1
|
Rakha A, Talaat RM, El-Maadawy EA, Gurguis AA. EFFECT OF ANTI-TSLPR MONOCLONAL ANTIBODY ON VIABILITY, PROAPOPTOTIC GENES EXPRESSION, AND PRODUCTION OF PRO-INFLAMMATORY CYTOKINES IN MCF-7 AND A549 CELLS. Exp Oncol 2023; 45:211-219. [PMID: 37824770 DOI: 10.15407/exp-oncology.2023.02.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) and its receptor (TSLPR) are expressed in various cancer cells. However, their role in cancer development is not well defined. AIM To investigate the effects of anti-TSLPR antibody on the viability, proapoptotic genes expression, and production of pro-inflammatory cytokines in MCF-7 and A549 cancer cells. MATERIALS AND METHODS MCF-7 and A549 cells were exposed to anti-TSLPR monoclonal antibody for 24, 48, and 72 h. The effect on cell viability was examined by MTT assay. The expression levels of TP53, BAX, and CASP3 genes were evaluated by the quantitative reverse transcription polymerase chain reaction (qRT-PCR). Levels of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and transforming growth factor (TGF-β1) were measured by the enzyme-linked immunosorbent assay (ELISA). RESULTS The treatment of MCF-7 cells with anti- TSLPR antibody slightly stimulates cell proliferation after 48 h and 72 h following initial cytotoxicity in 24 h with a significant reduction in IL-6 and TNF-α production. A significant increase in the BAX expression in anti-TSLPR treated cells at a concentration of 2.5 μg/ml at 24-h point was evident. In anti-TSLPR-treated A549 cells, no decrease in cell count was observed, and slight dose-dependent stimulation of cell proliferation was evident in 48 h and 72 h of culture. A significant increase in TP53, BAX, and CASP3 expression upon treatment with 2.5 μg/ml of anti-TSLPR was evident in A549 cells. CONCLUSION The effects of anti-TSLPR on cell viability, proapoptotic gene expression, and production of pro-inflammatory cytokines (IL-6 and TNF-α) vary in MCF-7 and A549 cells.
Collapse
Affiliation(s)
- Alyaa Rakha
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Adel A Gurguis
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| |
Collapse
|
2
|
Lee JY, Jeong, Park Y, Jeong Y, Chang, Kang H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. J Microbiol Biotechnol 2023; 33:1039-1049. [PMID: 37280776 PMCID: PMC10468673 DOI: 10.4014/jmb.2301.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yong Park
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yulah Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Chang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Ho Kang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| |
Collapse
|
3
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
4
|
Rabinowitz SS, Yu L, Geraghty P. EoE behaves as a unique Th2 disease: a narrative review. Transl Gastroenterol Hepatol 2023; 8:11. [PMID: 36704651 PMCID: PMC9813655 DOI: 10.21037/tgh-22-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/30/2022] [Indexed: 01/29/2023] Open
Abstract
Background and Objective To highlight and interpret two significant differences between eosinophilic esophagitis (EoE), a type 2 helper cell (Th2) disease, and three other representative Th2 diseases. EoE, asthma, atopic dermatitis (AD), chronic rhinosinusitis (CRS) and other Th2 diseases employ epithelial alarmins to recognize triggers, share a prototypical inflammatory cascade, and respond to glucocorticoids. However, EoE also has several distinguishing characteristics which may be explained by a distinct pathophysiologic mechanism. Methods The following report consist of four related narrative reviews which combine comprehensive PubMed and Google searches. Two reviews were performed to identify and contrast all eligible studies describing serologic markers in EoE compared to asthma, AD, and CRS. Two additional reviews then compare the responses to parenteral biological therapies in EoE and in the same representative Th2 diseases. Key Content and Findings Comprehensive literature searches definitively differentiate the absence of serologic markers in EoE compared to their identification in the other representative Th2 diseases. Similarly, a summary of therapeutic trials demonstrates that while EoE is unable to clinically respond to a variety of parenteral biological therapies, asthma, AD and CRS are very effectively treated with this same approach. A novel pathophysiology for EoE is proposed, and the emerging literature that support its existence is summarized. Conclusions The fundamental properties described in this narrative regarding serologic signaling and response to parenteral therapy in EoE could be explained if EoE employs a unique application of the Th2 pathway. One potential mechanism consistent with these observations is that EoE employs exclusively esophageal mucosal constituents to initiate and generate the prototypical Th2 cascade and the fibrostenotic changes that follow.
