1
|
Yang Z, Krammer S, Mitländer H, Grund JC, Zirlik S, Wirtz S, Rauh M, Shermeh AS, Finotto S. NFATc1 in CD4 + T cells and CD11c + dendritic cells drives T H2-mediated eosinophilic inflammation in allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100355. [PMID: 39629220 PMCID: PMC11613943 DOI: 10.1016/j.jacig.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
Background Asthma, a chronic lung disease, is a significant public health problem worldwide. It is marked by increased TH2 response resulting in eosinophil accumulation. The pathophysiology of asthma involves various cell types, including epithelial cells, dendritic cells (DCs), innate lymphoid cells, B cells, and effector cells. Nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a critical transcription factor for immune regulation, is known for its role in T cells and, more recently, in myeloid cells. However, the specific contributions of NFATc1 in T cells and DCs in the context of asthma are not well understood. Objective We explored NFATc1's role in T cells and DCs in modulating TH2 immune responses within the pathophysiology of allergic asthma. Methods We induced asthma in mice lacking Nfatc1 in CD4+ T cells or CD11c+ DCs using house dust mite, thereby enabling investigation into NFATc1's role in both cell types in experimental allergic asthma. Additionally, we examined NFATc1 expression in these cell types and its correlation with blood eosinophil levels in an adult asthma cohort. Results In a house dust mite-induced asthma model, we found that Nfatc1 deficiency either in CD4+ T cells or CD11c+ DCs resulted in reduced TH2-driven eosinophilic inflammation, IgE levels, and mast cell presence in the lung of asthmatic mice. Nfatc1's absence in CD4+ T cells directly hampered TH2 cell polarization and functionality, whereas in CD11c+ DCs, it affected DC differentiation and maturation, thereby weakening T-cell priming, proliferation, and subsequent TH2 differentiation. Correspondingly, translational research indicated significant correlations between CD4+NFATc1+ and CD11c+NFATc1+ cell populations and eosinophil levels in asthmatic patients, but not in healthy controls. Conclusion NFATc1 in T cells and DCs modulates TH2-mediated eosinophilic inflammation in allergic asthma, thus offering insight into asthma pathogenesis and identifying NFATc1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Ji Y, Chen C, Lu P, Wang Z, Chen H, Sun L, Fei S, Ju X, Tan R, Gu M. Nuclear factor of activated T cell cytoplasmic 1 (NFATc1) insertion gene polymorphism as a possible trigger in acute T cell-mediated rejection (aTCMR) after kidney transplantation. Transpl Immunol 2024; 87:102139. [PMID: 39461381 DOI: 10.1016/j.trim.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND To investigate the potential regulatory role of gene insertion or deletion (in/del) polymorphism in the occurrence of acute T cell-mediated rejection (aTCMR) after kidney transplantation. METHODS We retrospectively analyzed the 5-year follow-up data of 133 recipients who underwent renal transplantation at the First Affiliated Hospital of Nanjing Medical University between February 1, 2010, and December 1, 2015. With target sequencing based on next-generation sequencing (NGS), tagger in/dels selection involved calculating the Hardy-Weinberg equilibrium (HWE), Minor Allele Frequency (MAF), and the linkage disequilibrium (LD) blocks. Significant in/dels associated with aTCMR were identified by intersecting the results obtained through analysis of covariance (ANCOVA) of clinical cofounders and model analysis in Rstudio using the "SNPassoc" package. Additionally, logistic models were employed to assess the associations between genotypes and the aTCMR occurrence in 5 years after surgery. RESULTS NFATc1 rs55741427 insertion was identified to be significantly associated with the post-surgery aTCMR(OR = 2.66, P < 0.001). We constructed a conclusive model containing the occurrence of delayed graft function (DGF) and the insertion polymorphism of rs55741427, showing a favorable predictive ability (AUC = 0.766) for aTCMR after surgery. Based on the receiver operating characteristic (ROC) curve, all cases were stratified into aTCMR high-risk and low-risk groups. Kaplan-Meier curves for two groups revealed that the aTCMR high-risk group exhibited a more unfavorable graft survival outcome (P = 0.0048). CONCLUSION Insertion mutation of rs55741427 was found to be statistically correlated with the post-surgery aTCMR during 5 years of follow-up. Our model identified DGF and insertion of rs55741427 as two crucial aTCMR-related hazards, and aTCMR high-risk group showed a worse graft prognosis.
Collapse
Affiliation(s)
- Yisheng Ji
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Pei Lu
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ruoyun Tan
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Min Gu
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Tsai HJ, Yeh KH, Lin CW, Wu MS, Liou JM, Hsu PN, Zeng YS, Wei MF, Shun CT, Wang HP, Chen LT, Cheng AL, Kuo SH. Cooperative participation of CagA and NFATc1 in the pathogenesis of antibiotics-responsive gastric MALT lymphoma. Cancer Cell Int 2024; 24:383. [PMID: 39558403 PMCID: PMC11575159 DOI: 10.1186/s12935-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND This study aimed to explore whether cytotoxin-associated gene A (CagA) can inhibit cell cycle progression by activating nuclear factor of activated T cells (NFAT) in lymphoma B cells and contribute to Helicobacter pylori eradication (HPE) responsiveness (complete remission [CR] after HPE) in gastric mucosa-associated lymphoid tissue (MALT) lymphoma. MATERIALS AND METHODS We co-cultured three B-lymphoma cell lines (MA-1, OCI-Ly3, and OCI-Ly7) with HP strains (derived from HPE-responsive gastric MALT lymphoma) and evaluated the expression patterns of CagA, phosphorylated (p)-CagA (CagAP-Tyr), and CagA-signaling molecules, cell-cycle inhibitors, p-NFATc1 (Ser172), and NFATc1 using western blotting. Furthermore, we evaluated the association between nuclear NFATc1 expression in the tumor cells of 91 patients who received first-line HPE (59 patients with HPE responsiveness and 32 without HPE responsiveness) and HPE responsiveness and CagA expression in tumor cells. RESULTS In HP strains co-cultured with B cell lymphoma cell lines, CagA was translocated to the nucleus through tyrosine phosphorylation (CagAP-Tyr) and simultaneously dephosphorylated NFATc1, subsequently causing nuclear NFATc1 translocation and stimulating the expression of p-SHP-2/p-ERK/Bcl-xL. Activated NFATc1 causes G1 cell cycle retardation in both MA-1 and OCI-Ly3 cells by triggering p21 and p27 production. Nuclear NFATc1 localization was significantly associated with the presence of CagA in gastric MALT lymphomas (80% [41/51] vs. 33% [13/40]; p < 0.001) and with HPE responsiveness (73% [43/59] vs. 25% [8/32]; p < 0.001). Patients exhibiting both the presence of CagA and nuclear NFATc1 localization responded more rapidly to HPE than those without (median interval to CR, 4.00 vs. 6.00 months, p = 0.003). CONCLUSIONS Our findings indicated that CagA and NFATc1 cooperatively participate in the lymphomagenesis of HPE-responsive gastric MALT lymphoma.
Collapse
Affiliation(s)
- Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oncology, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Ning Hsu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shin Zeng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Po Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oncology, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan.
