1
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Meyer F, Bitsch A, Forman HJ, Fragoulis A, Ghezzi P, Henschenmacher B, Kellner R, Kuhne J, Ludwig T, Sachno D, Schmid G, Tsaioun K, Verbeek J, Wright R. The effects of radiofrequency electromagnetic field exposure on biomarkers of oxidative stress in vivo and in vitro: A systematic review of experimental studies. ENVIRONMENT INTERNATIONAL 2024; 194:108940. [PMID: 39566441 DOI: 10.1016/j.envint.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Oxidative stress is thought to be related to many diseases. Furthermore, it is hypothesized that radiofrequency electromagnetic fields (RF-EMF) may induce excessive oxidative stress in various cell types and thereby have the potential to compromise human and animal health. The objective of this systematic review (SR) is to summarize and evaluate the literature on the relation between the exposure to RF-EMF in the frequency range from 100 kHz to 300 GHz and biomarkers of oxidative stress. METHODS The SR framework was developed following the guidelines established in the WHO Handbook for Guideline Development and NTP/OHAT's Handbook for Conducting a Literature-Based Health Assessment. We used the latter handbook's methodology for implementing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach for environmental health assessments. We searched the following databases up until June 30, 2023: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles were also manually searched. We rated Risk of Bias (RoB) using the OHAT RoB Rating Tool and assessed publication bias using funnel plots of included studies. We assessed the certainty of the evidence (high, moderate, low, or very low) for an association between RF-EMF and oxidative stress using an adapted version of the GRADE framework. Data were extracted according to a predefined set of forms developed in DistillerSR. Data were analysed after grouping them first as in vitro or in vivo and then according to outcome category, species category, and exposed tissue. We synthesized study results using a random effects meta-analysis when study characteristics were judged sufficiently similar to be combined and heterogeneity (I2) was lower than 75 %, otherwise we describe the findings narratively. RESULTS Fifty-six (56) studies, 45 in vivo and 11 in vitro, in which cells (in vitro) or animals (in vivo) were exposed to frequencies in the range 800-2450 MHz, were included in the systematic review after eliminating 12,353 publications because they did not meet the criteria defined in the published protocol (Henschenmacher et al., 2022). Of 56 studies 52 studies with 169 individual results were included in the meta-analysis. Together, these studies examined six human in vitro samples and fifty animal samples, including rodents (mice, rats, hamsters, and guinea pigs, (n = 46)) and rabbits (n = 4). RF-EMF were predominantly applied as continuous wave exposures in these studies. The outcome biomarkers for modified proteins and amino acids were measured in n = 30 studies, for oxidized DNA bases in n = 26 studies, for oxidized lipids in n = 3 studies and hydrogen peroxide production in 2 studies. Outcomes were mostly measured in the brain (n = 22), liver (n = 9), cells (n = 9), blood (n = 6), and testis (n = 2). RoB in studies was high, mainly due to biases in exposure and outcome assessment. IN VIVO STUDIES Brain: The effect on biomarkers for oxidized DNA bases in the rodent brain (five studies, n = 98) had an inconsistent effect, varying from a large decrease with a standardized mean difference (SMD) of -3.40 (95 % CI [-5.15, -1.64]) to a large increase with an SMD of 2.2 (95 % CI [0.78, 3.62]). In the brain of rabbits (two studies, n = 44), the effect sizes also varied, from an SMD of -1.06 (95 % CI [-2.13, 0.00]) to an SMD of 5.94 (95 % CI [3.14, 8.73]). The effect on biomarkers for modified proteins and amino acids in the rodent brain (15 studies, n = 328) also varied from a large decrease with an SMD of -6.11 (95 % CI [-8.16, -4.06]) to a large increase with an SMD of 5.33 (95 % CI [2.49, 8.17]). The effect on biomarkers for oxidized lipids in the brain of rodents (one study, n = 56) also varied from a large decrease with SMD = -4.10 (95 % CI [-5.48, -2.73]) to SMD = 1.27 (95 % CI [0.45, 2.10]). Liver: The effect on biomarkers for oxidized DNA bases in the rodent liver (two studies, n = 26) was inconsistent with effect sizes in both directions: SMD = -0.71 (95 % CI [-1.80, 0.38]) and SMD = 1.56 (95 % CI [0.19, 2.92]). The effect on biomarkers for oxidized DNA bases in the rabbits' liver (two studies, n = 60) was medium with a pooled SMD of 0.39 (95 % CI [-0.79, 1.56]). Biomarkers for modified proteins and amino acids in the liver of rodents (six studies, n = 159) increased with a pooled SMD of 0.55 (95 % CI [0.06, 1.05]). Blood: The effect of RF-EMF on biomarkers for oxidized DNA bases in rodent blood (four studies, n = 104) was inconsistent, with SMDs ranging from -1.14 (95 % CI [-2.23, -0.06]) to 1.71 (95 % CI [-0.10, 3.53]). RF-EMF had no effect on biomarkers for modified proteins and amino acids in rodent blood (three studies, n = 40), with a pooled SMD of -0.08 (95 % CI [-1.32, 1.16]). There was a large increase in biomarkers for oxidized DNA bases in rodent plasma (two studies, n = 38) with a pooled SMD of 2.25 (95 % CI [1.27, 3.24]). Gonads: There was an increase in biomarkers for oxidized DNA bases in the rodent testis (two studies, n = 24) with a pooled SMD of 1.60 (95 % CI [0.62, 2.59]). The effect of RF-EMF on biomarkers for modified proteins and amino acids in the ovary of rodents (two studies, n = 52) was inconsistent with a medium effect, SMD = 0.24 (95 % CI [-0.74, 1.23])) and a large effect (SMD = 2.08 (95 % CI [1.22, 2.94])). Thymus: RF-EMF increased biomarkers for modified proteins and amino acids in the thymus of rodents (one study, n = 42) considerably with a pooled SMD of 6.16 (95 % CI [3.55, 8.76]). Cells: RF-EMF increased oxidized DNA bases in rodent cells with SMD of 2.49 (95 % CI [1.30, 3.67]) (one study, n = 27). There was a medium effect in oxidized lipids (one study, n = 18) but not statistically significant with SMD = 0.34 (95 % CI [-0.62, 1.29]). IN VITRO STUDIES In in vitro studies in human cells (three studies, n = 110), there were inconsistent increases in biomarkers for oxidized DNA bases, where the SMDs varied between 0.01 (95 % CI [-0.59, 0.62]) and 7.12 (95% CI [0.06, 14.18]) in 4 results (2 of them statistically significant). In rodent cells (three studies, n = 24), there was a not statistically significant large effect in biomarkers for oxidized DNA bases with SMD = 2.07 (95 % CI [-1.38, 5.52]). The RF-EMF biomarkers for modified proteins and amino acids in human cells (one study, n = 18) showed a large effect with SMD = 1.07 (95 % CI [-0.05, 2.19]). In rodent cells (two studies, n = 24) a medium effect of SMD = 0.56 (95 % CI [-0.29, 1.41]) was observed. DISCUSSION The evidence on the relation between the exposure to RF-EMF and biomarkers of oxidative stress was of very low certainty, because a majority of the included studies were rated with a high RoB level and provided high heterogeneity. This is due to inaccurate measurements of exposure and/or of measurement of oxidative stress biomarkers and missing information on the blinding of research personnel to exposure conditions or outcome measurements. There may be no or an inconsistent effect of RF-EMF on biomarkers of oxidative stress in the brain, liver, blood, plasma and serum, and in the female reproductive system in animal experiments but the evidence is of very low certainty. There may be an increase in biomarkers of oxidative stress in testes, serum and thymus of rodents but the evidence is of very low certainty. Future studies should improve experimental designs and characterization of exposure systems as well as the use of validated biomarker measurements with positive controls. Other: This review was partially funded by the World Health Organization. The protocol for this review is registered in PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235573) and published in Environment International (https://doi.org/10.1016/j.envint.2021.106932) (Henschenmacher et al., 2022).
Collapse
Affiliation(s)
- Felix Meyer
- Federal Office for Radiation Protection, Competence Centre EMF, Karl-Liebknecht-Strasse 33, 03046 Cottbus, Germany.
