from accuracy. We have attempted to combine information from subcellular prediction tools, experimental evidence, and nuclear proteome data to identify a reliable list of seed-expressed nuclear proteins in rice. Depending upon the number of prediction tools calling a protein nuclear, we could sort 19,441 seed expressed proteins into five categories. Of which, half of the seed-expressed proteins were called nuclear by at least one out of four prediction tools. Further, gene ontology (GO) enrichment and transcription factor composition analysis showed that 6116 seed-expressed proteins could be called nuclear with a greater assertion. Localization evidence from experimental data was available for 1360 proteins. Their analysis showed that a 92.04% accuracy of a nuclear call is valid for proteins predicted nuclear by at least three tools. Distribution of nuclear localization signals and nuclear export signals showed that the majority of category four members were nuclear resident proteins, whereas other categories have a low fraction of nuclear resident proteins and significantly higher constitution of shuttling proteins. We compiled all the above information for the seed-expressed genes in the form of a searchable database named Rice Seed Nuclear Protein DataBase (RSNP-DB) https://pmb.du.ac.in/rsnpdb. This information will be useful for comprehending the role of seed nuclear proteome in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Neha Sinha
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Sajad Majeed Zargar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.,Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Divya Karwal
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Vishal Parashar
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Sanjeev Singh
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.
| |
Collapse
|
4
|
Meng X, Xing S, Perez LM, Peng X, Zhao Q, Redoña ED, Wang C, Peng Z. Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Sci Rep 2017; 7:17486. [PMID: 29235492 PMCID: PMC5727541 DOI: 10.1038/s41598-017-17756-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation is a recently identified protein post-translational modification that is known to affect the association between histone and DNA. However, non-histone protein lysine 2-hydroxyisobutyrylation remains largely unexplored. Utilizing antibody-based affinity enrichment and nano-HPLC/MS/MS analyses of 2-hydroxyisobutyrylation peptides, we efficaciously identified 9,916 2-hydroxyisobutyryl lysine sites on 2,512 proteins in developing rice seeds, representing the first lysine 2-hydroxyisobutyrylome dataset in plants. Functional annotation analyses indicated that a wide variety of vital biological processes were preferably targeted by lysine 2-hydroxyisobutyrylation, including glycolysis/gluconeogenesis, TCA cycle, starch biosynthesis, lipid metabolism, protein biosynthesis and processing. Our finding showed that 2-hydroxyisobutyrylated histone sites were conserved across plants, human, and mouse. A number of 2-hydroxyisobutyryl sites were shared with other lysine acylations in both histone and non-histone proteins. Comprehensive analysis of the lysine 2-hydroxyisobutyrylation sites illustrated that the modification sites were highly sequence specific with distinct motifs, and they had less surface accessibility than other lysine residues in the protein. Overall, our study provides the first systematic analysis of lysine 2-hydroxyisobutyrylation proteome in plants, and it serves as an important resource for future investigations of the regulatory mechanisms and functions of lysine 2-hydroxyisobutyrylation.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230000, China
| | - Loida M Perez
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, 310018, China
| | - Qingyong Zhao
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Stoneville, P.O. Box 197, Mississippi, 38776, USA
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA.
| |
Collapse
|
5
|
Meng X, Lv Y, Mujahid H, Edelmann MJ, Zhao H, Peng X, Peng Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:451-463. [PMID: 29313810 DOI: 10.1016/j.bbapap.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022]
Abstract
Protein lysine acetylation is a highly conserved post-translational modification with various biological functions. However, only a limited number of acetylation sites have been reported in plants, especially in cereals, and the function of non-histone protein acetylation is still largely unknown. In this report, we identified 1003 lysine acetylation sites in 692 proteins of developing rice seeds, which greatly extended the number of known acetylated sites in plants. Seven distinguished motifs were detected flanking acetylated lysines. Functional annotation analyses indicated diverse biological processes and pathways engaged in lysine acetylation. Remarkably, we found that several key enzymes in storage starch synthesis pathway and the main storage proteins were heavily acetylated. A comprehensive comparison of the rice acetylome, succinylome, ubiquitome and phosphorylome with available published data was conducted. A large number of proteins carrying multiple kinds of modifications were identified and many of these proteins are known to be key enzymes of vital metabolic pathways. Our study provides extending knowledge of protein acetylation. It will have critical reference value for understanding the mechanisms underlying PTM mediated multiple signal integration in the regulation of metabolism and development in plants.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yuanda Lv
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States; Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.