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Lee CC, Chuang CC, Chen CH, Huang YP, Chang CY, Tung PY, Lee MJ. In vitro and in vivo studies on exogenous polyamines and α-difluoromethylornithine to enhance bone formation and suppress osteoclast differentiation. Amino Acids 2024; 56:43. [PMID: 38935136 PMCID: PMC11211182 DOI: 10.1007/s00726-024-03403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Exogenous polyamines, including putrescine (PUT), spermidine (SPD), and spermine (SPM), and the irreversible inhibitor of the rate-limiting enzyme ornithine decarboxylase (ODC) of polyamine biosynthesis, α-difluoromethylornithine (DFMO), are implicated as stimulants for bone formation. We demonstrate in this study the osteogenic potential of exogenous polyamines and DFMO in human osteoblasts (hOBs), murine monocyte cell line RAW 264.7, and an ovariectomized rat model. The effect of polyamines and DFMO on hOBs and RAW 264.7 cells was studied by analyzing gene expression, alkaline phosphatase (ALP) activity, tartrate-resistant acid phosphatase (TRAP) activity, and matrix mineralization. Ovariectomized rats were treated with polyamines and DFMO and analyzed by micro computed tomography (micro CT). The mRNA level of the early onset genes of osteogenic differentiation, Runt-related transcription factor 2 (Runx2) and ALP, was significantly elevated in hOBs under osteogenic conditions, while both ALP activity and matrix mineralization were enhanced by exogenous polyamines and DFMO. Under osteoclastogenic conditions, the gene expression of both receptor activator of nuclear factor-κB (RANK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) was reduced, and TRAP activity was suppressed by exogenous polyamines and DFMO in RAW 264.7 cells. In an osteoporotic animal model of ovariectomized rats, SPM and DFMO were found to improve bone volume in rat femurs, while trabecular thickness was increased in all treatment groups. Results from this study provide in vitro and in vivo evidence indicating that polyamines and DFMO act as stimulants for bone formation, and their osteogenic effect may be associated with the suppression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chien-Ching Lee
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chia-Chun Chuang
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Yuan-Pin Huang
- Department of Cosmetics and Fashion Styling, Cheng Shiu University, Kaohsiung, 83347, Taiwan
| | - Chiao-Yi Chang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Pei-Yi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, No.1, Changda Rd., Gueiren District, Tainan, 711301, Taiwan.
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, 711301, Taiwan.
| |
Collapse
|
5
|
Chaudhry MZ, Borkner L, Kulkarni U, Berberich-Siebelt F, Cicin-Sain L. NFAT signaling is indispensable for persistent memory responses of MCMV-specific CD8+ T cells. PLoS Pathog 2024; 20:e1012025. [PMID: 38346075 PMCID: PMC10890734 DOI: 10.1371/journal.ppat.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| |
Collapse
|
6
|
Mathangi R, Shyamsundar V, Meenakshi A, Aravindha Babu N, Vashum Y, Shila S. Influence of type 2 diabetes on immunohistochemical detection of TRAF6, cFos and NFATC1 in the gingiva in cases of chronic periodontitis. Biotech Histochem 2023; 98:492-500. [PMID: 37486267 DOI: 10.1080/10520295.2023.2236543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) and chronic periodontitis (CP) are common diseases worldwide. Although T2D increases the severity of CP and alveolar bone loss, the mechanism of this is not well understood. We investigated using immunohistochemistry the expression of three osteoclast proteins, TRAF6, cFos and NFATc1, in gingival tissues. Gingival tissues were obtained from three groups: HC group, healthy controls; CP group, patients with CP; T2D + CP group, patients with both T2D and CP. Strong immunostaining for TRAF6, cFos and NFATc1 was observed in the gingival epithelium as well as in inflammatory cells in the CP and T2D + CP groups. Immunostaining was most intense in the T2D + CP group. We found strong up-regulation of TRAF6, cFos and NFATC1 in gingiva tissue of subjects with both T2D and CP, which corroborates our hypothesis that T2D potentiates osteoclastogenesis in CP.
Collapse
Affiliation(s)
- R Mathangi
- Research and Development Centre, Bharathiar University, Coimbatore, India
- Department of Biochemistry, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - Vidyarani Shyamsundar
- Department of Oral Pathology and Microbiology, Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - A Meenakshi
- Department of Periodontics, Sri Venkateshwara Dental College and Hospital, Chennai, India
| | - N Aravindha Babu
- Department of Oral Pathology and Microbiology, Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - Yaongamphi Vashum
- Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - S Shila
- VRR Institute of Biomedical Science, Affiliated to University of Madras, Chennai, India
| |
Collapse
|
7
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
8
|
Seal R, Schwab LSU, Chiarolla CM, Hundhausen N, Klose GH, Reu-Hofer S, Rosenwald A, Wiest J, Berberich-Siebelt F. Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis. Front Immunol 2023; 14:1179311. [PMID: 37275854 PMCID: PMC10235777 DOI: 10.3389/fimmu.2023.1179311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water - intermittently with DSS induction - revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities.
Collapse
Affiliation(s)
- Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara S. U. Schwab
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Georg Heinrich Klose
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Reu-Hofer
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Johannes Wiest
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | |
Collapse
|
9
|
Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M. The inositol 5-phosphatase INPP5B regulates B cell receptor clustering and signaling. J Cell Biol 2022; 221:e202112018. [PMID: 35878408 PMCID: PMC9351708 DOI: 10.1083/jcb.202112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alaa Droubi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Connor Wallis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Aloka de Sa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Reduced IRF4 expression promotes lytic phenotype in Type 2 EBV-infected B cells. PLoS Pathog 2022; 18:e1010453. [PMID: 35472072 PMCID: PMC9041801 DOI: 10.1371/journal.ppat.1010453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.
Collapse
|
11
|
Koenig A, Vaeth M, Xiao Y, Chiarolla CM, Erapaneedi R, Klein M, Dietz L, Hundhausen N, Majumder S, Schuessler F, Bopp T, Klein-Hessling S, Rosenwald A, Berberich I, Berberich-Siebelt F. NFATc1/αA and Blimp-1 Support the Follicular and Effector Phenotype of Tregs. Front Immunol 2022; 12:791100. [PMID: 35069572 PMCID: PMC8770984 DOI: 10.3389/fimmu.2021.791100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
CD4+CXCR5+Foxp3+ T-follicular regulatory (TFR) cells control the germinal center responses. Like T-follicular helper cells, they express high levels of Nuclear Factor of Activated T-cells c1, predominantly its short isoform NFATc1/αA. Ablation of NFATc1 in Tregs prevents upregulation of CXCR5 and migration of TFR cells into B-cell follicles. By contrast, constitutive active NFATc1/αA defines the surface density of CXCR5, whose level determines how deep a TFR migrates into the GC and how effectively it controls antibody production. As one type of effector Treg, TFR cells express B lymphocyte-induced maturation protein-1 (Blimp-1). Blimp-1 can directly repress Cxcr5 and NFATc1/αA is necessary to overcome this Blimp-1-mediated repression. Interestingly, Blimp-1 even reinforces the recruitment of NFATc1 to Cxcr5 by protein-protein interaction and by those means cooperates with NFATc1 for Cxcr5 transactivation. On the contrary, Blimp-1 is necessary to counterbalance NFATc1/αA and preserve the Treg identity. This is because although NFATc1/αA strengthens the follicular development of Tregs, it bears the inherent risk of causing an ex-Treg phenotype.
Collapse
Affiliation(s)
- Anika Koenig
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Yin Xiao
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Raghu Erapaneedi
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Lena Dietz
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Snigdha Majumder
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Felix Schuessler
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Frankfurt/Mainz, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Würzburg, Würzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
12
|
Liu H, Sun Q, Chen S, Chen L, Jia W, Zhao J, Sun X. DYRK1A activates NFATC1 to increase glioblastoma migration. Cancer Med 2021; 10:6416-6427. [PMID: 34309232 PMCID: PMC8446559 DOI: 10.1002/cam4.4159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive glioma, and is prone to develop resistance to chemotherapy and radiotherapy; hence, patients with glioblastoma have a high recurrence rate and a low 1-year survival rate. In addition, the pathogenesis of glioblastoma is complex and largely unknown, and the available treatments are limited. Here, we uncovered a fundamental role of DYRK1A in regulating NFATC1 in GBMs. We found that DYRK1A was highly expressed in glioma and glioblastoma cells, and its expression was positively correlated with that of NFATC1. Moreover, inhibition of DYRK1A promoted NFATC1 degradation in GBM cells and sharply reduced the transactivation of NFATC1, not only by decreasing the expression of NFATC1-targeted genes, but also by reducing the luciferase activity, and vice versa. However, DYRK1A had the opposite effect on NFATC2. Most importantly, our data suggest that DYRK1A inhibition reduces glioblastoma migration. Polypeptides derived from the DYRK1A-targeted motif of NFATC1, by competitively blocking DYRK1A kinase activity on NFATC1, clearly destabilized NFATC1 protein and impaired glioblastoma migration. We propose that the recovery of NFATC1 stability is a key oncogenic event in a large proportion of gliomas, and pharmacological inhibition of DYRK1A by polypeptides could represent a promising therapeutic intervention for GBM.