Collapse
Affiliation(s)
- Simon S. Rabinowitz
- Division of Pediatric Gastroenterology, Children’s Hospital at Downstate, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Liwei Yu
- Division of Pediatric Gastroenterology, Children’s Hospital at Downstate, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Patrick Geraghty
- Department of Cell Biology, Downstate Health Sciences University, Brooklyn, NY, USA;,Division of Pulmonary & Critical Care Medicine, Department of Medicine, Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
5
|
Semlali A, Almutairi MH, Alharbi SN, Alamri AM, Alrefaei AF, Almutairi BO, Rouabhia M. The correlation between single nucleotide polymorphisms of the thymic stromal lymphopoietin receptor and breast cancer in a cohort of female patients in Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67544-67554. [PMID: 34258703 DOI: 10.1007/s11356-021-15242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed to examine thymic stromal lymphopoietin receptor (TSLPR) genetic variation and breast cancer (BC) susceptibility in women in Saudi Arabia. Therefore, 127 blood samples from female patients diagnosed with BC and 116 blood samples from healthy female controls were studied using a genotyping assay to determine the association between three TSLPR single nucleotide polymorphisms (SNPs)-P196L, X201W, and A238V-and the risk of BC progression. In addition, gene expression was evaluated in 20 matching BC and normal tissues using immunohistochemistry. TSLPR protein levels were higher among BC patients than those with matching normal breast tissue. In addition, TSLPR SNP P196L was found to have a significant protective effect on BC progression (OR = 0.4427), although only the T allele for TSLPR P196L had this protective effect against BC progression in participants who were younger than 48 years old. In contrast, no association was found between the T allele and risk of BC in participants who were older than 48 years old, and the CT and TT genotypes were significantly associated with BC risk protection in the older group. The effects of the TT genotype and the T allele were closely associated with a decreased risk of BC in participants with estrogen receptors (ER+) and without them (ER-). Overall, the findings revealed a significant correlation between SNPs in the TSLPR genes and BC progression among women in Saudi Arabia.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire- Université Laval, Québec, Québec, Canada.
| | - Mikhlid H Almutairi
- Zoology DepartmentCollege of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Kingdom of Saudi Arabia.
| | - Sultan N Alharbi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, 11461, Saudi Arabia
| | - Abdullah M Alamri
- Genome Research ChairDepartment of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulwahed F Alrefaei
- Zoology DepartmentCollege of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Bader O Almutairi
- Zoology DepartmentCollege of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire- Université Laval, Québec, Québec, Canada
| |
Collapse
|
6
|
Han NR, Ko SG, Moon PD, Park HJ. Chloroquine attenuates thymic stromal lymphopoietin production via suppressing caspase-1 signaling in mast cells. Biomed Pharmacother 2021; 141:111835. [PMID: 34146852 DOI: 10.1016/j.biopha.2021.111835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) produced by mast cells is involved in allergic inflammation pathogenesis. Chloroquine (CQ) is known to be an anti-malarial drug; however, additional protective functions of CQ have been discovered. This study aims to clarify an anti-inflammatory effect of CQ through modulating TSLP levels using an in vitro model of phorbol myristate acetate (PMA) + A23187-activated human mast cell line (HMC-1) and an in vivo model of PMA-irritated ear edema. CQ treatment reduced the production and mRNA expression levels of TSLP in activated HMC-1 cells. CQ down-regulated caspase-1 (CASP1), MAPKs, and NF-κB levels enhanced by stimulation with PMA + A23187. Moreover, ear thickness in ear edema was suppressed following CQ treatment. CQ decreased CASP1 and NF-κB levels in the ear tissue. TSLP levels in the ear tissue and serum were reduced following CQ treatment. Collectively, the above findings elucidate that CQ inhibits the pro-inflammatory mechanisms of TSLP via the down-regulation of distinct intracellular signaling cascade in mast cells. Therefore, CQ may have protective roles against TSLP-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
