1
|
Khalid U, Dimov D, Vlaykova T. Matrix metalloproteinases in COVID-19: underlying significance. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2186137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dimo Dimov
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Tatyana Vlaykova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Stambouli N, Driss A, Gargouri F, Bahrini K, Arfaoui B, Abid R, Taamallah K, Hannachi S, Boughariou S, Rebai A, Naas I, Ghanem M, Ammar H, Aichaouia C, Harrathi A, Yousfi MA, Battikh R, Moussa MB, Razgallah R, Ferjani M, Gharsallah H. COVID-19 prophylaxis with doxycycline and zinc in health care workers: a prospective, randomized, double-blind clinical trial. Int J Infect Dis 2022; 122:553-558. [PMID: 35724828 PMCID: PMC9212900 DOI: 10.1016/j.ijid.2022.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES This study aims to assess the efficacy of a combination treatment of doxycycline and zinc in the primary prevention of COVID-19 infection in Tunisian health care workers compared with two control groups. METHODS We conducted a prospective, randomized, double-blind clinical trial over 5 months to determine the efficacy of a preventive combination treatment dose of doxycycline (100 mg/day) and zinc (15 mg/day), compared with a single-dose treatment with doxycycline versus placebo. The effectiveness of preventive treatment was measured by the significant decline in the number of cases of COVID-19 infection and/or a decrease in the viral load as determined by SARS-CoV-2 cycle threshold value using reverse transcription polymerase chain reaction tests. RESULTS We detected a significant decrease of SARS-CoV-2 infection in the group that received both doxycycline and zinc compared with other participants. We also demonstrated that COVID-19 infection was neither associated with diabetes (P = 0.51) nor associated with hypertension (P = 0.99), asthma (P = 0.52), and chronic obstructive pulmonary disease (P = 0.27). CONCLUSION Our findings indicated that preventive therapy reduced the risk of SARS-CoV-2. These results suggest that the combination of doxycycline and zinc has a protective effect in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nejla Stambouli
- General Directorate of Military Health,Research Unit UR17DN05, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Corresponding author:
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta GA, USA
| | - Faten Gargouri
- General Directorate of Military Health,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Khadija Bahrini
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia
| | - Bilel Arfaoui
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Rim Abid
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Karima Taamallah
- Department of cardiology, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Souha Hannachi
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Sana Boughariou
- Department of Intensive Care, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Aicha Rebai
- Department of Intensive Care, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Imen Naas
- Department of Intensive Care, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Mohamed Ghanem
- Department of Gastroenterology, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | | | - Chiraz Aichaouia
- Department of Pneumology, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | | | - Mohamed Ali Yousfi
- Department of Pharmacy, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia
| | - Riadh Battikh
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Mohamed Ben Moussa
- Laboratory of Virology, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia
| | - Rabie Razgallah
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia
| | - Mustapha Ferjani
- General Directorate of Military Health,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia
| | - Hédi Gharsallah
- Department of Intensive Care, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Research Unit UR17DN05, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia, Military Hospital of Tunis, 1008 Mont fleury, Tunis, Tunisia,Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunisia,Details of “OD-doxy-PNV-COVID-19 Trial” investigators are given in the Appendix
| | | |
Collapse
|
3
|
Yethindra V, Tagaev T, Imankulova A, Kaliev M, Orozalieva B, Niyazalieva M, Zhumabekova A, Krishna Priya Kanteti, Kuruva PS. Doxycycline inhibits SARS-CoV-2 replication in vitro. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction and Aim: We examined the effect of pre- and/or post-infection doxycycline on human nasal epithelial cell viability and SARS-CoV-2 (clinical strain IHUMI-3) replication in vitro.
Materials and Methods: Human nasal epithelial cells, an in vivo SARS-CoV-2 target, were derived from healthy donor nasal epithelial stem/progenitor cells via in vitro differentiation. The cells were exposed to doxycycline at 0, 0.1, 0.5, 1, 5, 10, 50, and 100 ?M before and/or after IHUMI-3 inoculation to determine the optimal inhibitory concentration. Viral replication was evaluated using quantitative reverse-transcription PCR, and doxycycline 50% cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were calculated. The peak serum concentration (Cmax) resulting from typical oral (100 or 200 mg) or intravenous (100 mg) doxycycline doses was estimated, and the Cmax/EC50 ratio was calculated as an index of potential clinical utility.