Collapse
Affiliation(s)
- Heng Liu
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Immunology InstituteSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Shuai Chen
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Immunology InstituteSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Long Chen
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wenming Jia
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Xiulian Sun
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
13
|
Xiao Y, Qureischi M, Dietz L, Vaeth M, Vallabhapurapu SD, Klein-Hessling S, Klein M, Liang C, König A, Serfling E, Mottok A, Bopp T, Rosenwald A, Buttmann M, Berberich I, Beilhack A, Berberich-Siebelt F. Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity. J Exp Med 2021; 218:152124. [PMID: 32986812 PMCID: PMC7953626 DOI: 10.1084/jem.20181853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/22/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modification with SUMO is known to regulate the activity of transcription factors, but how SUMOylation of individual proteins might influence immunity is largely unexplored. The NFAT transcription factors play an essential role in antigen receptor-mediated gene regulation. SUMOylation of NFATc1 represses IL-2 in vitro, but its role in T cell-mediated immune responses in vivo is unclear. To this end, we generated a novel transgenic mouse in which SUMO modification of NFATc1 is prevented. Avoidance of NFATc1 SUMOylation ameliorated experimental autoimmune encephalomyelitis as well as graft-versus-host disease. Elevated IL-2 production in T cells promoted T reg expansion and suppressed autoreactive or alloreactive immune responses. Mechanistically, increased IL-2 secretion counteracted IL-17 and IFN-γ expression through STAT5 and Blimp-1 induction. Then, Blimp-1 repressed IL-2 itself, as well as the induced, proliferation-associated survival factor Bcl2A1. Collectively, these data demonstrate that prevention of NFATc1 SUMOylation fine-tunes T cell responses toward lasting tolerance. Thus, targeting NFATc1 SUMOylation presents a novel and promising strategy to treat T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Musga Qureischi
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany.,Graduate School of Life Sciences, University of Wuerzburg, Wuerzburg, Germany
| | - Lena Dietz
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Vaeth
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Stefan Klein-Hessling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Anika König
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Edgar Serfling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Mottok
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany.,German Cancer Consortium, University Medical Center, University of Mainz, Mainz, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
14
|
Majumder S, Jugovic I, Saul D, Bell L, Hundhausen N, Seal R, Beilhack A, Rosenwald A, Mougiakakos D, Berberich-Siebelt F. Rapid and Efficient Gene Editing for Direct Transplantation of Naive Murine Cas9 + T Cells. Front Immunol 2021; 12:683631. [PMID: 34367143 PMCID: PMC8335400 DOI: 10.3389/fimmu.2021.683631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3+ T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9+CD3+ T cells, CD4+ and CD8+ conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in naïve primary murine Cas9+CD3+ T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Snigdha Majumder
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Isabelle Jugovic
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Wuerzburg, Germany
| | - Luisa Bell
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Rishav Seal
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, Center for Interdisciplinary Clinical Research (IZKF), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Wuerzburg, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
15
|
Zhang Y, Wu J, Zeng C, Xu L, Wei W, Li Y. The role of NFAT2/miR-20a-5p signaling pathway in the regulation of CD8 + naïve T cells activation and differentiation. Immunobiology 2021; 226:152111. [PMID: 34237654 DOI: 10.1016/j.imbio.2021.152111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
T cell dysfunction is a common characteristic in leukemia patients that significantly impacts clinical treatment and prognosis. However, the mechanism underlying T cell dysfunction and its reversal remains unclear. In this study, in accordance with our previous findings, we found that the expression of NFAT2 and pri-miR-17 ~ 92 are lower in peripheral blood CD3+ T cells from chronic myelogenous leukemia (CML) patients by gene expression analysis. We further demonstrate that the NFAT2-induced activation, differentiation, and expression of cytokines in human umbilical cord blood CD8+ naïve T cells are miR-20a-5p dependent. We also preliminarily explored the relationship between NFAT2 and miR-20a-5p in naive T cells. These results suggest that NFAT2 and miR-20a are crucial for regulating functional CD8+ T cells. Additionally, their alteration may be related to CD8+ T cell dysfunction in CML patients; thus, NFAT2 and miR-20a-5p may be considered potential targets for revising T cell function in leukemia immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Depart of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, China
| | - Jialu Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, China
| | - Ling Xu
- Depart of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, China.
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, China.
| | - Yangqiu Li
- Depart of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, China.
| |
Collapse
|
16
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
17
|
Loo Yau H, Bell E, Ettayebi I, de Almeida FC, Boukhaled GM, Shen SY, Allard D, Morancho B, Marhon SA, Ishak CA, Gonzaga IM, da Silva Medina T, Singhania R, Chakravarthy A, Chen R, Mehdipour P, Pommey S, Klein C, Amarante-Mendes GP, Roulois D, Arribas J, Stagg J, Brooks DG, De Carvalho DD. DNA hypomethylating agents increase activation and cytolytic activity of CD8 + T cells. Mol Cell 2021; 81:1469-1483.e8. [PMID: 33609448 DOI: 10.1016/j.molcel.2021.01.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
We demonstrate that DNA hypomethylating agent (HMA) treatment can directly modulate the anti-tumor response and effector function of CD8+ T cells. In vivo HMA treatment promotes CD8+ T cell tumor infiltration and suppresses tumor growth via CD8+ T cell-dependent activity. Ex vivo, HMAs enhance primary human CD8+ T cell activation markers, effector cytokine production, and anti-tumor cytolytic activity. Epigenomic and transcriptomic profiling shows that HMAs vastly regulate T cell activation-related transcriptional networks, culminating with over-activation of NFATc1 short isoforms. Mechanistically, demethylation of an intragenic CpG island immediately downstream to the 3' UTR of the short isoform was associated with antisense transcription and alternative polyadenylation of NFATc1 short isoforms. High-dimensional single-cell mass cytometry analyses reveal a selective effect of HMAs on a subset of human CD8+ T cell subpopulations, increasing both the number and abundance of a granzyme Bhigh, perforinhigh effector subpopulation. Overall, our findings support the use of HMAs as a therapeutic strategy to boost anti-tumor immune response.