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; University of California Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, University of Sussex, Trafford Centre, Falmer BN1 9RY, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Bernd Henschenmacher
- Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764 Oberschleißheim, Germany
| | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Jens Kuhne
- Federal Office for Radiation Protection, Competence Centre EMF, Karl-Liebknecht-Strasse 33, 03046 Cottbus, Germany
| | - Tonia Ludwig
- Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764 Oberschleißheim, Germany
| | - Dmitrij Sachno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Gernot Schmid
- Seibersdorf Laboratories, Campus Seibersdorf, 2444 Seibersdorf, Austria
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jos Verbeek
- University Medical Center Amsterdam, Cochrane Work, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Robert Wright
- Welch Medical Library, Johns Hopkins University School of Medicine, 1900 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Ben Ishai P, Davis D, Taylor H, Birnbaum L. Problems in evaluating the health impacts of radio frequency radiation. ENVIRONMENTAL RESEARCH 2024; 243:115038. [PMID: 36863648 DOI: 10.1016/j.envres.2022.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 02/06/2024]
Abstract
In an effort to clarify the nature of causal evidence regarding the potential impacts of RFR on biological systems, this paper relies on a well-established framework for considering causation expanded from that of Bradford Hill, that combines experimental and epidemiological evidence on carcinogenesis of RFR. The Precautionary Principle, while not perfect, has been the effective lodestone for establishing public policy to guard the safety of the general public from potentially harmful materials, practices or technologies. Yet, when considering the exposure of the public to anthropogenic electromagnetic fields, especially those arising from mobile communications and their infrastructure, it seems to be ignored. The current exposure standards recommended by the Federal Communications Commission (FCC) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) consider only thermal effects (tissue heating) as potentially harmful. However, there is mounting evidence of non-thermal effects of exposure to electromagnetic radiation in biological systems and human populations. We review the latest literature on in vitro and in vivo studies, on clinical studies on electromagnetic hypersensitivity, as well as the epidemiological evidence for cancer due to the action of mobile based radiation exposure. We question whether the current regulatory atmosphere truly serves the public good when considered in terms of the Precautionary Principle and the principles for deducing causation established by Bradford Hill. We conclude that there is substantial scientific evidence that RFR causes cancer, endocrinological, neurological and other adverse health effects. In light of this evidence the primary mission of public bodies, such as the FCC to protect public health has not been fulfilled. Rather, we find that industry convenience is being prioritized and thereby subjecting the public to avoidable risks.
Collapse
Affiliation(s)
- Paul Ben Ishai
- Department of Physics, Ariel University, Ariel, 4070000, Israel.
| | - Devra Davis
- Environmental Health Trust, Washington, DC, 20002, USA; School of Medicine,Ondokuz-Mayis University, Samsun, Turkey
| | - Hugh Taylor
- Yale School of Medicine, New Haven, CT, 05620, USA
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Durham, NC, 27709, USA
| |
Collapse
|
4
|
Gautam R, Pardhiya S, Nirala JP, Sarsaiya P, Rajamani P. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4384-4399. [PMID: 38102429 DOI: 10.1007/s11356-023-31367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Mobile phones have become a vital part of human life. Due to drastic increase in the number of mobile phone subscribers, exposure to radiofrequency radiation (RFR) emitted from these phones has increased dramatically. Hence, the effect of RFR on humans is an area of concern. This study was performed to determine the impact of 4G mobile phone radiation on the male reproductive system, liver, kidney, and hematological parameters. METHODS Seventy-day-old Wistar rats were exposed to 4G radiation (2350 MHz for 2 h/day for 56 days). Sperm parameters such as sperm count, viability, sperm head morphology, mitochondrial activity, total antioxidant activity, and lipid peroxidation of sperm were evaluated. Histopathology of the testis, prostate, epididymis, seminal vesicle, liver, and kidney was carried out. Complete blood count, liver and kidney function tests, and testosterone hormone analysis were done. RESULTS At the end of the experiment, results showed a significant (p < 0.05) decrease in sperm viability with alterations in the histology of the liver, kidney, testis, and other reproductive organs in the exposed group of rats. A reduced level of testosterone, total antioxidant capacity, and decreased sperm mitochondrial function were also observed in the exposed rats. Moreover, the exposed rats showed an increase in sperm lipid peroxidation and sperm abnormality. Hematological parameters like hemoglobin, red blood cells (RBC), and packed cell volume (PCV) showed a significant (p < 0.05) increase in the exposed rats. CONCLUSION The results indicate that chronic exposure to 4G radiation may affect the male reproductive system, hematological system, liver, and kidney of rats.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Sarsaiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Koohestanidehaghi Y, Khalili MA, Fesahat F, Seify M, Mangoli E, Kalantar SM, Annarita Nottola S, Macchiarelli G, Grazia Palmerini M. Detrimental effects of radiofrequency electromagnetic waves emitted by mobile phones on morphokinetics, oxidative stress, and apoptosis in mouse preimplantation embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122411. [PMID: 37598936 DOI: 10.1016/j.envpol.2023.122411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Due to the increasing use of smart mobile phones, the impact of radiofrequency electromagnetic radiation (RF-EMR) on reproductive health has become a serious concern. This study investigated the effect of mobile phone RF-EMR with frequency 900-1800 MHZ on the mouse embryo morphokinetics and genotoxic effect in laboratory conditions. After ovarian stimulation in mice, the MII oocytes were collected and underwent by in vitro fertilization (IVF) method. The generated zygotes were divided into control and exposed groups. Then, the zygotes with 30 min of exposure to mobile phone RF-EMR, and the control zygotes without exposure, were incubated in the time-lapse for 5 days. The intracellular reactive oxygen species (ROS) level, morphokinetic, embryo viability rate, and Gene expression were evaluated. Exposure of zygotes to RF-EMR by inducing ROS caused a significant decrease in blastocyst viability (87.85 ± 2.86 versus 94.23 ± 2.44), delay in cleavage development (t3-t12) and also increased the time (in hours) to reach the blastocyst stage (97.44 ± 5.21 versus 92.56 ± 6.7) compared to the control group. A significant increase observed in mRNA levels of Hsp70 in exposed animals; while Sod gene expression showed a significant down-regulation in this group compared to the controls, respectively. However, there was no significant change in the transcript level of proapoptotic and antiapoptotic genes in embryos of the exposed group compared to the controls. RF-EMR emitted by mobile phone with a frequency of 900-1800 MHZ, through inducing the production of ROS and oxidative stress, could negatively affect the growth and development as well as the transcript levels of oxidative stress associated genes in the preimplantation embryos of mice.
Collapse
Affiliation(s)
- Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Xin L, Li F, Yu H, Xiong Q, Hou Q, Meng Y. Honokiol alleviates radiation-induced premature ovarian failure via enhancing Nrf2. Am J Reprod Immunol 2023; 90:e13769. [PMID: 37766410 DOI: 10.1111/aji.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The ovary is highly sensitive to radiation, and patients receiving radiotherapy are at significant risk of premature ovarian failure (POF). This study aimed to explore the radioprotective effect of honokiol (HKL) on ionizing radiation (IR)-induced POF. METHODS Female C57BL/6 mice were administered intraperitoneally with vehicle or HKL once daily for 7 days. On day 7, the mice in the IR and HKL+IR groups were exposed to 3.2 Gy whole-body radiation for one hour after the intraperitoneal injection and sacrificed 12 or 72 h after radiation exposure. The gonadosomatic index (GSI) was calculated. Blood samples were collected for enzyme-linked immunosorbent assay (ELISA). Ovaries were harvested for histological examination, immunohistochemistry, immunofluorescence, TUNEL, western blot, and qPCR. The fertility assessment was evaluated by calculating live offspring number. RESULTS The optimum dose of HKL against radiation was 10 mg/kg via intraperitoneal injection. POF was induced 72 h after irradiation with significantly downregulated proliferating cell nuclear antigen (PCNA). The numbers of primordial and preantral follicles decreased significantly after irradiation (p < .001), whereas the number of atretic follicles increased (p < .001). The serum levels of estradiol (E2 ) and anti-Müllerian hormone (AMH) decreased to 50% of the control group after irradiation (p < .05). Moreover, the GSI after irradiation was 27% lower than in the control group (p < .05). The number of offspring in the IR group dropped by 50% compared with the control group (p < .05). HKL pretreatment protected the animals' fertility, GSI, PCNA, serum levels of E2 and AMH, and the number of primordial and preantral follicles. Significant upregulation of apoptosis-related proteins such as Pho-P53, Bax, Cyto C, C-caspase-3, C-PARP, and pyroptosis-related proteins such as Pho-NF-κB p65, NLRP3, caspase-1, IL-1β, and IL-18 was observed after irradiation, while the expression of Bcl-2 decreased. HKL pretreatment prevented these changes. After irradiation, malondialdehyde (MDA), Nrf2, and HO-1 were upregulated. HKL treatment activated the expression of Nrf2 and HO-1 and promoted the nucleus translocation of Nrf2. Furthermore, HKL did not affect ovarian reserves under physiological conditions. CONCLUSIONS HKL ameliorated IR-induced POF by inhibiting apoptosis and pyroptosis by enhancing Nrf2 expression and translocation.