Results: Doxycycline exhibited low cytotoxicity (CC50 > 100 ?M) in human nasal epithelial cells and inhibited SARS-CoV-2 replication (EC50: 5.2 ± 3.3 ?M) in a dose-dependent manner when administered pre- and/or post-infection. Reasonable oral or intravenous doses will help achieve effective concentrations in vivo.
Conclusion: Early administration of this well-characterized, safe, and accessible drug may limit person-to-person transmission and prevent progression to severe coronavirus disease.
Collapse
|
4
|
Zhang H, Dong W, Li S, Zhang Y, Lv Z, Yang L, Jiang L, Wu T, Wang Y. Salidroside protects against ventilation-induced lung injury by inhibiting the expression of matrix metalloproteinase-9. PHARMACEUTICAL BIOLOGY 2021; 59:760-768. [PMID: 34517742 PMCID: PMC8439245 DOI: 10.1080/13880209.2021.1967409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Salidroside, a compound extracted from Rhodiola rosea L. (Crassulaceae), possesses many beneficial pathological effects. OBJECTIVE To explore the effect of salidroside on ventilator-induced lung endothelial dysfunction in vivo and in vitro. MATERIALS AND METHODS In vivo, male ICR mice were divided into sham, ventilation, salidroside, and ventilation plus salidroside groups. The mice were ventilated for 4 h, salidroside (50 mg/kg) was administrated intraperitoneally before ventilation, dexamethasone (Dex) (5 mg/kg) was used as a positive control. In vitro, mouse lung vascular endothelial cells (MLVECs) were treated with salidroside, MMP-9 siRNA, and BAY11-7082 (10 μM), and then exposed to cyclic stretch for 4 h. Afterward, lung tissues and MLVECs were collected for further analysis. RESULTS Salidroside pre-treatment significantly reversed the expression of vascular endothelial cadherin (VE-cadherin) and zonula occluden-1 (ZO-1) proteins in cyclic stretch-treated MLVECs (0.46 ± 0.09 vs. 0.80 ± 0.14, 0.49 ± 0.05 vs. 0.88 ± 0.08) and ventilated lung tissues (0.56 ± 0.06 vs. 0.83 ± 0.46, 0.49 ± 0.08 vs. 0.80 ± 0.12). The results further indicated that salidroside inhibited the expression of matrix metalloproteinase-9 (MMP-9), whereas knockdown of its expression restored the expression levels of VE-cadherin (0.37 ± 0.08 vs. 0.85 ± 0.74) and ZO-1 (0.48 ± 0.08 vs. 0.81 ± 0.11) in stretched MLVECs. Meanwhile, salidroside inhibited the NF-κB signalling pathway and alleviated lung injury. CONCLUSIONS Salidroside protected against stretch-induced endothelial barrier function, improving lung injury after ventilation. Thus, salidroside may be a promising therapeutic agent for patients with MV-induced lung injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Yang
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Wu
- School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome Sci 2021; 19:5. [PMID: 33743690 PMCID: PMC7980750 DOI: 10.1186/s12953-021-00174-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid with a high mortality rate, but the underlying mechanism is not yet fully understood, causing absent specific therapeutic drugs to treat with ARDS. In recent years, more and more studies have applied proteomics to ARDS. Non-targeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in this disease. This paper will provide a brief review of the recent advances in the application of non-targeted proteomics to ARDS.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yue-Zhong Zhang
- Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Qi-Quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Mining the key genes for ventilator-induced lung injury using co-expression network analysis. Biosci Rep 2021; 41:228048. [PMID: 33687057 PMCID: PMC7969703 DOI: 10.1042/bsr20203235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation is extensively adopted in general anesthesia and respiratory failure management, but it can also induce ventilator-induced lung injury (VILI). Therefore, it is of great urgency to explore the mechanisms involved in the VILI pathogenesis, which might contribute to its future prevention and treatment. Four microarray datasets from the GEO database were selected in our investigation, and were subjected to the Weighted Gene Co-Expression Network Analysis (WGCNA) to identify the VILI-correlated gene modules. The limma package in R software was used to identify the differentially expressed genes (DEGs) between the VILI and control groups. WGCNA was constructed by merging the GSE9314, GSE9368, GSE11434 and GSE11662 datasets. A total of 49 co-expression network modules were determined as associated with VILI. The intersected genes between hub genes screened from DEGs for VILI and those identified using WGCNA were as follows: Tlr2, Hmox1, Serpine1, Mmp9, Il6, Il1b, Ptgs2, Fos and Atf3, which were determined to be key genes for VILI. Those key genes were validated by GSE86229 and quantitative PCR (qPCR) experiment to have significantly statistical difference in their expression between the VILI and control groups. In a nutshell, nine key genes with expression differences in VILI were screened by WGCNA by integrating multiple datasets.