Collapse
Affiliation(s)
- Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Emma Bell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Felipe Campos de Almeida
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia (INCT-iii), São Paulo 05403-900, Brazil
| | - Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - David Allard
- Centre de recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, 08035 Barcelona, Spain
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Isabela M Gonzaga
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Tiago da Silva Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Translational Immuno-oncology Laboratory, A.C. Camargo Cancer Center, São Paulo 01509-001, Brazil
| | - Rajat Singhania
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Raymond Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Sandra Pommey
- Centre de recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia (INCT-iii), São Paulo 05403-900, Brazil
| | - David Roulois
- UMR U1236, INSERM, Université de Rennes 1, EFS, 35000 Rennes, France
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - John Stagg
- Centre de recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
18
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
19
|
Xin B, Ji KQ, Liu YS, Zhao XD. NFAT Overexpression Correlates with CA72-4 and Poor Prognosis of Ovarian Clear-Cell Carcinoma Subtype. Reprod Sci 2020; 28:745-756. [PMID: 33125687 DOI: 10.1007/s43032-020-00368-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Current biomarkers did not overcome the limitations of clinical application due to the heterogeneity of ovarian tumors. The role of nuclear factor of activated T cells (NFAT) in the prognosis of different histological subtypes of ovarian cancer remains unclear. NFAT expression was analyzed in 302 ovarian tumors from The Cancer Genome Atlas (TCGA) dataset and was further confirmed by 88 ovarian tumor specimens, including 30 clear-cell carcinoma, 34 serous carcinoma, and 24 papillary serous cystadenocarcinoma. The correlations between NFAT expression, cancer biomarkers, and clinical characteristics in different subtypes of ovarian tumors were analyzed. ALGGEN PROMO, reporter assay, and NFAT overexpression and knockdown were used to identify chondroadherin (CHAD) as the downstream target of NFAT. NFAT was significantly upregulated only in late-stage clear-cell carcinoma, but not in other two subtypes. NFAT levels were correlated with CA72-4 levels and poor overall survival and disease-free survival (P < 0.05), suggesting that NFAT together with CA72-4 were specific prognostic markers for clear-cell carcinoma. Pathological stage and lymph node metastasis were the prognostic factors affecting serous carcinoma (P < 0.05), while CA-125 was the prognostic factor affecting papillary serous cystadenocarcinoma (P < 0.05). PROMO and reporter assay indicated that CHAD was the downstream target of NFAT. In addition, NFAT overexpression and silencing increased and reduced CHAD expression, respectively. NFAT together with CA72-4 were specific tumor markers for risk assessment of unique clear-cell subtype of ovarian tumors. CHAD was identified as the downstream target gene of NAFT and was associated with poor survival of ovarian cancer.
Collapse
Affiliation(s)
- Bing Xin
- Department of Obstetrics and Gynaecology, ShengJing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Kai-Qiang Ji
- Department of ICU, ShengJing Hospital of China Medical University, Shenyang, 110004, China
| | - Yi-Si Liu
- Department of Obstetrics and Gynaecology, ShengJing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiao-Dong Zhao
- Department of Pathology, ShengJing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
20
|
Kim S, Park S, Kang M, Ko J. The role of small leucine zipper protein in osteoclastogenesis and its involvement in bone remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118827. [PMID: 32822727 DOI: 10.1016/j.bbamcr.2020.118827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023]
Abstract
Bone remodeling is critical to maintain the quality of bone tissues and to heal bone tissue injury. Osteoclasts and osteoblasts are special types of cells involved in this event. In particular, the resorption activity of mature osteoclasts is required for the formation of new bones. Human small leucine zipper protein (sLZIP) is known to induce the osteoblast differentiation of mesenchymal stem cells. However, the roles of sLZIP in osteoclast differentiation and bone remodeling have not been explored. In this study, we investigated the roles of sLZIP in regulating osteoclast formation and in the bone remodeling process using sLZIP transgenic (TG) mice. Tibiae from sLZIP TG mice contained more osteoclasts than those from wild type (WT) mice. Bone marrow-derived macrophages (BMM) from sLZIP TG mice showed increased differentiation into osteoclasts compared with BMM from WT mice. sLZIP bound to the promotor and induced the expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and its target osteoclastogenic genes. To understand the role of sLZIP in bone remodeling, a bone-defect model was generated. Results of micro-CT scanning and histologic analysis demonstrated that sLZIP TG mice have faster bone formation during healing compared with WT mice. Notably, the soft callus around the defect area was replaced faster by hard callus in sLZIP TG mice than in WT mice. These findings suggest that sLZIP promotes osteoclast differentiation and plays an important role in bone remodeling.
Collapse
Affiliation(s)
- Seukun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sungyeon Park
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Minsoo Kang
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
21
|
Romero-Masters JC, Huebner SM, Ohashi M, Bristol JA, Benner BE, Barlow EA, Turk GL, Nelson SE, Baiu DC, Van Sciver N, Ranheim EA, Gumperz J, Sherer NM, Farrell PJ, Johannsen EC, Kenney SC. B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathog 2020; 16:e1008365. [PMID: 32059024 PMCID: PMC7046292 DOI: 10.1371/journal.ppat.1008365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/27/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.
Collapse
Affiliation(s)
- James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shane M. Huebner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bayleigh E. Benner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Barlow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gail L. Turk
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana C. Baiu
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathan M. Sherer
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul J. Farrell
- Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Targeted deletion of NFAT-Interacting-Protein-(NIP) 45 resolves experimental asthma by inhibiting Innate Lymphoid Cells group 2 (ILC2). Sci Rep 2019; 9:15695. [PMID: 31666531 PMCID: PMC6821848 DOI: 10.1038/s41598-019-51690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Here we investigated the role of NFAT-interacting protein (NIP)-45, an Interleukin (IL)-4 inducing Transcription Factor, and its impact on the differentiation of Group 2 Innate -Lymphoid -Cells (ILC2s) in the pathogenesis of asthma. NIP45, a transcription factor regulating NFATc1 activity, mRNA was found to be induced in the Peripheral Blood mononuclear cells (PMBCs) of asthmatic pre-school children with allergies and in the peripheral blood CD4+ T cells from adult asthmatic patients. In PBMCs of asthmatic and control children, NIP45 mRNA directly correlated with NFATc1 but not with T-bet. Targeted deletion of NIP45 in mice resulted in a protective phenotype in experimental asthma with reduced airway mucus production, airway hyperresponsiveness and eosinophils. This phenotype was reversed by intranasal delivery of recombinant r-IL-33. Consistently, ILC2s and not GATA3+ CD4+ T-cells were decreased in the lungs of asthmatic NIP45−/− mice. Reduced cell number spleen ILC2s could be differentiated from NIP45−/− as compared to wild-type mice after in vivo injection of a microcircle-DNA vector expressing IL-25 and decreased cytokines and ILC2 markers in ILC2 differentiated from the bone marrow of NIP45−/− mice. NIP45 thus emerges as a new therapeutic target for the resolution of the airway pathology, down-regulation of ILC2s and mucus production in asthma.
Collapse
|
23
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Shin SY, Kim MW, Cho KH, Nguyen LK. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 2019; 9:10637. [PMID: 31337782 PMCID: PMC6650396 DOI: 10.1038/s41598-019-46592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Min-Wook Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
25
|
Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. Molecular cloning, expression and characterization of Pekin duck programmed death-1. Gene 2019; 702:182-193. [PMID: 30910561 DOI: 10.1016/j.gene.2019.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
Programmed death-1 (PD-1) has a pivotal role in the attenuation of adaptive immune responses and peripheral tolerance. Here we describe the identification of the Pekin duck programmed death-1 orthologue (duPD-1). The duPD-1 cDNA encodes a 283-amino acid polypeptide that has an amino acid identity of 70%, 32% and 31% with chicken, murine and human PD-1, respectively. The duck PD-1 gene shares five conserved exons with chicken, murine and human PD-1 genes. A cluster of putative regulatory elements within the conserved region B (CR-B) of the basal promotor is conserved. Homology modeling was most compatible with the two β-sheet IgV domain structure of murine PD-1. Contact residues, shown to be critical for binding of the respective human and murine PD-1 ligands are mostly conserved between avian and mammalian species, whereas residues that define the cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM) are highly conserved across higher vertebrates and frog. Constitutive expression of duPD-1 transcripts was predominantly found in lymphocyte-rich tissues, and mitogen-stimulation of duck peripheral blood mononuclear cells transiently increased duPD-1 mRNA expression. A soluble duPD-1 protein was expressed and shown to engage the identified duck PD-1 ligands. Our observations show considerable evolutionary conservation between mammalian and avian PD-1 orthologues. This work will facilitate further investigation of the role of PD-1 signaling in adaptive immunity in the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health.