Collapse
Affiliation(s)
- Lingli Xin
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qi Xiong
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuanguang Meng
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
7
|
Caiati C, Stanca A, Lepera ME. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023; 13:712. [PMID: 37367870 DOI: 10.3390/metabo13060712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
We are surrounded by factors called free radicals (FR), which attach to the molecules our body is made of, first among them the endothelium. Even though FR are to a certain extent a normal factor, nowadays we face an escalating increase in these biologically aggressive molecules. The escalating formation of FR is linked to the increased usage of man-made chemicals for personal care (toothpaste, shampoo, bubble bath, etc.), domestic laundry and dish-washer detergents, and also an ever wider usage of drugs (both prescription and over the counter), especially if they are to be used long-term (years). In addition, tobacco smoking, processed foods, pesticides, various chronic infectious microbes, nutritional deficiencies, lack of sun exposure, and, finally, with a markedly increasing impact, electromagnetic pollution (a terribly destructive factor), can increase the risk of cancer, as well as endothelial dysfunction, owing to the increased production of FR that they cause. All these factors create endothelial damage, but the organism may be able to repair such damage thanks to the intervention of the immune system supported by antioxidants. However, one other factor can perpetuate the state of inflammation, namely obesity and metabolic syndrome with associated hyperinsulinemia. In this review, the role of FR, with a special emphasis on their origin, and of antioxidants, is explored from the perspective of their role in causing atherosclerosis, in particular at the coronary level.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Alessandro Stanca
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Mario Erminio Lepera
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
8
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
9
|
KUZAY D, SİRAV B, ÖZER Ç. Effects of RF and ELF Radiation on Oxidative Stress of Brain Tissue and Plasma of Diabetic Rats. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2023. [DOI: 10.30934/kusbed.784547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: Exposure to Radio Frequency (RF) and Extremely Low Frequency (ELF) radiation is increasing steadily with the progress of technology and industrialization. The aim of this study was to investigate whether RF and ELF radiation are oxidative stress effects in the plasma and brain tissue of diabetic and non-diabetic rats.
Methods: Experiment groups were designed as follows; C (control), S (sham), ELF (ELF radiation exposure), RF (RF radiation exposure), ELF+RF (ELF and RF radiation exposure), D-C (Diabetic Control), D-S (Diabetic Sham), D-ELF (Diabetic ELF), D-RF (Diabetic RF), D-ELF+RF (Diabetic ELF+RF). The experimental diabetes model was induced with a single dose of 65mg/kg streptozotocin (STZ). 2100 MHz RF and 50 Hz ELF radiation groups exposed for 1 month. Total nitric oxide (NOx), malondialdehyde (MDA) and total sulfhydryl groups (RSH) / glutathione (GSH) levels were measured in plasma and brain tissue.
Results: RF + ELF radiation exposure caused an increase in NOx and MDA levels in plasma and brain tissue of diabetic and non-diabetic rats (p<0.05). Exposure to RF and RF + ELF radiation caused a decrease in plasma RSH / tissue GSH levels in non-diabetic rats (p<0.05).
Conclusion: The most prominent effect was seen in the diabetic group with RF + ELF radiation exposure.
Collapse
Affiliation(s)
- Dilek KUZAY
- AHI EVRAN UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF PHYSIOLOGY
| | - Bahriye SİRAV
- GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF BIOPHYSICS
| | - Çiğdem ÖZER
- GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF PHYSIOLOGY
| |
Collapse
|
10
|
Yazdanpanahi M, Namazi A, Shojaeifard MB, Nematolahi S, Pourahmad S. Evaluating the Effect of Jammer Radiation on Learning and Memory in Male Rats. J Biomed Phys Eng 2023; 13:29-38. [PMID: 36818009 PMCID: PMC9923240 DOI: 10.31661/jbpe.v0i0.2001-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/28/2020] [Indexed: 02/03/2023]
Abstract
Background Previous studies shown that mobile phone can impairment of working memory in humans. Objective In this study, the effect of radiofrequency radiation emitted from common mobile jammers have been studied on the learning and memory of rats. Material and Methods In this prospective study, 90 Sprague-Dawley rats, were divided into 9 groups (N=10): Control, Sham1st (exposed to a switched-off mobile jammer device at a distance of 50 or 100 cm/1 day, 2 hours), Sham2nd (similar to Sham1st, but for 14 days, 2 h/day), Experimental1st -50 cm/1 day &100 cm/1 day (exposed to a switched-on device at a distance of 50 or 100 cm for 2 hours), Experimental2nd (similar to experimental1st, but for 14 days, 2 h/day). The animals were tested for learning and memory the next day, by the shuttle box. The time that a rat took to enter the dark part was considered as memory. Results Mean short-term memory was shorter in the experimental- 50 cm/1 day than control and sham- 50 cm/1 day (P=0.034), long-term memory was similar. Mean short- and long-term memory were similar in the experimental- 100 cm/1 day, control and sham- 100 cm/1 day (P>0.05). Mean short-term memory was similar in experimental- 50 cm/14 days, control, and sham- 50 cm/14 days (P=0.087), but long-term learning memory was shorter in the radiated group (P=0.038). Mean short- and long-term were similar among experimental-100 cm/14 days, control or sham 100 cm/14 days (P>0.05). Conclusion Rats exposed to jammer device showed dysfunction in short- and long-term memory, which shown the unfavorable effect of jammer on memory and learning. Our results indicated that the distance from radiation source was more important than the duration.
Collapse
Affiliation(s)
- Mehrnaz Yazdanpanahi
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abasaleh Namazi
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manzar Banoo Shojaeifard
- Ionizing and Non-ionizing Radiation Protection Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Nematolahi
- Biostatics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeedeh Pourahmad
- Biostatics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
12
|
Barnes F, Freeman JER. Some thoughts on the possible health effects of electric and magnetic fields and exposure guidelines. Front Public Health 2022; 10:994758. [PMID: 36187692 PMCID: PMC9521330 DOI: 10.3389/fpubh.2022.994758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns about the possible health effects from exposure to weak electric and magnetic (EM) fields have been debated since the early 1960s. It is now well established that biological systems respond to exposure to weak EM fields at energy levels well below the current safety guidelines which result in modification of their functionality without significant changes in temperature. These observations are adding to the debate over what should be done to protect the users of cellular telecommunications systems. Experimental results showing both increases and decreases in cancer cell growth rates and concentration of reactive oxygen species for exposure to nano-Tesla magnetic fields at both radio frequencies (RF) and extra low frequencies (ELF) are cited in this paper. Some theoretical models on how variations in EM exposure can lead to different biological outcomes and how feedback and repair processes often mitigate potential health effects due to long-term exposure to low-level EM energy sources are presented. Of particular interest are the application of the radical pair mechanisms that affect polarization of electrons, and nuclear spins and the importance of time-delayed feedback loops and the timing of perturbations to oscillations in biological systems. These models help account for some of the apparently conflicting experimental results reported and suggest further investigation. These observations are discussed with particular emphasis on setting future safety guidelines for exposure to electromagnetic fields in cellular telecommunications systems. The papers cited are a very small fraction of those in the literature showing both biological effects and no effects from weak electric and magnetic fields.