| |
Collapse
|
6
|
Zhou T, Hua Y, Zhang B, Zhang X, Zhou Y, Shi L, Xu F. Low-Boron Tolerance Strategies Involving Pectin-Mediated Cell Wall Mechanical Properties in Brassica napus. PLANT & CELL PHYSIOLOGY 2017; 58:1991-2005. [PMID: 29016959 DOI: 10.1093/pcp/pcx130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for the growth and development of plants. Oilseed rape (Brassica napus L.) is a staple oleaginous crop, which is greatly susceptible to B deficiency. Significant differences in tolerance of low-B stresses are observed in rapeseed genotypes, but the underlying mechanism remains unclear, particularly at the single-cell level. Here we provide novel insights into pectin-mediated cell wall (CW) mechanical properties implicated in the differential tolerance of low B in rapeseed genotypes. Under B deficiency, suspension cells of the low-B-sensitive genotype 'W10' showed more severely deformed morphology, lower viabilities and a more easily ruptured CW than those of the low-B-tolerant genotype 'QY10'. Cell rupture was attributed to the weakened CW mechanical strength detected by atomic force microscopy; the CW mechanical strength of 'QY10' was reduced by 13.6 and 17.4%, whereas that of 'W10' was reduced by 29.0 and 30.4% under 0.25 and 0.10 μM B conditions, respectively. The mechanical strength differences between 'QY10' and 'W10' were diminished after the removal of pectin. Further, 'W10' exhibited significantly higher pectin concentrations with much more rhamnogalacturonan II (RG-II) monomer, and also presented obviously higher mRNA abundances of pectin biosynthesis-related genes than 'QY10' under B deficiency. CW regeneration was more difficult for protoplasts of 'W10' than for those of 'QY10'. Taking the results together, we conclude that the variations in pectin-endowed CW mechanical properties play key roles in modulating the differential genotypic tolerance of rapeseed to low-B stresses at both the single-cell and the plant level, and this can potentially be used as a selection trait for low-B-tolerant rapeseed breeding.
Collapse
Affiliation(s)
- Ting Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingpeng Hua
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuqing Zhang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Mujahid H, Meng X, Xing S, Peng X, Wang C, Peng Z. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. J Proteomics 2017; 170:88-98. [PMID: 28882676 DOI: 10.1016/j.jprot.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/29/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
In recent years, lysine malonylation has garnered wide spread interest due to its potential regulatory roles. While studies have been performed in bacteria, mouse, and human, the involvement and the biological function of this modification in plant are still largely unknown. We examined the global proteome profile of lysine malonylation in developing rice seeds using affinity enrichment followed by LC-MS/MS analysis. We identified 421 malonylated lysine sites across 247 proteins. Functional analyses showed predominant presence of malonylated proteins in metabolic processes, including carbon metabolism, glycolysis/gluconeogenesis, TCA cycle, as well as photosynthesis. Malonylation was also detected on enzymes in starch biosynthesis pathway in developing rice seeds. In addition, we found a remarkable overlap among the malonylated, succinylated and acetylated sites identified in rice. Furthermore, malonylation at conserved sites of homologous proteins was observed across organisms of different kingdoms, including mouse, human, and bacteria. Finally, distinct motifs were identified when the rice malonylation sites were analyzed and conserved motifs were observed from bacterium to human and rice. Our results provide an initial understanding of the lysine malonylome in plants. The study has critical reference value for future understanding of the biological function of protein lysine malonylation in plants. BIOLOGICAL SIGNIFICANCE Lysine malonylation is a newly discovered acylation with functional potential in regulating cellular metabolisms and activities. However, the malonylation status has not been reported in plants. Grain yield and quality, mainly determined during cereal seed development, are closely related to food security, human health and economic value. To evaluate malonylation level in plants and the possible regulatory functions of malonylation in seed development, we conducted comprehensive analyses of malonylome in developing rice seeds. A total of 421 malonylated lysine sites from 247 proteins were identified, which involved in multiple critical metabolic processes, including central carbon metabolism, lipid metabolism, photosynthesis, and starch biosynthesis. We found that charged amino acids, lysine and arginine, were the preferred residues in positions flanking the modified lysines. Highly conserved modification sites on both histone and non-histone proteins were observed among different organisms through sequence alignment analysis. More interestingly, a large number of modification sites shared by malonylation, acetylation and succinylation were identified in rice. The study presents a comprehensive understanding of malonylome in plants, which will serve as an initial platform for further investigation of the functions of lysine malonylation, especially in cereal seeds development.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang 310018, China
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
8
|
Blavet N, Uřinovská J, Jeřábková H, Chamrád I, Vrána J, Lenobel R, Beinhauer J, Šebela M, Doležel J, Petrovská B. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle. Nucleus 2016; 8:70-80. [PMID: 27813701 PMCID: PMC5287097 DOI: 10.1080/19491034.2016.1255391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/.