[The basophil: From control of immunity to control of leukemias]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:9-25. [PMID: 34051212 DOI: 10.1016/j.pharma.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
The basophils, first described by Paul Ehlrich in 1879, are rare circulating cells, representing approximately 0.01 to 0.3% of the blood leukocytes. Until recently, these cells have been neglected because of their minority status among immune cells and because they show some similarities to mast cells residing in tissues. However, basophils and mast cells are now recognized as distinct cell lines and it appears that basophils have important and non-redundant functions, distinct from those of mast cells. On the one hand, basophils have beneficial contribution to protective immunity, in particular against parasitic infections. On the other hand, basophils are involved in the development of various benign and malignant pathologies, ranging from allergy to certain leukemias. Basophils interact with other immune cells or neoplastic cells through direct contacts or soluble mediators, such as cytokines and proteases, thus contributing to the regulation of the immune system but also to allergic responses, and probably to the process of neoplastic transformation. In this review, we will develop recent knowledge on the involvement of basophils in the modulation of innate and adaptive immunity. We will then describe the benign or malignant circumstances in which an elevation of circulating basophils can be observed. Finally, we will discuss the role played by these cells in the pathophysiology of certain leukemias, particularly during chronic myeloid leukemia.
Collapse
|
8
|
Ragonnaud E, Moritoh K, Bodogai M, Gusev F, Garaud S, Chen C, Wang X, Baljinnyam T, Becker KG, Maul RW, Willard-Gallo K, Rogaev E, Biragyn A. Tumor-Derived Thymic Stromal Lymphopoietin Expands Bone Marrow B-cell Precursors in Circulation to Support Metastasis. Cancer Res 2019; 79:5826-5838. [PMID: 31575547 DOI: 10.1158/0008-5472.can-19-1058] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Immature B cells in the bone marrow emigrate into the spleen during adult lymphopoiesis. Here, we report that emigration is shifted to earlier B-cell stages in mice with orthotopic breast cancer, spontaneous ovarian cancer, and possibly in human breast carcinoma. Using mouse and human bone marrow aspirates and mouse models challenged with highly metastatic 4T1 breast cancer cells, we demonstrated that this was the result of secretion of thymic stromal lymphopoietin (TSLP) by cancer cells. First, TSLP downregulated surface expression of bone marrow (BM) retention receptors CXCR4 and VLA4 in B-cell precursors, increasing their motility and, presumably, emigration. Then, TSLP supported peripheral survival and proliferation of BM B-cell precursors such as pre-B-like cells. 4T1 cancer cells used the increased pool of circulating pre-B-like cells to generate metastasis-supporting regulatory B cells. As such, the loss of TSLP expression in cancer cells alone or TSLPR deficiency in B cells blocked both accumulation of pre-B-like cells in circulation and cancer metastasis, implying that the pre-B cell-TSLP axis can be an attractive therapeutic target. SIGNIFICANCE: Cancer cells induce premature emigration of B-cell precursors from the bone marrow to generate regulatory B cells.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Soizic Garaud
- Molecular Immunology Unit, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Chen Chen
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Xin Wang
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | | | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Robert W Maul
- Antibody Diversity Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, Maryland
| | - Karen Willard-Gallo
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland.