Collapse
|
13
|
Pardhiya S, Gautam R, Nirala JP, Murmu NN, Rajamani P. Modulatory role of Bovine serum albumin conjugated manganese dioxide nanoparticle on microwave radiation induced alterations in reproductive parameters of rat. Reprod Toxicol 2022; 113:136-149. [PMID: 36089154 DOI: 10.1016/j.reprotox.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
In recent decades, microwave (MW) radiations are being used extensively for various applications such as Wi-Fi, telecommunication, etc. due to which there have been grave concerns regarding the adverse effects of MW exposure on human health, particularly the reproductive system. MW cause damage to the reproductive system by generating free radicals, decreasing antioxidant defence, and inducing oxidative stress. Hence, the present study was aimed to counteract the harmful effect by using antioxidant enzymes mimicking nanoparticle, Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticle (MNP*). Male Wistar rats were exposed to MW and treated with MNP*, and their individual, as well as combined effect on reproductive parameters was investigated. Results showed that MW exposed rats had significantly reduced testosterone levels along with alterations in the testicular morphology. The antioxidant status decreased, and lipid peroxidation increased significantly in testis. MW exposure also showed altered sperm parameters such as a significant decrease in sperm count, viability, membrane integrity and mitochondrial activity with a significant increase in morphological abnormality and lipid peroxidation. As a result, the changes induced by MW may affect male fertility. However, upon combined exposure of MNP* and MW, these alterations were reduced significantly. Hence, it may be concluded that MNP* could reduce oxidative stress mediated damages in the reproductive system of rats owing to its antioxidant activity, and thus have a potential to act as a radioprotectant.
Collapse
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nina Nancy Murmu
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
14
|
Is the Technology Era Aging You? A Review of the Physiologic and Psychologic Toll of Technology Use. Dermatol Surg 2022; 48:978-988. [PMID: 35862680 DOI: 10.1097/dss.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Technology use is at an all-time high and its potential impact on psychological and physiologic health should be explored. OBJECTIVE The objective of this narrative review was to identify the role of technology use on health and well-being. MATERIALS AND METHODS Authors performed a review of PubMed and publications of the World Health Organization, Department of Defense, and Centers for Disease Control and Prevention to determine the impact of technology regarding electromagnetic radiation (EM), posture and mobility, sleep disturbance, and psychological stress and well-being. RESULTS Studies on the impact of EM were conflicting, with about 45% reporting negative consequences and 55% reporting no effect. Radiofrequency EM (RF-EM) may more significantly affect fibroblasts and immature cells. Device use was implicated in worsening cognitive focus, imbalance, and sleep. Social media use affects self-esteem and mental health and is associated with up to 33% presence of addiction. Effects seem to be dose related and more pronounced in younger ages. CONCLUSION Technology use significantly affects sleep, mental health, and cognitive function. Seeking psychological help, limiting social media use, and reducing use before sleep may partially mitigate these effects. The impact of EM is undetermined, but the WHO lists RF-EM as a potential carcinogen.
Collapse
|
15
|
Oxidative and mutagenic effects of low intensity microwave radiation on quail embryos. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
17
|
Henschenmacher B, Bitsch A, de Las Heras Gala T, Forman HJ, Fragoulis A, Ghezzi P, Kellner R, Koch W, Kuhne J, Sachno D, Schmid G, Tsaioun K, Verbeek J, Wright R. The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review. ENVIRONMENT INTERNATIONAL 2022; 158:106932. [PMID: 34662800 PMCID: PMC8668870 DOI: 10.1016/j.envint.2021.106932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oxidative stress is conjectured to be related to many diseases. Furthermore, it is hypothesized that radiofrequency fields may induce oxidative stress in various cell types and thereby compromise human and animal health. This systematic review (SR) aims to summarize and evaluate the literature related to this hypothesis. OBJECTIVES The main objective of this SR is to evaluate the associations between the exposure to radiofrequency electromagnetic fields and oxidative stress in experimental models (in vivo and in vitro). METHODS The SR framework has been developed following the guidelines established in the WHO Handbook for Guideline Development and the Handbook for Conducting a Literature-Based Health Assessment). We will include controlled in vivo and in vitro laboratory studies that assess the effects of an exposure to RF-EMF on valid markers for oxidative stress compared to no or sham exposure. The protocol is registered in PROSPERO. We will search the following databases: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles will also be manually searched. STUDY APPRAISAL AND SYNTHESIS METHOD Data will be extracted according to a pre-defined set of forms developed in the DistillerSR online software and synthesized in a meta-analysis when studies are judged sufficiently similar to be combined. If a meta-analysis is not possible, we will describe the effects of the exposure in a narrative way. RISK OF BIAS The risk of bias will be assessed with the NTP/OHAT risk of bias rating tool for human and animal studies. We will use GRADE to assess the certainty of the conclusions (high, moderate, low, or inadequate) regarding the association between radiofrequency electromagnetic fields and oxidative stress. FUNDING This work was funded by the World Health Organization (WHO). REGISTRATION The protocol was registered on the PROSPERO webpage on July 8, 2021.
Collapse
Affiliation(s)
- Bernd Henschenmacher
- Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Tonia de Las Heras Gala
- Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; University of California Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany.
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, University of Sussex, Trafford Centre, Falmer BN1 9RY, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Wolfgang Koch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Jens Kuhne
- Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Dmitrij Sachno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Gernot Schmid
- Seibersdorf Laboratories, Campus Seibersdorf, 2444 Seibersdorf, Austria.
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Jos Verbeek
- University Medical Center Amsterdam, Cochrane Work, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Robert Wright
- William H. Welch Medical Library, Johns Hopkins University School of Medicine, 2024 E. Monument Street, Suite 1-200, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Sengupta P, Roychoudhury S, Nath M, Dutta S. Oxidative Stress and Idiopathic Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:181-204. [DOI: 10.1007/978-3-030-89340-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Methodology of Studying Effects of Mobile Phone Radiation on Organisms: Technical Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312642. [PMID: 34886365 PMCID: PMC8656635 DOI: 10.3390/ijerph182312642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
The negative influence of non-ionizing electromagnetic radiation on organisms, including humans, has been discussed widely in recent years. This paper deals with the methodology of examining possible harmful effects of mobile phone radiation, focusing on in vivo and in vitro laboratory methods of investigation and evaluation and their main problems and difficulties. Basic experimental parameters are summarized and discussed, and recent large studies are also mentioned. For the laboratory experiments, accurate setting and description of dosimetry are essential; therefore, we give recommendations for the technical parameters of the experiments, especially for a well-defined source of radiation by Software Defined Radio.
Collapse
|
20
|
Rasouli Mojez M, Ali Gaeini A, Choobineh S, Sheykhlouvand M. Hippocampal Oxidative Stress Induced by Radiofrequency Electromagnetic Radiation and the Neuroprotective Effects of Aerobic Exercise in Rats: A Randomized Control Trial. J Phys Act Health 2021; 18:1532-1538. [PMID: 34697252 DOI: 10.1123/jpah.2021-0213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. METHODS Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10-12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15-30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. RESULTS Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. CONCLUSION This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.
Collapse
|
21
|
Lupi D, Palamara Mesiano M, Adani A, Benocci R, Giacchini R, Parenti P, Zambon G, Lavazza A, Boniotti MB, Bassi S, Colombo M, Tremolada P. Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. INSECTS 2021; 12:716. [PMID: 34442282 PMCID: PMC8396937 DOI: 10.3390/insects12080716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Honeybee and general pollinator decline is extensively reported in many countries, adding new concern to the general biodiversity loss. Many studies were addressed to assess the causes of pollinator decline, concluding that in most cases multi-stress effects were the most probable ones. In this research, the combined effects of two possible stress sources for bees, pesticides and electromagnetic fields (multi-stress conditions), were analyzed in the field. Three experimental sites were chosen: a control one far from direct anthropogenic stress sources, a pesticide-stress site and multi-stress one, adding to the same exposure to pesticides the presence of an electromagnetic field, coming from a high-voltage electric line. Experimental apiaries were monitored weekly for one year (from April 2017 to April 2018) by means of colony survival, queen activity, storage and brood amount, parasites and pathogens, and several biomarkers in young workers and pupae. Both exposure and effect biomarkers were analysed: among the first, acetylcholinesterase (AChE), catalase (CAT), glutathione S-transferase (GST) and alkaline phosphatase (ALP) and Reactive Oxygen Species (ROS); and among the last, DNA fragmentation (DNAFRAGM) and lipid peroxidation (LPO). Results showed that bee health conditions were the worst in the multi-stress site with only one colony alive out of the four ones present at the beginning. In this site, a complex picture of adverse effects was observed, such as disease appearance (American foulbrood), higher mortality in the underbaskets (common to pesticide-stress site), behavioral alterations (queen changes, excess of honey storage) and biochemical anomalies (higher ALP activity at the end of the season). The overall results clearly indicate that the multi-stress conditions were able to induce biochemical, physiological and behavioral alterations which severely threatened bee colony survival.