Collapse
|
7
|
Ali AS, ASattar MA, Karim S, Kutbi D, Aljohani H, Bakhshwin D, Alsieni M, Alkreathy HM. Pharmacological basis for the potential role of Azithromycin and Doxycycline in management of COVID-19. ARAB J CHEM 2021; 14:102983. [PMID: 34909062 PMCID: PMC7797177 DOI: 10.1016/j.arabjc.2020.102983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
A novel corona virus SARS-CoV-2 has led to an outbreak of the highly infectious pandemic COVID-19 complicated viral pneumonia. Patients with risk factors frequently develop secondary infections where the role of appropriate antibiotics is mandatory. However, the efforts of drug repurposing lead to recognizing the role of certain antibiotics beyond the management of infection. The current review provided the detailed antiviral, immunomodulatory effect, unique pharmacokinetic profile of two antibiotics namely azithromycin (AZ) and doxycycline (DOX). It summarizes current clinical trials and concerns regarding safety issues of these drugs. Azithromycin (AZ) has amazing lung tissue access, wide range antibacterial efficacy, conceivable antiviral action against COVID-19. It also showed efficacy when combined with other antiviral drugs in limited clinical trials, but many clinicians raise concerns regarding cardiovascular risk in susceptible patients. DOX has a considerable role in the management of pneumonia, it has some advantages including cardiac safety, very good access to lung tissue, potential antiviral, and immunomodulation impact by several mechanisms. The pharmacological profiles of both drugs are heightening considering these medications for further studies in the management of COVID-19.
Collapse
Affiliation(s)
- Ahmed S Ali
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Department of Pharmaceutics Faculty of Pharmacy, Assiut University, Egypt
| | - Mai A ASattar
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Dina Kutbi
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Hanin Aljohani
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Duaa Bakhshwin
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
8
|
Malek AE, Granwehr BP, Kontoyiannis DP. Doxycycline as a potential partner of COVID-19 therapies. IDCases 2020; 21:e00864. [PMID: 32566483 PMCID: PMC7298522 DOI: 10.1016/j.idcr.2020.e00864] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a major public health challenge, and the current antiviral arsenal for treatment is limited, with questionable efficacy. Major efforts are under way for discovery of new effective agents, but the validation of new potential treatments for COVID-19 may take a long time. Therefore, the repurposing of existing drugs for new indications is needed. In this article, we argue for the potential benefits of using doxycycline with either hydroxycholoroquine or other putative agents for COVID-19 treatment, as doxycycline has antiviral and anti-inflammatory activities by dampening the cytokine storm and to prevent lung damage.