Collapse
Affiliation(s)
- Qingxia Yao
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karl P Fischer
- Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - D Lorne Tyrrell
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Klaus S Gutfreund
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Analysis of NFATc1 amplification in T cells for pharmacodynamic monitoring of tacrolimus in kidney transplant recipients. PLoS One 2018; 13:e0201113. [PMID: 30036394 PMCID: PMC6056039 DOI: 10.1371/journal.pone.0201113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic drug monitoring (TDM) of tacrolimus, based on blood concentrations, shows an imperfect correlation with the occurrence of rejection. Here, we tested whether measuring NFATc1 amplification, a member of the calcineurin pathway, is suitable for TDM of tacrolimus. Materials and methods NFATc1 amplification was monitored in T cells of kidney transplant recipients who received either tacrolimus- (n = 11) or belatacept-based (n = 10) therapy. Individual drug effects on NFATc1 amplification were studied in vitro, after spiking blood samples of healthy volunteers with either tacrolimus, belatacept or mycophenolate mofetil. Results At day 30 after transplantation, in tacrolimus-treated patients, NFATc1 amplification was inhibited in CD4+ T cells expressing the co-stimulation receptor CD28 (mean inhibition 37%; p = 0.01) and in CD8+CD28+ T cells (29% inhibition; p = 0.02), while this was not observed in CD8+CD28- T cells or belatacept-treated patients. Tacrolimus pre-dose concentrations of these patients correlated inversely with NFATc1 amplification in CD28+ T cells (rs = -0.46; p < 0.01). In vitro experiments revealed that 50 ng/ml tacrolimus affected NFATc1 amplification by 58% (mean; p = 0.02). Conclusion In conclusion, measuring NFATc1 amplification is a direct tool for monitoring biological effects of tacrolimus on T cells in whole blood samples of kidney transplant recipients. This technique has potential that requires further development before it can be applied in daily practice.
Collapse
Affiliation(s)
- Nynke M. Kannegieter
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| | - Dennis A. Hesselink
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gretchen N. de Graav
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Baur J, Otto C, Steger U, Klein-Hessling S, Muhammad K, Pusch T, Murti K, Wismer R, Germer CT, Klein I, Müller N, Serfling E, Avots A. The Transcription Factor NFATc1 Supports the Rejection of Heterotopic Heart Allografts. Front Immunol 2018; 9:1338. [PMID: 29946322 PMCID: PMC6005848 DOI: 10.3389/fimmu.2018.01338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
The immune suppressants cyclosporin A (CsA) and tacrolimus (FK506) are used worldwide in transplantation medicine to suppress graft rejection. Both CsA and FK506 inhibit the phosphatase calcineurin (CN) whose activity controls the immune receptor-mediated activation of lymphocytes. Downstream targets of CN in lymphocytes are the nuclear factors of activated T cells (NFATs). We show here that the activity of NFATc1, the most prominent NFAT factor in activated lymphocytes supports the acute rejection of heterotopic heart allografts. While ablation of NFATc1 in T cells prevented graft rejection, ectopic expression of inducible NFATc1/αA isoform led to rejection of heart allografts in recipient mice. Acceptance of transplanted hearts in mice bearing NFATc1-deficient T cells was accompanied by a reduction in number and cytotoxicity of graft infiltrating cells. In CD8+ T cells, NFATc1 controls numerous intracellular signaling pathways that lead to the metabolic switch to aerobic glycolysis and the expression of numerous lymphokines, chemokines, and their receptors, including Cxcr3 that supports the rejection of allogeneic heart transplants. These findings favors NFATc1 as a molecular target for the development of new strategies to control the cytotoxicity of T cells upon organ transplantation.
Collapse
Affiliation(s)
- Johannes Baur
- Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Steger
- Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Pusch
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Krisna Murti
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rhoda Wismer
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ingo Klein
- Transplant and Hepatobiliary Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nora Müller
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Heim L, Friedrich J, Engelhardt M, Trufa DI, Geppert CI, Rieker RJ, Sirbu H, Finotto S. NFATc1 Promotes Antitumoral Effector Functions and Memory CD8 + T-cell Differentiation during Non-Small Cell Lung Cancer Development. Cancer Res 2018; 78:3619-3633. [PMID: 29691251 DOI: 10.1158/0008-5472.can-17-3297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Nuclear factor of activated T cells 1 (NFATc1) is a transcription factor activated by T-cell receptor (TCR) and Ca2+ signaling that affects T-cell activation and effector function. Upon tumor antigen challenge, TCR and calcium-release-activated channels are induced, promoting NFAT dephosphorylation and translocation into the nucleus. In this study, we report a progressive decrease of NFATc1 in lung tumor tissue and in tumor-infiltrating lymphocytes (TIL) of patients suffering from advanced-stage non-small cell lung cancer (NSCLC). Mice harboring conditionally inactivated NFATc1 in T cells (NFATc1ΔCD4) showed increased lung tumor growth associated with impaired T-cell activation and function. Furthermore, in the absence of NFATc1, reduced IL2 influenced the development of memory CD8+ T cells. We found a reduction of effector memory and CD103+ tissue-resident memory (TRM) T cells in the lung of tumor-bearing NFATc1ΔCD4 mice, underlining an impaired cytotoxic T-cell response and a reduced TRM tissue-homing capacity. In CD4+ICOS+ T cells, programmed cell death 1 (PD-1) was induced in the draining lymph nodes of these mice and associated with lung tumor cell growth. Targeting PD-1 resulted in NFATc1 induction in CD4+ and CD8+ T cells in tumor-bearing mice and was associated with increased antitumor cytotoxic functions. This study reveals a role of NFATc1 in the activation and cytotoxic functions of T cells, in the development of memory CD8+ T-cell subsets, and in the regulation of T-cell exhaustion. These data underline the indispensability of NFATc1 for successful antitumor immune responses in patients with NSCLC.Significance: The multifaceted role of NFATc1 in the activation and function of T cells during lung cancer development makes it a critical participant in antitumor immune responses in patients with NSCLC. Cancer Res; 78(13); 3619-33. ©2018 AACR.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
29
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
30
|
Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA, Shi W, Kallies A. Transcription Factor IRF4 Promotes CD8 + T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity 2017; 47:1129-1141.e5. [PMID: 29246443 DOI: 10.1016/j.immuni.2017.11.021] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 01/30/2023]
Abstract
During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection.
Collapse
Affiliation(s)
- Kevin Man
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah S Gabriel
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Renee Gloury
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Simon Preston
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Friederike Berberich-Siebelt
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Mark A Febbraio
- Cellular and Molecular Metabolism, Garvan Institute, Sydney, NSW 2010, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
31
|
Abstract
Cytotoxic T lymphocytes are effector CD8+ T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1−/− cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1−/− CD8+ T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1−/−, but not Nfatc2−/− CD8+ T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. NFAT nuclear translocation has been shown to be required for CD8+ T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8+ T cells required for optimal response to bacteria and tumor cells.
Collapse
|
32
|
Liu H, Wang K, Chen S, Sun Q, Zhang Y, Chen L, Sun X. NFATc1 phosphorylation by DYRK1A increases its protein stability. PLoS One 2017; 12:e0172985. [PMID: 28235034 PMCID: PMC5325557 DOI: 10.1371/journal.pone.0172985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/12/2017] [Indexed: 01/06/2023] Open
Abstract
NFATs are transcription factors involved in immune activation and tumor progression. Previous reports showed that DYRK1A suppressed NFATc2 transcriptional activity through phosphorylation. Nonetheless, our results showed that DYRK1A increased NFATc1/αA protein level and subsequent transcriptional activity. DYRK1A phosphorylation of NFATc1/αA at S261, S278, S403 and S409 interfered with NFATc1 ubiquitination and ubiquitin-proteasome degradation. Our results imply that DYRK1A is a positive kinase in regulation of NFATc1.