Collapse
Affiliation(s)
- Daniela Lupi
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Marco Palamara Mesiano
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Agnese Adani
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| | - Roberto Benocci
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Roberto Giacchini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Paolo Parenti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Giovanni Zambon
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Stefano Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Mario Colombo
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Paolo Tremolada
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| |
Collapse
|
22
|
Chowdhury A, Singh Y, Das U, Waghmare D, Dasgupta R, Majumder SK. Effects of mobile phone emissions on human red blood cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202100047. [PMID: 33871929 DOI: 10.1002/jbio.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Raman spectroscopy was performed on GSM 900 and 1800 MHz mobile phone signal exposed red blood cells (RBCs). The observed changes in the Raman spectra of mobile signal exposed RBCs compared to unexposed control suggest reduced hemoglobin-oxygen affinity for the exposed cells. The possible mechanism may involve activation of the voltage gated membrane Ca2+ channels by the mobile phone emissions resulting in an increase in the levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in cells via altered metabolic activities. Further studies carried out with fluorescent Ca2+ indicator confirmed increased intracellular Ca2+ level in the exposed cells. Since intracellular ATP level influences the shape and mechanics of RBCs, exposed cells were studied using diffraction phase microscopy and optical tweezers. Detectable changes in shape and mechanical properties were observed due to mobile signal exposure.
Collapse
Affiliation(s)
- Aniket Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Yashveer Singh
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Uttam Das
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
| | - Deepak Waghmare
- School of Physics, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Raktim Dasgupta
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
Yadav H, Rai U, Singh R. Radiofrequency radiation: A possible threat to male fertility. Reprod Toxicol 2021; 100:90-100. [PMID: 33497741 DOI: 10.1016/j.reprotox.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Radiofrequency exposure from man-made sources has increased drastically with the era of advanced technology. People could not escape from such RF radiations as they have become the essential part of our routine life such as Wi-Fi, microwave ovens, TV, mobile phones, etc. Although non-ionizing radiations are less damaging than ionizing radiations but its long term exposure effect cannot be avoided. For fertility to be affected, either there is an alteration in germ cell, or its nourishing environment, and RF affects both the parameters subsequently, leading to infertility. This review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes. RF also results in genetic and hormonal changes. In addition, the contribution of oxidative stress and protein kinase complex after RFR exposure is also summarized which could also be the possible mechanism for reduction in sperm parameters. Further, some preventative measures are described which could help in reverting the radiofrequency effects on germ cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Umesh Rai
- Deparment of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
24
|
Gautam R, Priyadarshini E, Nirala J, Rajamani P. Impact of nonionizing electromagnetic radiation on male infertility: an assessment of the mechanism and consequences. Int J Radiat Biol 2021; 98:1063-1073. [PMID: 33264041 DOI: 10.1080/09553002.2020.1859154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Environment and lifestyle factors are being attributed toward increased instances of male infertility. Rapid technological advancement, results in emission of electromagnetic radiations of different frequency which impacts human both biologically as well as genetically. Devices like cell phone, power line and monitors emit electromagnetic radiation and are a major source of the exposure. Numerous studies describe the detrimental consequence of radiation on physiological parameters of male reproductive system including sperm parameters (morphology, motility, and viability), metabolism and genomic instability. While the thermal and nonthermal interaction of nonionizing radiations with biological tissues can't be ruled out, most studies emphasize the generation of reactive oxygen species. Oxidative stress alters redox equilibrium and disrupts morphology and normal functioning of sperms along with declination of total anti-oxidant capacity. CONCLUSION In this paper, we describe a detailed literature review with the intent of analyzing the impact of electromagnetic radiation and understand the consequence on male reproductive system. The underlying mechanism suggesting ROS generation and pathway of action has also been discussed. Additionally, the safety measures while using electronic gadgets and mobile phones has also been presented.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - JayPrakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
25
|
Mansourian M, Firoozabadi SMP, Hassan ZM. The effect of 900 MHz electromagnetic fields on biological pathways induced by electrochemotherapy. Electromagn Biol Med 2021; 40:158-168. [PMID: 33306410 DOI: 10.1080/15368378.2020.1856681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Electrochemotherapy (ECT) is a new and promising treatment strategy for cancer treatment. The aim of this work is to investigate the effect of 900 MHz radiofrequency electromagnetic fields (RF-EMFs) on the mechanisms of ECT (low voltage, high frequency) including cell permeability in vitro, and tumor hypoxia, immune system response in vivo, and on volume of tumors treated with ECT (70 V/cm, 5 kHz). The 4T1 cells were exposed to RF-EMFs at 17, 162, or 349 µW/cm2 power densities, using GSM900 simulator, 10 min. The cells were then put in individual groups, comprising of no treatment, chemotherapy, electric pulses (EPs), or ECT. The cell viability was evaluated. The mice with 4T1 tumor cells were exposed to RF field 10 min/day until the tumor volume reached about 8 mm. Then, the mice tumors were treated with ECT. Tumor hypoxia and immune system response was analyzed through immunohistochemistry (IHC) assay and ELISA technique, respectively. The volume of tumors was also calculated for 24 days following the treatment. The results showed that RF fields at 349 µW/cm2 could increase tumor hypoxia induced by ECT and cause a significant increase of Interferon-gamma (IFN-γ) in comparison with group ECT alone. However, 900 MHz radiations did not affect the volume of tumors treated to ECT (70 V/cm, 5 kHz) significantly. In this study, 900 MHz EMF could improve some biological pathways induced by ECT. Such a positive effect could utilize in some other treatments to increase efficacy, which should be investigated in further research.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - S M P Firoozabadi
- Department of Medical Physics, Faculty of Medical Science, Biomedical Engineering, Tarbiat Modares University , Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
26
|
Takeshima T, Usui K, Mori K, Asai T, Yasuda K, Kuroda S, Yumura Y. Oxidative stress and male infertility. Reprod Med Biol 2021; 20:41-52. [PMID: 33488282 PMCID: PMC7812476 DOI: 10.1002/rmb2.12353] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Between 30% and 80% of patients with male infertility produce excessive reactive oxygen species (ROS) in their ejaculate even though the cause of male infertility is unexplained in approximately half of cases. The strong connection between oxidative stress (OS) and male infertility has led recent investigators to propose the term "Male Oxidative Stress Infertility (MOSI)" to describe OS-associated male infertility. METHODS We searched the PubMed database for original and review articles to survey the effects of OS on male infertility, and then verified the effects and treatments. MAIN FINDINGS Seminal plasma contains many antioxidants that protect sperm from ROS, because low amounts of ROS are required in the physiological fertilization process. The production of excessive ROS causes OS which can lower fertility through lipid peroxidation, sperm DNA damage, and apoptosis. Several assays are available for evaluating OS, including the MiOXSYS® analyzer to measure oxidation-reduction potential. Several measures should be considered for minimizing OS and improving clinical outcomes. CONCLUSION Accurately diagnosing patients with MOSI and identifying highly sensitive biomarkers through proteomics technology is vital for better clinical outcomes.
Collapse
Affiliation(s)
- Teppei Takeshima
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Kimitsugu Usui
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Kohei Mori
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Takuo Asai
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Kengo Yasuda
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Shinnosuke Kuroda
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| | - Yasushi Yumura
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohama cityJapan
| |
Collapse
|
27
|
Alkis ME, Akdag MZ, Dasdag S. Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats. Bioelectromagnetics 2020; 42:76-85. [PMID: 33368426 DOI: 10.1002/bem.22315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76-85. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Mehmet E Alkis
- Department of Occupational Health and Safety, Health School of Muş Alparslan University, Muş, Turkey
| | - Mehmet Z Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
28
|
Gulati S, Kosik P, Durdik M, Skorvaga M, Jakl L, Markova E, Belyaev I. Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115632. [PMID: 33254645 DOI: 10.1016/j.envpol.2020.115632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.