Collapse
Affiliation(s)
- Nicolas Blavet
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jana Uřinovská
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Hana Jeřábková
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Ivo Chamrád
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jan Vrána
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - René Lenobel
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jana Beinhauer
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Marek Šebela
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jaroslav Doležel
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Beáta Petrovská
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| |
Collapse
|
9
|
Oliveira LN, Casaletti L, Báo SN, Borges CL, de Sousa Lima P, de Almeida Soares CM. Characterizing the nuclear proteome of Paracoccidioides spp. Fungal Biol 2016; 120:1209-24. [PMID: 27647238 DOI: 10.1016/j.funbio.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Paracoccidioidomycosis is an endemic disease in Latin America, caused by thermo dimorphic fungi of the genus Paracoccidioides. Although previous proteome analyses of Paracoccidioides spp. have been carried out, the nuclear subproteome of this pathogen has not been described. In this way, we aimed to characterize the nuclear proteome of Paracoccidioides species, in the yeast form. For that, yeast cells were disrupted and submitted to cell fractionation. The purity of the nuclear fraction was confirmed by fluorescence and electron microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 867 proteins. In order to support our enrichment method for nuclear proteins, bioinformatics analysis were applied that allowed the identification of 281 proteins with nuclear localization. The analysis revealed proteins related to DNA maintenance, gene expression, synthesis and processing of messenger and ribosomal RNAs, likewise proteins of nuclear-cytoplasmic traffic. It was also possible to detect some proteins that are poorly expressed, like transcription factors involved in important roles such as resistance to abiotic stress, sporulation, cellular growth and DNA and chromatin maintenance. This is the first descriptive nuclear proteome of Paracoccidioides spp. that can be useful as an important platform base for fungi-specific nuclear processes.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Luciana Casaletti
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil; Escola de Engenharia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, 74605-010, Brazil
| | - Sônia Nair Báo
- Laboratório de Microscopia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
10
|
Ma J, Sheng H, Li X, Wang L. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:71-80. [PMID: 27017433 DOI: 10.1016/j.plaphy.2016.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells.
Collapse
Affiliation(s)
- Jie Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Sheng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Mujahid H, Pendarvis K, Reddy JS, Nallamilli BRR, Reddy KR, Nanduri B, Peng Z. Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers. Proteomes 2016; 4:proteomes4010007. [PMID: 28248216 PMCID: PMC5217364 DOI: 10.3390/proteomes4010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Ken Pendarvis
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Joseph S Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Babi Ramesh Reddy Nallamilli
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - K R Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
12
|
He C, Ma J, Wang L. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. THE NEW PHYTOLOGIST 2015; 206:1051-1062. [PMID: 25615017 DOI: 10.1111/nph.13282] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/12/2014] [Indexed: 05/02/2023]
Abstract
Silicon (Si) plays a large number of diverse roles in plants, but the structural and chemical mechanisms operating at the single-cell level remain unclear. We isolate the cell walls from suspension-cultured individual cells of rice (Oryza sativa) and fractionate them into three main fractions including cellulose (C), hemicellulose (HC) and pectin (P). We find that most of the Si is in HC as determined by inductively coupled plasma-mass spectrometry (ICP-MS), where Si may covalently crosslink the HC polysacchrides confirmed by X-ray photoelectron spectroscopy (XPS). The HC-bound form of Si could improve both the mechanical property and regeneration of the cell walls investigated by a combination of atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). This study provides further evidence that HC could be the major ligand bound to Si, which broadens our understanding of the chemical nature of 'anomalous' Si in plant cell walls.
Collapse
Affiliation(s)
- Congwu He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1627-40. [PMID: 25697798 DOI: 10.1093/jxb/erv041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.
Collapse
Affiliation(s)
- Beáta Petrovská
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic
| |
Collapse
|
14
|
Guo B, Chen Y, Li C, Wang T, Wang R, Wang B, Hu S, Du X, Xing H, Song X, Yao Y, Sun Q, Ni Z. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines. Proteomics 2014; 14:1071-87. [PMID: 24677780 DOI: 10.1002/pmic.201300147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022]
Abstract
To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI-TOF-MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3-10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein-associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Chuan Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Tianya Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Rui Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Bo Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Sha Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Xiaofen Du
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Hongyan Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Xiao Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE); Beijing Key Laboratory of Crop Genetic Improvement; China Agricultural University; Beijing China
- National Plant Gene Research Centre (Beijing); Beijing China
| |
Collapse
|
15
|
Nallamilli BRR, Edelmann MJ, Zhong X, Tan F, Mujahid H, Zhang J, Nanduri B, Peng Z. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa). PLoS One 2014; 9:e89283. [PMID: 24586658 PMCID: PMC3930695 DOI: 10.1371/journal.pone.0089283] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.
Collapse
Affiliation(s)
- Babi Ramesh Reddy Nallamilli
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Mariola J. Edelmann
- Institute of Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experimental Station, Mississippi State University, Starkville, Mississippi, United States of America
| | - Xiaoxian Zhong
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Feng Tan
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Hana Mujahid
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Bindu Nanduri
- Institute of Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experimental Station, Mississippi State University, Starkville, Mississippi, United States of America
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Zhaohua Peng
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| |
Collapse
|