Collapse
Affiliation(s)
- Alexandre E. Malek
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno P. Granwehr
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
10
|
Parasaram V, Nosoudi N, LeClair RJ, Binks A, Vyavahare N. Targeted drug delivery to emphysematous lungs: Inhibition of MMPs by doxycycline loaded nanoparticles. Pulm Pharmacol Ther 2016; 39:64-73. [PMID: 27354173 DOI: 10.1016/j.pupt.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, SC, USA
| | - Renee J LeClair
- University of South Carolina School of Medicine, Greenville, SC, USA
| | - Andrew Binks
- University of South Carolina School of Medicine, Greenville, SC, USA
| | | |
Collapse
|
11
|
Prins HJ, Daniels JMA, Lindeman JH, Lutter R, Boersma WG. Effects of doxycycline on local and systemic inflammation in stable COPD patients, a randomized clinical trial. Respir Med 2015; 110:46-52. [PMID: 26616678 DOI: 10.1016/j.rmed.2015.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/11/2015] [Accepted: 10/18/2015] [Indexed: 01/14/2023]
Abstract
UNLABELLED Neutrophilic inflammation plays a causal role in Chronic Obstructive Pulmonary Disease (COPD). Neutrophil derived myeloperoxidase(MPO) matrix metalloproteinases(MMP's), and elastases are thought to contribute to the perpetuation of the disease. The tetracycline analogue doxycycline has been shown to inhibit neutrophil-mediated inflammation. It was thus reasoned that doxycycline may attenuate neutrophil-mediated inflammation in COPD. METHODS In this double blind randomized controlled trial the effect of a 3-week course of doxycycline on sputum and systemic inflammatory parameters was evaluated in stable COPD patients. In order to exclude inflammation by bacterial colonisation patients must have 2 negative sputum cultures in the previous year. The effect of doxycycline treatment on inflammatory markers (TNF-α, IL-1β and IL-6) and neutrophil specific markers in sputum (MPO, MMP's, and IL-8) and serum C-reactive protein was evaluated. Sputum was obtained by sputum induction with hypertonic saline. RESULTS A total of 41 patients were included. Ten patients were excluded as they were not able to produce sputum at the first or second visit. Baseline characteristics were similar in the two groups. In the remaining patients doxycycline did not influence sputum MPO concentrations. Also MMP-8 and 9, IL-6 and IL-8 concentrations as well as lung function parameters were not affected by doxycycline. Systemic inflammation by means of CRP was also not influenced by doxycycline. CONCLUSION A three week course of doxycycline did not influence MPO sputum levels nor any of the other inflammatory sputum and systemic markers. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00857038 URL: clinicaltrials.gov.
Collapse
Affiliation(s)
- Hendrik J Prins
- Department Pulmonary Diseases, Medical Centre Alkmaar, Alkmaar, The Netherlands
| | - Johannes M A Daniels
- Department of Pulmonary Diseases, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jan H Lindeman
- Department of Vascular Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Respiratory Medicine and Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim G Boersma
- Department Pulmonary Diseases, Medical Centre Alkmaar, Alkmaar, The Netherlands.
| |
Collapse
|
12
|
Li LF, Lee CS, Liu YY, Chang CH, Lin CW, Chiu LC, Kao KC, Chen NH, Yang CT. Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury. Respir Res 2015; 16:112. [PMID: 26377087 PMCID: PMC4574227 DOI: 10.1186/s12931-015-0275-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022] Open
Abstract
Background Mechanical ventilation and concomitant administration of hyperoxia in patients with acute respiratory distress syndrome can damage the alveolar epithelial and capillary endothelial barrier by producing inflammatory cytokines and reactive oxygen species. The Src tyrosine kinase and Smad3 are crucial inflammatory regulators used for ventilator-induced lung injury (VILI). The mechanisms regulating interactions between high-tidal-volume mechanical ventilation, hyperoxia, and acute lung injury (ALI) are unclear. We hypothesized that high-tidal-volume mechanical stretches and hyperoxia augment lung inflammation through upregulation of the Src and Smad3 pathways. Methods Wild-type or Src-deficient C57BL/6 mice, aged between 6 and 8 weeks, were exposed to high-tidal-volume (30 mL/kg) ventilation with room air or hyperoxia for 1–4 h after 2-mg/kg Smad3 inhibitor (SIS3) administration. Nonventilated mice were used as control subjects. Results We observed that the addition of hyperoxia to high-tidal-volume mechanical ventilation further induced microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 and matrix metalloproteinase-9 (MMP-9) production, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase activity, MMP-9 mRNA expression, hypoxemia, and Src and Smad3 activation (P < 0.05). Hyperoxia-induced augmentation of VILI was attenuated in Src-deficient mice and mice with pharmacological inhibition of Smad3 activity by SIS3 (P < 0.05). Mechanical ventilation of Src-deficient mice with hyperoxia further reduced the activation of Smad3. Conclusions Our data suggest that hyperoxia-increased high-tidal-volume ventilation-induced ALI partially depends on the Src and Smad3 pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hao Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Chang-Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Li-Chung Chiu