Collapse
Affiliation(s)
- Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic.
| |
Collapse
|
29
|
Pardhiya S, Gaharwar US, Gautam R, Priyadarshini E, Nirala JP, Rajamani P. Cumulative effects of manganese nanoparticle and radiofrequency radiation in male Wistar rats. Drug Chem Toxicol 2020; 45:1395-1407. [DOI: 10.1080/01480545.2020.1833905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J Mens Health 2020; 38:412-471. [PMID: 32777871 PMCID: PMC7502318 DOI: 10.5534/wjmh.200128] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations. This article provides an overview of SDF types, origin and comparative analysis of various SDF assays while primarily focusing on the clinical indications of SDF testing. Importantly, we report four clinical cases where SDF testing had played a significant role in improving fertility outcome. In light of these clinical case reports and recent scientific evidence, this review provides expert recommendations on SDF testing and examines the advantages and drawbacks of the clinical utility of SDF testing using Strength-Weaknesses-Opportunities-Threats (SWOT) analysis.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Hong Kong
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Catalina Barbarosie
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology & Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Edmund Ko
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University, Giza, Egypt
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Rafael Ambar
- Urology Department of Centro Universitario em Saude do ABC, Santo André, Brazil
| | | | - Kathy Amy Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
31
|
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett 2020; 323:35-40. [PMID: 31991167 DOI: 10.1016/j.toxlet.2020.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.
Collapse
Affiliation(s)
- Ronald N Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Georgia, United States.
| | - Paul Heroux
- Toxicology and Health Effects of Electromagnetism, McGill University, Canada
| | - Michael Aschner
- Molecular Pharmacology, Einstein Center of Toxicology, Albert Einstein College of Medicine, United States
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
32
|
Catalase as a Molecular Target for Male Infertility Diagnosis and Monitoring: An Overview. Antioxidants (Basel) 2020; 9:antiox9010078. [PMID: 31963256 PMCID: PMC7022443 DOI: 10.3390/antiox9010078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Catalase (CAT) stands out as one of the most efficient natural enzymes when catalysing the split of H2O2 into H2O and O2; H2O2 is one of the reactive oxygen species (ROS) involved in oxidative stress, a process closely related to aging and several health disorders or diseases like male infertility. Some studies have correlated H2O2 with male infertility and catalase with fertility restoration. However, the number of studies conducted with human beings remains scarce. Considering the use of CAT as a molecular target for biochemical analysis, this review summarises the current knowledge on how CAT influences human beings’ male fertility. Thus, three different databases were consulted—Scopus, PubMed and WOS—using single keywords and combinations thereof. A total of 40,823 articles were identified. Adopting inclusion and exclusion criteria, a final database of 197 articles served to conduct this work. It follows from this analysis that CAT could play an important role in male fertility and could become a good target for male infertility diagnosis and monitoring. However, that potential role of CAT as a tool in diagnosis must be confirmed by clinical trials. Finally, guidelines are suggested to reinforce the use of CAT in daily clinical tests for male fertility diagnosis and monitoring.
Collapse
|
33
|
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020. [PMID: 31377843 DOI: 10.1007/s00018-019-03253-8)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.
Collapse
Affiliation(s)
- Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran. .,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020; 77:93-113. [PMID: 31377843 PMCID: PMC11105059 DOI: 10.1007/s00018-019-03253-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.
Collapse
Affiliation(s)
- Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
35
|
Alkis ME, Akdag MZ, Dasdag S, Yegin K, Akpolat V. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1696702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Mehmet Esref Alkis
- Departmen of Occupational Health and Safety, Health School, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Engineering School, Ege University, Izmir, Turkey
| | - Veysi Akpolat
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
36
|
Koohestani NV, Zavareh S, Lashkarbolouki T, Azimipour F. Exposure to cell phone induce oxidative stress in mice preantral follicles during in vitro cultivation: An experimental study. Int J Reprod Biomed 2019; 17:637-646. [PMID: 31646258 PMCID: PMC6804329 DOI: 10.18502/ijrm.v17i9.5099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/02/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Radiations emitting from mobile phones have been proposed to affect people's health, mediated by various mechanisms like induction of oxidative stress. Objective This study aims to investigate the effect of cell phone exposure on the oxidative status of mice preantral follicles (PFs) during in vitro culture. Materials and Methods PFs (n░=░2580) were isolated mechanically from 16 to 18 day-old NMRI mice (n░=░50) and divided into control and cell phone-exposed groups. PFs were cultured for 12 days and ovulation was induced using human chorion gonadotropin. The developmental parameters including size, survival, antral cavity formation, ovulation and oocyte maturation were assessed. In parallel, enzymatic antioxidants activities, total antioxidant capacity (TAC), and Malondialdehyde (MDA) levels were evaluated. Results The diameters and the rates of survival, antrum formation, ovulation, and metaphase II oocytes of exposed PFs to cell phone were significantly lower than those of the control group (p░≤░0.001). The PFs exposed to cell phone had significantly lower superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activity compared with the control group. In the cell phone exposed PFs, the TAC level was significantly lower (p░≤░0.001) and MDA levels was significantly higher (p░≤░0.001), compared tothe those of control group. Conclusion Exposure to cell phone compromised the developmental competence of mice PFs by increasing oxidative stress.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology Damghan University Damghan Iran.,Institute of Biological Sciences Damghan University Damghan Iran
| | - Taghi Lashkarbolouki
- School of Biology Damghan University Damghan Iran.,Institute of Biological Sciences Damghan University Damghan Iran
| | | |
Collapse
|
37
|
Azimipour F, Zavareh S, Lashkarbolouki T. The Effect of Radiation Emitted by Cell Phone on The Gelatinolytic Activity of Matrix Metalloproteinase-2 and -9 of Mouse Pre-Antral Follicles during In Vitro Culture. CELL JOURNAL 2019; 22:1-8. [PMID: 31606960 PMCID: PMC6791065 DOI: 10.22074/cellj.2020.6548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/20/2019] [Indexed: 12/04/2022]
Abstract
Objective The unfavorable effects of electromagnetic radiation (EMR) emitted by the cell phone on reproduction
health are controversial. Metalloproteinases play a vital role in ovarian follicle development. This study was designed
to investigate the effects of exposure to the cell phone on the gelatinolytic activity of in vitro cultured mouse pre-antral
follicle.
Materials and Methods In this experimental study, pre-antral follicles were isolated from ovaries of immature mice
(n=16) and cultured with or without exposure to the cell phone in talking mode for 60 minutes. The gelatinolytic activity
was evaluated through the zymography method, as well as the gene expression of matrix metalloproteinases (MMPs)
namely MMP-2 and -9 and tissue inhibitors of metalloproteinases (TIMPs) namely, TIMP-1 and -2 by the real-time
polymerase chain reaction (PCR) method. Also, in parallel, the development of pre-antral follicles was assessed.
Results The maturation parameters of the cell phone-exposed pre-antral follicles were significantly lower compared
with the control group (P<0.05). The gelatinolytic activity was significantly decreased in the cell phone-exposed pre-
antral follicles compared with the control group (P<0.05). The relative mRNA expression of the MMP-2 gene was
significantly (P<0.05) increased in the cell phone-exposed pre-antral follicles whereas the expression rate of the MMP-9
gene was considerably (P<0.05) reduced when compared with the control group. Conversely, the relative expression
of the TIMP-1 was markedly (P<0.05) increased in the cell phone-exposed pre-antral follicles while the expression of
the TIMP-2 was (P<0.05) significantly diminished in comparison with the control group.