Collapse
Affiliation(s)
- Heng Liu
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong Province, China
- Otolaryngology Key Lab of Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ketao Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong Province, China
| | - Shuai Chen
- Otolaryngology Key Lab of Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qian Sun
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong Province, China
- Otolaryngology Key Lab of Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yuankai Zhang
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong Province, China
| | - Long Chen
- Otolaryngology Key Lab of Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiulian Sun
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong Province, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
33
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
34
|
Gabriel CH, Gross F, Karl M, Stephanowitz H, Hennig AF, Weber M, Gryzik S, Bachmann I, Hecklau K, Wienands J, Schuchhardt J, Herzel H, Radbruch A, Krause E, Baumgrass R. Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells. J Biol Chem 2016; 291:24172-24187. [PMID: 27637333 DOI: 10.1074/jbc.m116.739326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/βC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.
Collapse
Affiliation(s)
- Christian H Gabriel
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Fridolin Gross
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Martin Karl
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Anna Floriane Hennig
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Melanie Weber
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Stefanie Gryzik
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Katharina Hecklau
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Jürgen Wienands
- the Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | - Hanspeter Herzel
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Andreas Radbruch
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Eberhard Krause
- the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin
| | - Ria Baumgrass
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin,
| |
Collapse
|
35
|
Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, Nilius B, Bryan J, Simard JM. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation 2016; 13:130. [PMID: 27246103 PMCID: PMC4888589 DOI: 10.1186/s12974-016-0599-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background Harmful effects of activated microglia are due, in part, to the formation of peroxynitrite radicals, which is attributable to the upregulation of inducible nitric oxide (NO) synthase (NOS2). Because NOS2 expression is determined by Ca2+-sensitive calcineurin (CN) dephosphorylating nuclear factor of activated T cells (NFAT), and because Sur1-Trpm4 channels are crucial for regulating Ca2+ influx, we hypothesized that, in activated microglia, Sur1-Trpm4 channels play a central role in regulating CN/NFAT and downstream target genes such as Nos2. Methods We studied microglia in vivo and in primary culture from adult rats, and from wild type, Abcc8−/− and Trpm4−/− mice, and immortalized N9 microglia, following activation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS), using in situ hybridization, immunohistochemistry, co-immunoprecipitation, immunoblot, qPCR, patch clamp electrophysiology, calcium imaging, the Griess assay, and chromatin immunoprecipitation. Results In microglia in vivo and in vitro, LPS activation of TLR4 led to de novo upregulation of Sur1-Trpm4 channels and CN/NFAT-dependent upregulation of Nos2 mRNA, NOS2 protein, and NO. Pharmacological inhibition of Sur1 (glibenclamide), Trpm4 (9-phenanthrol), or gene silencing of Abcc8 or Trpm4 reduced Nos2 upregulation. Inhibiting Sur1-Trpm4 increased the intracellular calcium concentration ([Ca2+]i), as expected, but also decreased NFAT nuclear translocation. The increase in [Ca2+]i induced by inhibiting or silencing Sur1-Trpm4 resulted in phosphorylation of Ca2+/calmodulin protein kinase II and of CN, consistent with reduced nuclear translocation of NFAT. The regulation of NFAT by Sur1-Trpm4 was confirmed using chromatin immunoprecipitation. Conclusions Sur1-Trpm4 constitutes a novel mechanism by which TLR4-activated microglia regulate pro-inflammatory, Ca2+-sensitive gene expression, including Nos2.
Collapse
Affiliation(s)
- David B Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Neurosurgery Research Laboratories, 10 S. Pine St, Baltimore, MD, 21201-1595, USA.
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Jason K Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Rudi Vennekens
- Department Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49-Bus 802, Leuven, 3000, Belgium
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, Heidelberg, 69120, Germany
| | - Bernd Nilius
- Department Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49-Bus 802, Leuven, 3000, Belgium
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, WA, 98122, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells. Nat Commun 2016; 7:11724. [PMID: 27222343 PMCID: PMC4894959 DOI: 10.1038/ncomms11724] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis. Regulatory B cells are important for preventing skin autoimmunity. Here the authors show that NFATc1 suppresses IL-10 transcription in regulatory B cells, and inhibiting NFATc1 decreases immunopathology in a mouse model of imiquimod-induced skin inflammation.
Collapse
|
37
|
Koch S, Reppert S, Finotto S. NFATc1 deletion in T lymphocytes inhibits the allergic trait in a murine model of asthma. Clin Exp Allergy 2016; 45:1356-66. [PMID: 25640055 DOI: 10.1111/cea.12493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND NFATc1 isoforms are highly regulated in peripheral T cells where they contribute to the effector function and cell homeostasis. OBJECTIVE Here, we investigated the role of NFATc1 in asthma and in T cells. METHODS In a murine model of allergic asthma, we analysed differences in T-cell development in this allergic disease model, between wild-type and NFATc1 conditional knockout mice. Thus, we performed quantitative real-time PCR to investigate the mRNA expression of Th2-associated genes as well as genes that are involved in IgE immunoglobulin class-switch. Additionally, we used ELISA, Western blot and flow cytometry (FACS) to analyse protein concentrations of Th1-, Th2- and Th17-specific transcription factors and cytokines and the Th2 chemokine, thymus and activation-regulated chemokine/chemokine ligand 17 (TARC/CCL17) by ELISA. RESULTS Mice lacking NFATc1 in CD4(+) T cells display a significant reduction in lung Th2 and Th17 as well as an increase of Th1 cells in an experimental asthma model. Additionally, Batf gene, a recently described transcription factor of the Th2 and Th17 cell differentiation as well as a key T and B transcription factor involved in the IgE immunoglobulin class-switch, was found decreased in the lungs of these mice. As a consequence, serum OVA-specific IgE and IgG1 levels were found significantly decreased after allergen exposure and in the absence of NFATc1 in T cells in experimental allergic asthma. CONCLUSIONS AND CLINICAL RELEVANCE Targeting NFATc1 in T lymphocytes ameliorated the allergic trait in the airways of NFATc1(fl/fl) xCD4Cre mice. NFATc1 emerges as a novel target for anti-allergy intervention.