| |
Collapse
|
9
|
Semlali A, Almutairi M, Reddy Parine N, Al Amri A, Almeer R, Alanazi MS, Rouabhia M. Expression and allele frequencies of Thymic stromal lymphopoietin are a key factor of breast cancer risk. Mol Genet Genomic Med 2019; 7:e813. [PMID: 31210014 PMCID: PMC6687655 DOI: 10.1002/mgg3.813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Thymic stromal Lymphopoeitin (TSLP) is a key cytokine involved in inflammation and cancer progression. TSLP gene polymorphisms have been associated with increased susceptibility to cancer progression in different organs. We performed a control case study to examine the correlation of expression and polymorphisms of three nucleotides in TSLP with breast cancer (BC) risk in Saudi Arabian females. Materials and methods The study was conducted on 116 healthy control subjects and 127 female patients with BC for the purpose of genotyping. Ten matching tissues provided data on immunohistochemistry to evaluate TSLP expression. Three SNPs (rs10043985, rs2289276, and rs3806933) were genotyped with TaqMan allelic discrimination assay. The patients' ages and estrogen receptor statuses were used to investigate the potential correlations between the different variations of TSLP genotypes and BC risk. Results BC tissues expressed positive immuno‐staining for TSLP at a high rate compared to normal matching breast tissues. Malignant breast tumors exhibited higher TSLP expression than benign breast tumors. We also found that the rs3806933 (T) allele frequency decreased the risk of developing BC in the study population (OR = 0.356, p = 0.00027) significantly (0.356 times). Interestingly, statistical analysis revealed that the genotype mutant (AC) and the allele mutant (C) of rs10043985 within TSLP were significantly correlated with an increased BC risk (odds ratio [OR] = 4.762, confidence interval [CI] = 1.000–22.666, p = 0.03244; OR = 4.762, CI = 1.000–22.666, p = 0.03244; and OR = 4.575, CI = 0.975–21.464, p = 0.03516, respectively). In addition, the AC and AC + CC genotypes of TSLP rs10043985 were confirmed to be associated with an increased risk of BC risk in women aged above 48 years, compared with the AA genotype (AC and AC + CC vs. AA: OR = 9.468, CI = 0.493–181.768, p = 0.04537). Conclusion The results reveal significant correlation between SNPs in TSLP and BC progression in Saudi Arabian female patients.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada.,Department of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mikhlid Almutairi
- Zoology Department, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Al Amri
- Department of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rafa Almeer
- Zoology Department, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad S Alanazi
- Department of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Bak DH, Lee E, Lee BC, Choi MJ, Kwon TR, Hong J, Mun SK, Lee K, Kim S, Na J, Kim BJ. Therapeutic potential of topically administered γ-AlOOH on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like lesions in Balb/c mice. Exp Dermatol 2019; 28:169-176. [PMID: 30566262 DOI: 10.1111/exd.13865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
Boehmite (γ-AlOOH) has a wide range of applications in a variety of industrial and biological fields. However, little is known about its potential roles in skin diseases. The current study investigated its effect on atopic dermatitis (AD). Following characterization, cytotoxicity, pro-inflammatory response and oxidative stress associated with boehmite were assessed, using TNF-α-induced keratinocytes and mast cells. In addition, therapeutic effects of boehmite, topically administered to Balb/c mice induced by 2,4-dinitrochlorobenzene (DNCB), were evaluated. Expression of cytokines (TLSP, IL-25 and IL-33) and the generation of ROS from keratinocytes induced by TNF-α were significantly inhibited by boehmite without affecting cell viability. MAPKs (ERK, JNK and p38) required for cytokine expression were suppressed by boehmite treatment. Up-regulation of cytokines (TSLP, IL-4, IL-5, IL-13, RANTES) in human mast cells treated with phorbol 12-myristate 13-acetate and calcium ionophore was also suppressed by boehmite. Boehmite improved the AD severity score, epidermal hyperplasia and transepidermal water loss in DNCB-induced AD-like lesions. Moreover, Th2-mediated cytokine expression, mast cell hyperplasia and destruction of the skin barrier were improved by boehmite treatment. Overall, we demonstrated that boehmite may potentially protect against AD.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Esther Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Tae-Rin Kwon
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jiyeon Hong
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Keugrae Lee
- Advanced Materials Division, OsangJaiel Co., Ltd, Incheon, Korea
| | - Sungyup Kim
- Advanced Materials Division, OsangJaiel Co., Ltd, Incheon, Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Nam SY, Jeong HJ, Kim HM. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation. Chem Biol Interact 2017; 274:107-115. [DOI: 10.1016/j.cbi.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
|
12
|