Conclusion Exposure to the cell phone alters the growth and maturation rate of murine ovarian follicle through the changing
in the expression of the MMP-2 and -9 genes, as well as the gelatinolytic activity.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran. Electronic Address:
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran. Electronic Address:
| |
Collapse
|
38
|
Hassanen E, Elqusi K, Zaki H, Henkel R, Agarwal A. TUNEL assay: Establishing a sperm DNA fragmentation cut-off value for Egyptian infertile men. Andrologia 2019; 51:e13375. [PMID: 31347719 DOI: 10.1111/and.13375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022] Open
Abstract
Male factor infertility is responsible for half of all infertility cases. Conventional semen analysis is inadequate to evaluate male fertility. Sperm DNA fragmentation (SDF) test can be done by: direct methods such as Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) and Comet assay, or indirect like Sperm Chromatin Structure Assay (SCSA) and Sperm Chromatin Dispersion (SCD). TUNEL assay measures both single- and double-strand breaks and is technically less demanding, while SCSA tests for the susceptibility for nuclear DNA denaturation and samples should be sent to the reference lab. Studies showed that a single cut-off value does not fit all. Therefore, this study aimed at establishing a cut-off value to discriminate between fertile and infertile Egyptian men. We enrolled 354 infertile men and 40 proven fertile volunteers.TUNEL assay was performed using Apo-Direct kit and bench top flow cytometer.The calculated SDF cut-off value was 20.3% with a sensitivity of 96.6% and specificity of 87.5%, and the overall accuracy of the test was 95.7%. Sperm DNA fragmentation Test using TUNEL assay is valuable tool for male infertility evaluation, and it assists in offering the best treatment options based on it's results.
Collapse
Affiliation(s)
| | | | | | - Ralf Henkel
- University of the Western Cape, Cape Town, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
Azimzadeh M, Jelodar G. Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS. Andrologia 2019; 51:e13372. [PMID: 31347712 DOI: 10.1111/and.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of this investigation was to evaluate changes in testosterone and some of the functional and regulatory molecules of testis such as P450scc, steroidogenic acute regulatory protein (StAR), tumour necrosis factor-α (TNF-α), interleukin-1α (IL-1α), interleukin-1β (IL-1β) and nerve growth factor (NGF) following exposure to 900 MHz radio frequency (RF). Thirty adult male Sprague Dawley rats (190 ± 20 g BW) were randomly classified in three equal groups, control (sham, without any exposure), short-time exposure (2 hr) (STE) and long-time exposure (4 hr) (LTE). The exposure was performed for 30 consecutive days. The testosterone level in both exposed groups was significantly less than control (p < .05). Level of TNF-α in both exposed groups was significantly greater than control (p < .05). IL-1α and NGF levels in LTE were significantly higher than the STE and control groups (p < .05). Level of IL-1β in LTE was significantly higher than control (p < .05). Expression of both P450scc and StAR mRNA was significantly down-regulated in both exposed groups compared to control (p < .05). Our results showed that RFW can affect testis and reproductive function through changes in factors, which are important during steroidogenesis, and also through changes in inflammatory factors, which regulate Leydig cell functions.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
40
|
Salinas-Asensio MM, Ríos-Arrabal S, Artacho-Cordón F, Olivares-Urbano MA, Calvente I, León J, Núñez MI. Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells. Int J Radiat Biol 2019; 95:1337-1345. [PMID: 31140889 DOI: 10.1080/09553002.2019.1619951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: To explore the influence of electromagnetic fields (EMFs) on the cell cycle progression of MDA-MB-231 and MCF-7 breast cancer cell lines and to evaluate the radiosensitizing effect of magnetotherapy during therapeutic co-exposure to EMFs and radiotherapy. Material and methods: Cells were exposed to EMFs (25, 50 and 100 Hz; 8 and 10 mT). In the co-treatment, cells were first exposed to EMFs (50 Hz/10 mT) for 30 min and then to ionizing radiation (IR) (2 Gy) 4 h later. Cell cycle progression and free radical production were evaluated by flow cytometry, while radiosensitivity was explored by colony formation assay. Results: Generalized G1-phase arrest was found in both cell lines several hours after EMF exposure. Interestingly, a marked G1-phase delay was observed at 4 h after exposure to 50 Hz/10 mT EMFs. No cell cycle perturbation was observed after repeated exposure to EMFs. IR-derived ROS production was enhanced in EMF-exposed MCF-7 cells at 24 h post-exposure. EMF-exposed cells were more radiosensitive in comparison to sham-exposed cells. Conclusions: These results highlight the potential benefits of concomitant treatment with magnetotherapy before radiotherapy sessions to enhance the effectiveness of breast cancer therapy. Further studies are warranted to identify the subset(s) of patients who would benefit from this multimodal treatment.
Collapse
Affiliation(s)
| | - S Ríos-Arrabal
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - F Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - M A Olivares-Urbano
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - I Calvente
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - J León
- Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,Digestive Unit, San Cecilio University Hospital , Granada , Spain.,CIBER of Hepatic and Digestive Diseases (CIBEREHD) , Madrid , Spain
| | - M I Núñez
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,CIBER of Epidemiology and Public Health (CIBERESP) , Madrid , Spain.,Biopathology and Regenerative Medicine Institute (IBIMER) , University of Granada, Granada , Spain
| |
Collapse
|
41
|
Marzook EA, Abd El Moneim AE, Elhadary AA. Protective role of sesame oil against mobile base station-induced oxidative stress. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ebtisam A. Marzook
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Ahmed E. Abd El Moneim
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Abdelmonsef A. Elhadary
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
42
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
43
|
Yang MJ, Lang HY, Miao X, Liu HQ, Zhang YJ, Wang YF, Chen YB, Liu JY, Zeng LH, Guo GZ. Effects of paternal electromagnetic pulse exposure on the reproductive endocrine function of male offspring: a pilot study. Toxicol Res (Camb) 2018; 7:1120-1127. [PMID: 30510681 PMCID: PMC6220719 DOI: 10.1039/c8tx00096d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many studies indicate that parental exposure to an electromagnetic field (EMF) can cause long-term toxicity to the health of the offspring. While concerns have been focused on maternal influence, much less is known regarding the effects of paternal factors. Electromagnetic pulse (EMP) is a special and widely used type of EMF. The present study was designed to investigate the effects of paternal EMP exposure on the reproductive endocrine function of the male rat offspring. Male Sprague Dawley rats were randomly exposed to EMP at 200 kV m-1 for 0, 100 or 400 pulses before mating. The adult male offspring were sacrificed and the structural changes of testes, levels of serum steroid hormones, sperm characteristics, reproductive behaviors, content of the reproductive endocrine-related neurotransmitter GABA and expression of the GABAA receptor were analyzed. The results showed that paternal exposure induced a decrease of testosterone (T), sperm quantity and acrosin activity in the male offspring (p < 0.05). It did not show significant changes in the structure of testes, sperm deformity frequency and reproductive behaviors compared with the sham-exposed group. The content of GABA and the protein and mRNA expression of the hypothalamic GABAA receptor protein increased in the EMP exposure group (p < 0.05). In conclusion, our study shows that under these experimental conditions EMP had a certain degree of influence on the reproductive endocrine function of the male rat offspring, and the hypothalamic GABAA receptor may be involved in the reproductive toxicity of the male offspring.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
- Center for Infectious Disease Control , Institute of Disease Control and Prevention , PLA , Beijing , China
| | - Hai-Yang Lang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Xia Miao
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Hai-Qiang Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yan-Jun Zhang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Ya-Feng Wang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yong-Bin Chen
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Jun-Ye Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Li-Hua Zeng
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Guo-Zhen Guo
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| |
Collapse
|
44
|
Altun G, Deniz ÖG, Yurt KK, Davis D, Kaplan S. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. ENVIRONMENTAL RESEARCH 2018; 167:700-707. [PMID: 29884548 DOI: 10.1016/j.envres.2018.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.