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ning-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan. .,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Zhang C, Gong W, Liu H, Guo Z, Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med 2014; 7:4975-4982. [PMID: 25663995 PMCID: PMC4307442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aims to demonstrate the protective effect of doxycycline, an exogenous inhibitor of matrix metalloproteinases-9 (MMP-9), in the acute lung injury induced by cardiopulmonary bypass (CPB). METHODS A total of 30 healthy mongrel dogs were randomly divided into three groups: Group A (CPB control group, no treatment of doxycycline), Group B (low-dose group, treated with doxycycline at 30 mg/kg) and Group C (high-dose group, doxycycline at 60 mg/kg). The alveolar-arterial oxygen difference (A-aDO2) and respiratory index (RI) were calculated, the concentration of MMP-9 in plasma was measured by ELISA. The expression levels of MMP-9 was determined by RT-PCR. The lung W/D index was calculated. The myeloperoxidase (MPO) activity of bronchoalveolar lavage fluid (BALF) was measured by colorimetry. The total protein of BALF was measured by Coomassie brilliant blue G-250. The white blood count (WBC) in the sediment of BALF was counted. RESULTS A-aDO2, RI, total protein, and MPO activity of BALF, WBC count in BALF sediment and W/D index in group B were significantly lower than that of control group (P < 0.05). The concentration of MMP-9 in group C decreased significantly (P < 0.05). There were no significant differences in gene expression among the three groups. CONCLUSION The results suggested that doxycycline protected the acute lung injury induced by CPB through reducing the concentration of MMP-9 and degradation of the cell membrane, pulmonary neutrophil infiltration and pulmonary edema.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University218 Jixi Road, Hefei 230022, Anhui, China
| | - Wenhui Gong
- Department of Cardiovascular Surgery, Ruijing Hospital, Shanghai Jiaotong University School of Medicine197 Ruijin Er Road, Shanghai 200025, China
| | - Haiyuan Liu
- Department of Oncology, The Hefei Hospital Affiliated with Anhui Medical UniversityLangxi Road, Yaohai District, Hefei 230000, Anhui Province, China
| | - Zhixiang Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University218 Jixi Road, Hefei 230022, Anhui, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University218 Jixi Road, Hefei 230022, Anhui, China
| |
Collapse
|
14
|
Wang CT, Zhang L, Wu HW, Wei L, Xu B, Li DM. Doxycycline attenuates acute lung injury following cardiopulmonary bypass: involvement of matrix metalloproteinases. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7460-7468. [PMID: 25550781 PMCID: PMC4270626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Acute lung injury (ALI) was one of the major complications after cardiopulmonary bypass (CPB). Matrix metalloproteinases (MMPs) play an important role in ALI following CPB. In this study, we investigated the effects of doxycycline (DOX), a potent MMP inhibitor, on MMP-9 and ALI in the rat model of CPB. 48 adult male Sprague-Dawley rats were randomized into four groups: group I (Control group, underwent cannulation + heparinization only); group II (CPB group, underwent 60-minutes of normothermic CPB); group III (Low-dose treatment group, underwent 60-minutes of normothermic CPB with DOX gavage 30 mg/kg ×1 week ahead of CPB); and group IV (High-dose treatment group, underwent 60-minutes of normothermic CPB with DOX gavage 60 mg/kg ×1 week ahead of CPB). The effects of doxycycline on ALI were determined by measuring the lung Wet/Dry ratio, the inflammation of bronchoalveolar lavage fluid (BALF) and the ultrastructural changes of the lungs. The role of doxycycline on MMP-9 was assessed by the plasma concentration, the activity and the expression in lung tissue. Our results demonstrated that the lung Wet/Dry weight ratio and the inflammatory mediators (TNF-α, IL-1β) in BALF were decreased significantly with doxycycline treatment. The lung damages were attenuated by doxycycline. The levels of plasma concentration, the activity and the expression of MMP-9 in lung tissue were suppressed with doxycycline and the effects were dose dependent. Doxycycline could suppress the expression of MMP-9 and cytokines, and improve the ALI following CPB.