Martin Alonso A, Saglani S. Mechanisms Mediating Pediatric Severe Asthma and Potential Novel Therapies. Front Pediatr 2017; 5:154. [PMID: 28725641 PMCID: PMC5497140 DOI: 10.3389/fped.2017.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Although a rare disease, severe therapy-resistant asthma in children is a cause of significant morbidity and results in utilization of approximately 50% of health-care resources for asthma. Improving control for children with severe asthma is, therefore, an urgent unmet clinical need. As a group, children with severe asthma have severe and multiple allergies, steroid resistant airway eosinophilia, and significant structural changes of the airway wall (airway remodeling). Omalizumab is currently the only add-on therapy that is licensed for use in children with severe asthma. However, limitations of its use include ineligibility for approximately one-third of patients because of serum IgE levels outside the recommended range and lack of clinical efficacy in a further one-third. Pediatric severe asthma is thus markedly heterogeneous, but our current understanding of the different mechanisms underpinning various phenotypes is very limited. We know that there are distinctions between the factors that drive pediatric and adult disease since pediatric disease develops in the context of a maturing immune system and during lung growth and development. This review summarizes the current data that give insight into the pathophysiology of pediatric severe asthma and will highlight potential targets for novel therapies. It is apparent that in order to identify novel treatments for pediatric severe asthma, the challenge of undertaking mechanistic studies using age appropriate experimental models and airway samples from children needs to be accepted to allow a targeted approach of personalized medicine to be achieved.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Respiratory Pediatrics, The Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
13
|
Blockade of thymic stromal lymphopoietin (TSLP) receptor inhibits TSLP-driven proliferation and signalling in lymphoblasts from a subset of B-precursor ALL patients. Leuk Res 2015; 40:38-43. [PMID: 26652578 DOI: 10.1016/j.leukres.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/13/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE The cytokine thymic stromal lymphopoietin (TSLP) and its receptor TSLPR are involved in intercellular communication in the course of allergic inflammation and have recently been implicated in the development of various malignancies including B cell precursor acute lymphoblastic leukemia (BCP-ALL). We studied TSLPR expression, TSLP-induced signal transduction and its antibody-mediated inhibition in long-term cultures of primary cells derived from B-precursor ALL patients. METHODS TSLPR expression was determined by flow cytometry and Western blot analysis, cell proliferation, signal transduction via the JAK/STAT pathway was analysed by Western blot detection of STAT tyrosine phosphorylation and by measuring TSLP-dependent activation of a STAT-specific reporter gene construct. For inhibition studies a recently introduced antagonistic antibody to the TSLPRα-subunit was used. RESULTS TSLPR surface expression was observed in leukemic lymphoblasts from two out of ten patients with BCP-ALL. Upon TSLP stimulation, the cells with the highest TSLPR expression level showed enhanced proliferation and JAK/STAT-mediated gene regulation in a dose-dependent manner. By employment of an inhibitory antibody to the TSLPR, both TSLP-triggered cell proliferation and STAT transcription factor activation were specifically inhibited. CONCLUSIONS These results suggest that blockade of the TSLPR might be a therapeutic option for a subset of BCP-ALL patients.
Collapse
|
14
|
Lim HS, Ha H, Shin HK, Jeong SJ. The Genome-Wide Expression Profile of Saussurea lappa Extract on House Dust Mite-Induced Atopic Dermatitis in Nc/Nga Mice. Mol Cells 2015; 38:765-72. [PMID: 26299330 PMCID: PMC4588719 DOI: 10.14348/molcells.2015.0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/03/2022] Open
Abstract
Saussurea lappa has been reported to possess anti-atopic properties. In this study, we have confirmed the S. lappa's anti-atopic properties in Nc/Nga mice and investigated the candidate gene related with its properties using microarray. We determined the target gene using real time PCR in in vitro experiment. S. lappa showed the significant reduction in atopic dermatitis (AD) score and immunoglobulin E compared with the AD induced Nc/Nga mice. In the results of microarray using back skin obtained from animals, we found that S. lappa's properties are closely associated with cytokine-cytokine receptor interaction and the JAK-STAT signaling pathway. Consistent with the microarray data, real-time RT-PCR confirmed these modulation at the mRNA level in skin tissues from S. lappa-treated mice. Among these genes, PI3Kca and IL20Rβ were significantly downregulated by S. lappa treatment in Nc/Nga mouse model. In in vitro experiment using HaCaT cells, we found that the S. lappa components, including alantolactone, caryophyllene, costic acid, costunolide and dehydrocostus lactone significantly decreased the expression of PI3Kca but not IL20Rβ in vitro. Therefore, our study suggests that PI3Kca-related signaling is closely related with the protective effects of S. lappa against the development of atopic-dermatitis.