Collapse
Affiliation(s)
- S Koch
- Division of Molecular Pneumology, Department of Anaesthesiology, University Hospital Erlangen, Erlangen, Germany
| | - S Reppert
- Division of Molecular Pneumology, Department of Anaesthesiology, University Hospital Erlangen, Erlangen, Germany
| | - S Finotto
- Division of Molecular Pneumology, Department of Anaesthesiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
38
|
Klepsch V, Hermann-Kleiter N, Baier G. Beyond CTLA-4 and PD-1: Orphan nuclear receptor NR2F6 as T cell signaling switch and emerging target in cancer immunotherapy. Immunol Lett 2016; 178:31-6. [PMID: 26992368 DOI: 10.1016/j.imlet.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/29/2023]
Abstract
Blockade of immune checkpoints has emerged as key strategy in the development of effective cancer therapies. In contrast to cell surface checkpoints like CTLA-4 and PD-1, however, additional cancer therapeutic targets are located inside the effector immune cells. Targeting these alternative checkpoints in cancer immunotherapy with the goal to strengthen the patient's immune system are likely to extend the benefits of cancer immunotherapy in the near future. Along this line, we have defined and validated the orphan nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) as an intracellular immune checkpoint in effector T cells. NR2F6 acts as a novel master switch of antitumor responses against both transplantable and spontaneous tumors in mice relevant for human cancer. NR2F6 directly represses transcription of key cytokine genes in T effector cells relevant for tumor cell rejection, such as IL-2, IFN and TNFα. Thus, in the presence of NR2F6, T cell activation is limited within the tumor microenvironment. This defines NR2F6 as a key checkpoint governing the amplitude of cancer immune surveillance. Based on our study, an approach shall be initiated to identify low molecular weight compounds that selectively interfere with NR2F6 function in the clinic.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Haryuna TSH, Riawan W, Nasution A, Ma'at S, Harahap J, Adriztina I. Curcumin Reduces the Noise-Exposed Cochlear Fibroblasts Apoptosis. Int Arch Otorhinolaryngol 2016; 20:370-376. [PMID: 27746842 PMCID: PMC5063744 DOI: 10.1055/s-0036-1579742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
Introduction The structural changes underlying permanent noise-induced hearing loss (NIHL) include loss of the sensory hair cells, damage to their stereocilia, and supporting tissues within the cochlear lateral wall. Objective The objective of this study is to demonstrate curcumin as a safe and effective therapeutic agent in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall through cell death pathway. Methods We divided 24 Rattus norvegicus into 4 groups, Group 1: control; Group 2: noise (+); Group 3: noise (+), 50 mg/day curcumin (+); Group 4: noise (+), 100 mg/day curcumin (+). We provided the noise exposure dose at 100 dB SPL for two hours over two weeks and administered the curcumin orally over two weeks. We examined all samples for the expressions of calcineurin, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and apoptotic index of cochlear fibroblasts. Results We found significant differences for the expressions of calcineurin (p < 0.05) in all groups, significant differences for the expressions of NFATc1 (p < 0.05) in all groups, except in Groups 1 and 4, and significant differences for the apoptotic index (p < 0.05) in all groups. Conclusion Curcumin proved to be potentially effective in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall regarding the decreased expression of calcineurin, NFATc1, and apoptotic index of cochlear fibroblasts.
Collapse
Affiliation(s)
- Tengku Siti Hajar Haryuna
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Wibi Riawan
- Department of Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
| | - Ardyansyah Nasution
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Suprapto Ma'at
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Juliandi Harahap
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Indri Adriztina
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
40
|
Busch R, Murti K, Liu J, Patra AK, Muhammad K, Knobeloch KP, Lichtinger M, Bonifer C, Wörtge S, Waisman A, Reifenberg K, Ellenrieder V, Serfling E, Avots A. NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages from Saccharomyces cerevisiae infected mice. Eur J Immunol 2016; 46:634-46. [PMID: 26631626 DOI: 10.1002/eji.201545925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
Abstract
The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all encoding CCR2 agonists. CN inhibitors block the CCR2-dependent recruitment of inflammatory monocytes (IM) to the peritoneal cavities of S. cerevisiae infected mice. In myeloid cells, NFATc1/β proteins represent the most prominent NFATc1 isoforms. NFATc1/β ablation leads to a decrease of CCR2 chemokines, impaired mobilization of IMs, and delayed clearance of infection. We show that, upon binding to a composite NFAT/BCL6 regulatory element within the Ccl2 promoter, NFATc1/β proteins release the BCL6-dependent repression of Ccl2 gene in macrophages. These findings suggest a novel CN-dependent cross-talk between NFAT and BCL6 transcription factors, which may affect the outcome of opportunistic fungal infections in immunocompromised patients.
Collapse
Affiliation(s)
- Rhoda Busch
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Krisna Murti
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Jiming Liu
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Amiya K Patra
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | | | - Monika Lichtinger
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simone Wörtge
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Volker Ellenrieder
- Clinic of Gastroenterology and Gastrointestinal Oncology, University of Goettingen, Goettingen, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
41
|
Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Poustchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK, Barrett JC, Alizadeh BZ, Parkes M, BK T, Daly MJ, Kubo M, Anderson CA, Weersma RK. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47:979-986. [PMID: 26192919 PMCID: PMC4881818 DOI: 10.1038/ng.3359] [Citation(s) in RCA: 1724] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis and Crohn's disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations.
Collapse
Affiliation(s)
- Jimmy Z Liu
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Suzanne van Sommeren
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong
| | - Rudi Alberts
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James C Lee
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK
| | - Luke Jostins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK
| | - Tejas Shah
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Shifteh Abedian
- Digestive Disease Research Institute, Shariati Hospital, Tehran, Iran
| | | | - Judy Cho
- Icahn School of Medicine, Mount Sinai New York, New York, USA
| | - Naser E Dayani
- Department of Gastroenterology, Emam Hospital, Tehran, Iran
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Yuta Fuyuno
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Ailsa Hart
- IBD Unit, St Mark's Hospital, Harrow, Middlesex, UK
| | - Ramesh C Juyal
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi, India
| | - Garima Juyal
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Won Ho Kim
- Yonsei University College of Medicine, Seoul, Korea
| | - Andrew P Morris
- Welcome Trust Center for Human Genetics, Oxford U.K. and Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Hossein Poustchi
- Digestive Disease Research Institute, Shariati Hospital, Tehran, Iran
| | - William G Newman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Vandana Midha
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | | | - Homayon Vahedi
- Digestive Disease Research Institute, Shariati Hospital, Tehran, Iran
| | - Ajit Sood
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Joseph Y Sung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Shariati Hospital, Tehran, Iran
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Suk-Kyun Yang
- Asan Medical Center, University of Ulsan College Medicine, Seoul, Korea
| | | | | | | | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK
| | - Thelma BK
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | | | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Hoffmann U, Neudörfl C, Daemen K, Keil J, Stevanovic-Meyer M, Lehner F, Haller H, Blume C, Falk CS. NK Cells of Kidney Transplant Recipients Display an Activated Phenotype that Is Influenced by Immunosuppression and Pathological Staging. PLoS One 2015; 10:e0132484. [PMID: 26147651 PMCID: PMC4492590 DOI: 10.1371/journal.pone.0132484] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/15/2015] [Indexed: 12/25/2022] Open
Abstract
To explore phenotype and function of NK cells in kidney transplant recipients, we investigated the peripheral NK cell repertoire, capacity to respond to various stimuli and impact of immunosuppressive drugs on NK cell activity in kidney transplant recipients. CD56dim NK cells of kidney transplanted patients displayed an activated phenotype characterized by significantly decreased surface expression of CD16 (p=0.0003), CD226 (p<0.0001), CD161 (p=0.0139) and simultaneously increased expression of activation markers like HLA-DR (p=0.0011) and CD25 (p=0.0015). Upon in vitro stimulation via Ca++-dependent signals, down-modulation of CD16 was associated with induction of interferon (IFN)-γ expression. CD16 modulation and secretion of NFAT-dependent cytokines such as IFN-γ, TNF-α, IL-10 and IL-31 were significantly suppressed by treatment of isolated NK cells with calcineurin inhibitors but not with mTOR inhibitors. In kidney transplant recipients, IFN-γ production was retained in response to HLA class I-negative target cells and to non-specific stimuli, respectively. However, secretion of other cytokines like IL-13, IL-17, IL-22 and IL-31 was significantly reduced compared to healthy donors. In contrast to suppression of cytokine expression at the transcriptional level, cytotoxin release, i.e. perforin, granzyme A/B, was not affected by immunosuppression in vitro and in vivo in patients as well as in healthy donors. Thus, immunosuppressive treatment affects NK cell function at the level of NFAT-dependent gene expression whereby calcineurin inhibitors primarily impair cytokine secretion while mTOR inhibitors have only marginal effects. Taken together, NK cells may serve as indicators for immunosuppression and may facilitate a personalized adjustment of immunosuppressive medication in kidney transplant recipients.