Collapse
|
15
|
Synergistic protection of MLC 1 against cardiac ischemia/reperfusion-induced degradation: a novel therapeutic concept for the future. Future Med Chem 2013; 5:389-98. [PMID: 23495687 DOI: 10.4155/fmc.13.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular diseases are a major burden to society and a leading cause of morbidity and mortality in the developed world. Despite clinical and scientific advances in understanding the molecular mechanisms and treatment of heart injury, novel therapeutic strategies are needed to prevent morbidity and mortality due to cardiac events. Growing evidence reported over the last decade has focused on the intracellular targets for proteolytic degradation by MMP-2. Of particular interest is the establishment of MMP-2-dependent degradation of cardiac contractile proteins in response to increased oxidative stress conditions, such as ischemia/reperfusion. The authors' laboratory has identified a promising preventive therapeutic target using the classical pharmacological concept of synergy to target MMP-2 activity and its proteolytic action on a cardiac contractile protein. This manuscript provides an overview of the body of evidence that supports the importance of cardiac contractile protein degradation in ischemia/reperfusion injury and the use of synergy to protect against it.
Collapse
|
16
|
Dalvi PS, Singh A, Trivedi HR, Ghanchi FD, Parmar DM, Mistry SD. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Ann Thorac Med 2012; 6:221-6. [PMID: 21977068 PMCID: PMC3183640 DOI: 10.4103/1817-1737.84777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/06/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND: The protease-antiprotease hypothesis proposes that inflammatory cells and oxidative stress in chronic obstructive pulmonary disease (COPD) produce increased levels of proteolytic enzymes (neutrophil elastase, matrix metalloproteinases [MMP]) which contribute to destruction of parenchyma resulting in progressive decline in forced expiratory volume in one second. Doxycycline, a tetracycline analogue, possesses anti-inflammatory properties and inhibits MMP enzymes. OBJECTIVES: To assess the effect of 4 weeks doxycycline in a dose of 100 mg once a day in patients of moderate to severe COPD with stable symptoms. METHODS: In an interventional, randomized, observer-masked, parallel study design, the effect of doxycycline (100 mg once a day for 4 weeks) was assessed in patients of COPD having stable symptoms after a run-in period of 4 weeks. The study participants in reference group did not receive doxycycline. The parameters were pulmonary functions, systemic inflammation marker C-reactive protein (CRP), and medical research council (MRC) dyspnea scale. Use of systemic corticosteroids or antimicrobial agents was not allowed during the study period. RESULTS: A total of 61 patients completed the study (31 patients in doxycycline group and 30 patients in reference group). At 4 weeks, the pulmonary functions significantly improved in doxycycline group and the mean reduction in baseline serum CRP was significantly greater in doxycycline group as compared with reference group. There was no significant improvement in MRC dyspnea scale in both groups at 4 weeks. CONCLUSION: The anti-inflammatory and MMP-inhibiting property of doxycycline might have contributed to the improvement of parameters in this study.
Collapse
Affiliation(s)
- Prashant S Dalvi
- Department of Pharmacology, M.P. Shah Medical College, Jamnagar, Gujarat, India
| | | | | | | | | | | |
Collapse
|
17
|
Fang X, Bai C, Wang X. Bioinformatics insights into acute lung injury/acute respiratory distress syndrome. Clin Transl Med 2012; 1:9. [PMID: 23369517 PMCID: PMC3560991 DOI: 10.1186/2001-1326-1-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/23/2012] [Indexed: 02/08/2023] Open
Abstract
Bioinformatics is the application of omics science, information technology, mathematics and statistics in the field of biomarker detection. Clinical bioinformatics can be applied for identification and validation of new biomarkers to improve current methods of monitoring disease activity and identify new therapeutic targets. Acute lung injurt (ALI)/Acute respiratory distress syndrome (ARDS) affects a large number of patients with a poor prognosis. The present review mainly focused on the progress in understanding disease heterogeneity through the use of evolving biological, genomic, and genetic approaches and the role of clinical bioinformatics in the pathogenesis and treatment of ALI/ARDS. The remarkable advances in clinical bioinformatics can be a new way for understanding disease pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaocong Fang