Collapse
Affiliation(s)
- Hye-Sun Lim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811,
Korea
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju 361-951,
Korea
| | - Hyekyung Ha
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811,
Korea
| | - Hyeun-Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811,
Korea
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811,
Korea
- Korea Medicine Life Science, University of Science & Technology, Daejeon 305-350,
Korea
| |
Collapse
|
15
|
Pan G, Liang Y, Lu L, Chen X, Wang M, Wang L, Yan C, Zhang W. Blockage of thymic stromal lymphopoietin signaling improves acute lung injury in mice by regulating pulmonary dendritic cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10698-10706. [PMID: 26617780 PMCID: PMC4637595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the effects of blockage of thymic stromal lymphopoietin (TSLP) signaling by TSLP receptor (TSLPR)-immunoglobulin (Ig) on acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS C57BL/6 mice received TSLPR-Ig or controlled-Ig before being induced ALI. Lung wet/dry (W/D) weight ratio was recorded. Neutrophil number and albumin concentration of bronchoalveolar lavages fluids (BALF) were determined. Besides, bone marrow dendritic cells (BMDCs) were separated and cultured with medium, TSLP, TSLP plus TSLPR-Ig or TSLP plus controlled-Ig. Protein expression levels of TSLP in lung tissues, phosphorylation extracellular regulated protein kinases (pERK) 1/2, p38, and signal transducers and activators of transcription (STAT) 3 in BMDCs were analyzed using Western blotting. Expression of CD40, CD80 and CD86 on pulmonary DCs and BMDCs was determined using flow cytometry (FCM). RESULTS The W/D ratio, neutrophil number and albumin concentration were significantly decreased in the TSLPR-Ig group compared with the controlled-Ig and model group. Moreover, there was a noticeable decrease in CD40, CD80 or CD86 expression by TSLPR-Ig on both pulmonary DCs and BMDCs. The protein levels of TSLP, pERK1 and STAT3 were significantly decreased by TSLPR-Ig. However, no significant differences were found in p38 and pERK2. CONCLUSION These results suggest that TSLP may be involved in ALI, and blockage of TSLP signaling using TSLPR-Ig improves ALI at least in part by regulation of DCs functions. The underling downstream signaling mediated by TSLP might be associated with activating the ERK1 and STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoquan Pan
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Lu Lu
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Xu Chen
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Min Wang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Linxia Wang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Chunxue Yan
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Weixi Zhang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| |
Collapse
|
16
|
Ryu WI, Lee H, Kim JH, Bae HC, Ryu HJ, Son SW. IL-33 induces Egr-1-dependent TSLP expression via the MAPK pathways in human keratinocytes. Exp Dermatol 2015; 24:857-63. [DOI: 10.1111/exd.12788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Woo-In Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hana Lee
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Jin Hee Kim
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hyun Cheol Bae
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hwa Jung Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Sang Wook Son
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| |
Collapse
|
17
|
Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1064-71. [PMID: 25326068 DOI: 10.1007/s11427-014-4747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.
Collapse
|
18
|
Chang KK, Liu LB, Li H, Mei J, Shao J, Xie F, Li MQ, Li DJ. TSLP induced by estrogen stimulates secretion of MCP-1 and IL-8 and growth of human endometrial stromal cells through JNK and NF-κB signal pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1889-1899. [PMID: 24966899 PMCID: PMC4069968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
It has reported that human endometrial stromal cells (ESCs) express thymic stromal lymphopoietin (TSLP), and TSLP concentrations in the serum and peritoneal fluid were higher in women with endometriosis. Endometriosis is an estrogen-dependent disease. The present study aimed to elucidate whether and how estrogen regulates the growth of ESCs through TSLP. The ESCs behaviors in vitro were verified by SRB assay and Ki67 level detection, respectively. In addition, the effects of estrogen on TSLP and TSLP on the correspondent functional molecules were investigated by ELISA and flow cytometry. Here we found that estrogen stimulated the secretion of TSLP in a dosage-dependent manner. Recombinant human TSLP stimulates the secretion of MCP-1 and IL-8, and markedly promotes the viability and proliferation relative gene Ki-67 expression of ESCs. These effects could be abolished by the inhibitor for JNK or NF-κB signal, respectively. Moreover, not only anti-TSLP neutralizing antibody, but also blocking JNK or NF-κB signal by inhibitor abrogated the stimulatory role in the production of MCP-1 and IL-8, and the growth of ESCs induced by estrogen. Our current study has demonstrated that TSLP is involved in the regulation of estrogen on the secretion of MCP-1 and IL-8, and the growth of ESCs through JNK and NF-κB signal pathways, which suggests that the abnormal high expression of TSLP induced by estrogen may play an important role in ESCs growth and finally contribute to the origin and development of endometriosis.