Collapse
Affiliation(s)
- Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Devra Davis
- Hadassah Medical School, Hebrew University, Jerusalem, Isreal and Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
45
|
Yahyazadeh A, Deniz ÖG, Kaplan AA, Altun G, Yurt KK, Davis D. The genomic effects of cell phone exposure on the reproductive system. ENVIRONMENTAL RESEARCH 2018; 167:684-693. [PMID: 29884549 DOI: 10.1016/j.envres.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| | - Devra Davis
- Environmental Health Trust, P.O. Box 58, Teton Village, WY 83025, United States
| |
Collapse
|
46
|
Bilgici B, Gun S, Avci B, Akar A, K. Engiz B. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system? Int J Radiat Biol 2018; 94:1054-1061. [DOI: 10.1080/09553002.2018.1503430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Birşen Bilgici
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Gun
- Department of Pathology, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avci
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayşegül Akar
- Department of Biophysics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Begüm K. Engiz
- Department of Electrical and Electronics Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
47
|
Ding SS, Sun P, Zhang Z, Liu X, Tian H, Huo YW, Wang LR, Han Y, Xing JP. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chin Med J (Engl) 2018; 131:402-412. [PMID: 29451144 PMCID: PMC5830824 DOI: 10.4103/0366-6999.225045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The worsening of semen quality, due to the application of Wi-Fi, can be ameliorated by Vitamin E. This study aimed to demonstrate whether a moderate dose of trolox, a new Vitamin E, inhibits oxidative damage on sperms in vitro after exposure to Wi-Fi radiation. Methods: Each of the twenty qualified semen, gathered from June to October 2014 in eugenics clinic, was separated into four aliquots, including sham, Wi-Fi-exposed, Wi-Fi plus 5 mmol/L trolox, and Wi-Fi plus 10 mmol/L trolox groups. At 0 min, all baseline parameters of the 20 samples were measured in sequence. Reactive oxygen species, glutathione, and superoxide dismutase were evaluated in the four aliquots at 45 and 90 min, as were sperm DNA fragments, sperm mitochondrial potential, relative amplification of sperm mitochondrial DNA, sperm vitality, and progressive and immotility sperm. The parameters were analyzed by one-way analysis of variance and Tukey's posttest. Results: Among Wi-Fi plus 5 mmol/L trolox, Wi-Fi-exposed and Wi-Fi plus 10 mmol/L trolox groups, reactive oxygen species levels (45 min: 3.80 ± 0.41 RLU·10−6·ml−1 vs. 7.50 ± 0.35 RLU·10−6·ml−1 vs. 6.70 ± 0.47 RLU·10−6·ml−1, P < 0.001; 90 min: 5.40 ± 0.21 RLU·10−6·ml−1 vs. 10.10 ± 0.31 RLU·10−6·ml−1 vs. 7.00 ± 0.42 RLU·10−6·ml−1, P < 0.001, respectively), percentages of tail DNA (45 min: 16.8 ± 2.0% vs. 31.9 ± 2.5% vs. 61.3 ± 1.6%, P < 0.001; 90 min: 19.7 ± 1.5% vs. 73.7 ± 1.3% vs. 73.1 ± 1.1%, P < 0.001, respectively), 8-hydroxy-2’-deoxyguanosine (45 min: 51.89 ± 1.46 pg/ml vs. 104.89 ± 2.19 pg/ml vs. 106.11 ± 1.81 pg/ml, P = 0.012; 90 min: 79.96 ± 1.73 pg/ml vs. 141.73 ± 2.90 pg/ml vs. 139.06 ± 2.79 pg/ml; P < 0.001), and percentages of immotility sperm (45 min: 27.7 ± 2.7% vs. 41.7 ± 2.2% vs. 41.7 ± 2.5%; 90 min: 29.9 ± 3.3% vs. 58.9 ± 4.0% vs. 63.1 ± 4.0%; all P < 0.001) were lowest, and glutathione peroxidase (45 min: 60.50 ± 1.54 U/ml vs. 37.09 ± 1.77 U/ml vs. 28.18 ± 1.06 U/ml; 90 min: 44.61 ± 1.23 U/ml vs. 16.86 ± 0.93 U/ml vs. 29.94 ± 1.56 U/ml; all P < 0.001), percentages of head DNA (45 min: 83.2 ± 2.0% vs. 68.2 ± 2.5% vs. 38.8 ± 1.6%; 90 min: 80.3 ± 1.5% vs. 26.3 ± 1.3% vs. 26.9 ± 1.1%; all P < 0.001), percentages of sperm vitality (45 min: 89.5 ± 1.6% vs. 70.7 ± 3.1% vs. 57.7 ± 2.4%; 90 min: 80.8 ± 2.2% vs. 40.4 ± 4.0% vs. 34.7 ± 3.9%; all P < 0.001), and progressive sperm (45 min: 69.3 ± 2.7% vs. 55.8 ± 2.2% vs. 55.4 ± 2.5%; 90 min: 67.2 ± 3.3% vs. 38.2 ± 4.0% vs. 33.9 ± 4.0%; all P < 0.001) were highest in Wi-Fi plus 5 mmol/L trolox group at 45 and 90 min, respectively. Other parameters were not affected, while the sham group maintained the baseline. Conclusion: This study found that 5 mmol/L trolox protected the Wi-Fi-exposed semen in vitro from the damage of electromagnetic radiation-induced oxidative stress.
Collapse
Affiliation(s)
- Shang-Shu Ding
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Sun
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhou Zhang
- Department of Andrology, Shaanxi Maternal and Child Care Service Center, Xi'an, Shaanxi 710061, China
| | - Xiang Liu
- Department of Andrology, Shaanxi Maternal and Child Care Service Center, Xi'an, Shaanxi 710061, China
| | - Hong Tian
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yong-Wei Huo
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li-Rong Wang
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Han
- Department of Biochemistry, Institute of Biochemistry and Molecular Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jun-Ping Xing
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
48
|
Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. Int J Radiat Biol 2018; 94:850-857. [DOI: 10.1080/09553002.2018.1490039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali Masoumi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. M. J. Mortazavi
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
49
|
Russell CL. 5 G wireless telecommunications expansion: Public health and environmental implications. ENVIRONMENTAL RESEARCH 2018; 165:484-495. [PMID: 29655646 DOI: 10.1016/j.envres.2018.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The popularity, widespread use and increasing dependency on wireless technologies has spawned a telecommunications industrial revolution with increasing public exposure to broader and higher frequencies of the electromagnetic spectrum to transmit data through a variety of devices and infrastructure. On the horizon, a new generation of even shorter high frequency 5G wavelengths is being proposed to power the Internet of Things (IoT). The IoT promises us convenient and easy lifestyles with a massive 5G interconnected telecommunications network, however, the expansion of broadband with shorter wavelength radiofrequency radiation highlights the concern that health and safety issues remain unknown. Controversy continues with regards to harm from current 2G, 3G and 4G wireless technologies. 5G technologies are far less studied for human or environmental effects. It is argued that the addition of this added high frequency 5G radiation to an already complex mix of lower frequencies, will contribute to a negative public health outcome both from both physical and mental health perspectives. Radiofrequency radiation (RF) is increasingly being recognized as a new form of environmental pollution. Like other common toxic exposures, the effects of radiofrequency electromagnetic radiation (RF EMR) will be problematic if not impossible to sort out epidemiologically as there no longer remains an unexposed control group. This is especially important considering these effects are likely magnified by synergistic toxic exposures and other common health risk behaviors. Effects can also be non-linear. Because this is the first generation to have cradle-to-grave lifespan exposure to this level of man-made microwave (RF EMR) radiofrequencies, it will be years or decades before the true health consequences are known. Precaution in the roll out of this new technology is strongly indicated. This article will review relevant electromagnetic frequencies, exposure standards and current scientific literature on the health implications of 2G, 3G, 4G exposure, including some of the available literature on 5G frequencies. The question of what constitutes a public health issue will be raised, as well as the need for a precautionary approach in advancing new wireless technologies.
Collapse
|
50
|
Saliev T, Begimbetova D, Masoud AR, Matkarimov B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:25-36. [PMID: 30030071 DOI: 10.1016/j.pbiomolbio.2018.07.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Controversial, sensational and often contradictory scientific reports have triggered active debates over the biological effects of electromagnetic fields (EMFs) in literature and mass media the last few decades. This could lead to confusion and distraction, subsequently hampering the development of a univocal conclusion on the real hazards caused by EMFs on humans. For example, there are lots of publications indicating that EMF can induce apoptosis and DNA strand-breaks in cells. On the other hand, these effects could rather be beneficial, in that they could be effectively harnessed for treatment of various disorders, including cancer. This review discusses and analyzes the results of various in vitro, in vivo and epidemiological studies on the effects of non-ionizing EMFs on cells and organs, including the consequences of exposure to the low and high frequencies EM spectrum. Emphasis is laid on the analysis of recent data on the role of EMF in the induction of oxidative stress and DNA damage. Additionally, the impact of EMF on the reproductive system has been discussed, as well as the relationship between EM radiation and blood cancer. Apart from adverse effects, the therapeutic potential of EMFs for clinical use in different pathologies is also highlighted.
Collapse
Affiliation(s)
- Timur Saliev
- Kazakh National Medical University Named After S.D. Asfendiyarov, Tole Bi Street 94, Almaty, 050000, Kazakhstan; National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Abdul-Razak Masoud
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|