- Department of Pulmonary MedicineZhongshan Hospital, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
18
|
Han B, Zhao X, Huang X, Xie L. Vaporized Perfluorocarbon Confers Protection against Acute Lung Injury by Inhibiting MMP-9 Expression without Protective Effects in other Organs. J Int Med Res 2012; 40:115-25. [PMID: 22429351 DOI: 10.1177/147323001204000112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE: Vaporized perfluorocarbon (PFC) is a treatment for lung injury; this study investigated its mode of action and potential protective effects on other organs, which are unclear. METHODS: Acute lung injury was induced by lung lavage with artificial seawater in 32 female New Zealand White rabbits. Animals received either conventional mechanical ventilation (CMV), positive end-expiratory pressure under CMV (PEEP), vaporized PFC ventilation, or positive end-expiratory pressure with vaporized PFC ventilation (PEEP + PFC). Histopathology of the lung, small intestine, liver and kidney were investigated. Matrix metalloproteinase (MMP)-9 mRNA levels in the lung were analysed. RESULTS: Pathological injury of the lung was significantly alleviated in the PEEP, PFC and PEEP + PFC groups compared with the CMV group. Tissue damage in the liver, kidney and small intestine was similar between all groups. MMP-9 mRNA levels in the PEEP, PFC and PEEP + PFC groups were significantly lower than those in the CMV group. CONCLUSIONS: Vaporized PFC ventilation can significantly alleviate lung injury but has no significant protective effect on other organs. Alleviation of lung injury may be associated with MMP-9 inhibition.
Collapse
Affiliation(s)
- B Han
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing, China
| | - X Zhao
- Department of Respiratory Diseases, General Hospital of Chinese People's Armed Police, Beijing, China
| | - X Huang
- Department of Respiratory Diseases, General Hospital of Chinese People's Armed Police, Beijing, China
| | - L Xie
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Jungebluth P, Luedde M, Ferrer E, Luedde T, Vucur M, Peinado VI, Go T, Schreiber C, Von Richthofen M, Bader A, Haag J, Darsow KH, Bartel SJ, Lange HA, Furlani D, Steinhoff G, Macchiarini P. Mesenchymal Stem Cells Restore Lung Function by Recruiting Resident and Nonresident Proteins. Cell Transplant 2011; 20:1561-74. [DOI: 10.3727/096368910x557254] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Because human lungs are unlikely to repair or regenerate beyond the cellular level, cell therapy has not previously been considered for chronic irreversible obstructive lung diseases. To explore whether cell therapy can restore lung function, we administered allogenic intratracheal mesenchymal stem cells (MSCs) in the trachea of rats with chronic thromboembolic pulmonary hypertension (CTEPH), a disease characterized by single or recurrent pulmonary thromboembolic obliteration and progressive pulmonary vascular remodeling. MSCs were retrieved only in high pressure-exposed lungs recruited via a homing stromal derived factor-1α/ CXCR4 pathway. After MSC administration, a marked and long-lasting improvement of all clinical parameters and a significant change of the proteome level were detected. Beside a variation of liver proteome, such as caspase-3, NF-κB, collagen1A1, and α-SMA, we also identified more than 300 resident and nonresident lung proteins [e.g., myosin light chain 3 (P16409) or mitochondrial ATP synthase subunit alpha (P15999)]. These results suggest that cell therapy restores lung function and the therapeutic effects of MSCs may be related to protein-based tissue reconstituting effects.
Collapse
Affiliation(s)
- Philipp Jungebluth
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mark Luedde
- Department of Cardiology, University of Kiel, Kiel, Germany
| | | | - Tom Luedde
- Department of Gastroenterology, University Hospital Aachen, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, University Hospital Aachen, Aachen, Germany
| | | | - Tetsuhiko Go
- Department of General Thoracic and Breast-Endcrinological Surgery, Kagawa University Miki-Cho, Kagawa, Japan
| | | | | | | | - Johannes Haag
- Biomedical-Biotechnological Center, Leipzig, Leipzig, Germany
| | - Kai H. Darsow
- Biomedical-Biotechnological Center, Leipzig, Leipzig, Germany
| | | | - Harald A. Lange
- Biomedical-Biotechnological Center, Leipzig, Leipzig, Germany
| | - Dario Furlani
- Department of Cardiac Surgery, University Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University Rostock, Rostock, Germany
| | - Paolo Macchiarini
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|