Collapse
Affiliation(s)
- Ulrike Hoffmann
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
| | - Kerstin Daemen
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
| | - Maja Stevanovic-Meyer
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
| | - Frank Lehner
- Department of Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Cornelia Blume
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School Hannover, Hannover, Germany
- DZIF, German Center for Infectious Diseases, Hannover / Braunschweig, Germany
- * E-mail:
| |
Collapse
|
43
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
44
|
Wang L, Wang Z, Li J, Zhang W, Ren F, Yue W. NFATc1 activation promotes the invasion of U251 human glioblastoma multiforme cells through COX-2. Int J Mol Med 2015; 35:1333-40. [PMID: 25738651 DOI: 10.3892/ijmm.2015.2124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed that the nuclear factor of activated T-cells (NFAT) is a transcription factor that is highly expressed in aggressive cancer cells and tissues, and mediates invasion through the transcriptional induction of pro-invasion and pro-migration genes. However, the mechanisms through which nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), in particular, translocates to the nucleus and regulates the invasion of human glioblastoma multiforme (GBM) cells have not yet been fully elucidated. In the present study, to investigate the role of NFATc1 in GBM cells, we established a U251 cell line expressing a constitutively active form of NFATc1 (CA-NFATc1). On the other hand, RNA interference was used to knock down NFATc1 expression in the U251 cell line. Our results demonstrated that the expression of CA-NFATc1 promoted cancer cell invasion, while small interfering RNA (siRNA) against NFATc1 successfully inhibited the invasion ability of the U251 cell line. Moreover, we demonstrated that NFATc1 promoted U251 cell invasion through the induction of cyclooxygenase-2 (COX‑2). NFAT transcriptionally regulates the induction of COX-2 induction in U251 cells and binds to the promoter. We also demonstrated that a large proportion of GBM specimens expressed NFATc1. NFATc1 expression increased according to the histopathological grade of the glioma. However, no NFATc1 staining was observed in the non-neoplastic brain tissues. These findings suggest that the inhibition of the activation of the NFATc1 pathway is an effective therapeutic strategy for the clinical management of GBM.
Collapse
Affiliation(s)
- Laizang Wang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhi Wang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Li
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weiguang Zhang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Fubin Ren
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wu Yue
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
45
|
Dietz L, Frommer F, Vogel AL, Vaeth M, Serfling E, Waisman A, Buttmann M, Berberich-Siebelt F. NFAT1 deficit and NFAT2 deficit attenuate EAE via different mechanisms. Eur J Immunol 2015; 45:1377-89. [DOI: 10.1002/eji.201444638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/30/2014] [Accepted: 01/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lena Dietz
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Friederike Frommer
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg; University of Mainz; Mainz Germany
| | - Anna-Lena Vogel
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Martin Vaeth
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Edgar Serfling
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Ari Waisman
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg; University of Mainz; Mainz Germany
| | - Mathias Buttmann
- Department of Neurology; University of Wuerzburg; Wuerzburg Germany
| | - Friederike Berberich-Siebelt
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
- Comprehensive Cancer Center Mainfranken; University of Wuerzburg; Wuerzburg Germany
| |
Collapse
|
46
|
Selective NFAT targeting in T cells ameliorates GvHD while maintaining antitumor activity. Proc Natl Acad Sci U S A 2015; 112:1125-30. [PMID: 25583478 DOI: 10.1073/pnas.1409290112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a life-threatening immunological complication after allogenic hematopoietic stem cell transplantation (allo-HCT). The intrinsic graft-versus-leukemia (GvL) effect, however, is the desirable curative benefit. Patients with acute GvHD are treated with cyclosporine A (CsA) or tacrolimus (FK506), which not only often causes severe adverse effects, but also interferes with the anticipated GvL. Both drugs inhibit calcineurin, thus at first suppressing activation of the nuclear factor of activated T cells (NFAT). Therefore, we explored the specific contribution of individual NFAT factors in donor T cells in animal models of GvHD and GvL. Ablation of NFAT1, NFAT2, or a combination of both resulted in ameliorated GvHD, due to reduced proliferation, target tissue homing, and impaired effector function of allogenic donor T cells. In contrast, the frequency of Foxp3(+) regulatory T (Treg) cells was increased and NFAT-deficient Tregs were fully protective in GvHD. CD8(+) T-cell recall response and, importantly, the beneficial antitumor activity were largely preserved in NFAT-deficient effector T cells. Thus, specific inhibition of NFAT opens an avenue for an advanced therapy of GvHD maintaining protective GvL.
Collapse
|
47
|
Muhammad K, Alrefai H, Marienfeld R, Pham DAT, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 2014; 44:3392-402. [PMID: 25179582 DOI: 10.1002/eji.201444756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, the most prominent NF-κB proteins in BCR-induced splenic B cells, control the induction of NFATc1/αA, a prominent short NFATc1 isoform. In part, this is mediated through two composite κB/NFAT-binding sites in the inducible Nfatc1 P1 promoter that directs the induction of NFATc1/αA by BCR signals. In concert with coreceptor signals that induce NF-κB factors, BCR signaling induces a persistent generation of NFATc1/αA. These data suggest a tight connection between NFATc1 and NF-κB induction in B lymphocytes contributing to the effector function of peripheral B cells.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hermann-Kleiter N, Baier G. Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun Signal 2014; 12:38. [PMID: 24919548 PMCID: PMC4066320 DOI: 10.1186/1478-811x-12-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Members of the evolutionarily conserved family of the chicken ovalbumin upstream promoter transcription factor NR2F/COUP-TF orphan receptors have been implicated in lymphocyte biology, ranging from activation to differentiation and elicitation of immune effector functions. In particular, a CD4+ T cell intrinsic and non-redundant function of NR2F6 as a potent and selective repressor of the transcription of the pro-inflammatory cytokines interleukin (Il) 2, interferon y (ifng) and consequently of T helper (Th)17 CD4+ T cell-mediated autoimmune disorders has been discovered. NR2F6 serves as an antigen receptor signaling threshold-regulated barrier against autoimmunity where NR2F6 is part of a negative feedback loop that limits inflammatory tissue damage induced by weakly immunogenic antigens such as self-antigens. Under such low affinity antigen receptor stimulation, NR2F6 appears as a prototypical repressor that functions to “lock out” harmful Th17 lineage effector transcription. Mechanistically, only sustained high affinity antigen receptor-induced protein kinase C (PKC)-mediated phosphorylation has been shown to inactivate NR2F6, thereby displacing pre-bound NR2F6 from the DNA and, subsequently, allowing for robust NFAT/AP-1- and RORγt-mediated cytokine transcription. The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor. Investigating these signaling pathway(s) will enable a greater knowledge of the genetic, immune, and environmental mechanisms that lead to chronic inflammation and of certain autoimmune disorders in a given individual.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str, 1a, A-6020, Innsbruck, Austria.
| | | |
Collapse
|
49
|
Lodhi N, Kossenkov AV, Tulin AV. Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark. Nucleic Acids Res 2014; 42:7028-38. [PMID: 24861619 PMCID: PMC4066802 DOI: 10.1093/nar/gku415] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed.
Collapse
Affiliation(s)
- Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, 19111 USA
| | | | | |
Collapse
|
50
|
Vaeth M, Müller G, Stauss D, Dietz L, Klein-Hessling S, Serfling E, Lipp M, Berberich I, Berberich-Siebelt F. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. ACTA ACUST UNITED AC 2014; 211:545-61. [PMID: 24590764 PMCID: PMC3949566 DOI: 10.1084/jem.20130604] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T cell–specific NFAT2 deletion results in reduced CXCR5+ follicular regulatory T cells, leading to uncontrolled germinal center responses and humoral autoimmunity. Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4+CXCR5+ follicular helper T cells (TFH) and inhibited by CD4+CXCR5+Foxp3+ follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology and 4 Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Wuerzburg, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|