Collapse
Affiliation(s)
- Kai-Kai Chang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Li-Bing Liu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Hui Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Jie Mei
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College Shanghai 200011, China
| |
Collapse
|
19
|
Zhong J, Sharma J, Raju R, Palapetta SM, Prasad TSK, Huang TC, Yoda A, Tyner JW, van Bodegom D, Weinstock DM, Ziegler SF, Pandey A. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau007. [PMID: 24573880 PMCID: PMC3935308 DOI: 10.1093/database/bau007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Oncology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Institute of Bioinformatics, International Technology Park, Bangalore 560066, India, Manipal University, Madhav Nagar, Manipal 576104, India, Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mailcode L592, Portland, OR 97239, USA and Immunology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue S&C, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tryptanthrin ameliorates atopic dermatitis through down-regulation of TSLP. Arch Biochem Biophys 2014; 542:14-20. [DOI: 10.1016/j.abb.2013.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 12/28/2022]
|
21
|
Duan J, Jiang XP, Li MQ, Fan DX, Wang Y, Li DJ, Jin LP. Thymic Stromal Lymphopoietin Suppresses the Apoptosis of Decidual Gamma-delta T Cells via Regulation of the Signal Transduction and Activation of Transcription 3/Caspase-3 Signaling Pathway. Am J Reprod Immunol 2013; 70:464-71. [PMID: 24028796 DOI: 10.1111/aji.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jie Duan
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Xiao-Ping Jiang
- Department of Gynecology and Obstetrics; Shanghai Corps Hospital of Chinese People's Armed Police Forces; Shanghai China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Ying Wang
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| |
Collapse
|
22
|
Wang Z, Zhang LJ, Guha G, Li S, Kyrylkova K, Kioussi C, Leid M, Ganguli-Indra G, Indra AK. Selective ablation of Ctip2/Bcl11b in epidermal keratinocytes triggers atopic dermatitis-like skin inflammatory responses in adult mice. PLoS One 2012; 7:e51262. [PMID: 23284675 PMCID: PMC3527437 DOI: 10.1371/journal.pone.0051262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Background Ctip2 is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Selective ablation of Ctip2 in epidermis leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation, terminal differentiation, as well as altered lipid composition during development. However, little is known about the role of Ctip2 in skin homeostasis in adult mice. Methodology/Principal Findings To study the role of Ctip2 in adult skin homeostasis, we utilized Ctip2ep−/− mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. Measurement of TEWL, followed by histological, immunohistochemical, and RT-qPCR analyses revealed an important role of Ctip2 in barrier maintenance and in regulating adult skin homeostasis. We demonstrated that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as extensive infiltration of immune cells including T lymphocytes, mast cells, and eosinophils. We observed increased expression of T-helper 2 (Th2)-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression was significantly upregulated in the mutant epidermis as early as postnatal day 1 and ChIP assay revealed that TSLP is likely a direct transcriptional target of Ctip2 in epidermal keratinocytes. Conclusions/Significance Our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult mice skin. We discovered a crucial non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines. It is likely that the epidermal hyperproliferation in the Ctip2-lacking epidermis may be secondary to the compensatory response of the adult epidermis that is defective in barrier functions. Our results establish an initiating role of epidermal TSLP in AD pathogenesis via a novel repressive regulatory mechanism enforced by Ctip2.
Collapse
Affiliation(s)
- Zhixing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Ling-juan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Gunjan Guha
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Shan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Kateryna Kyrylkova
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Molecular Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Molecular Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Molecular Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Molecular Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, United States of America
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
23
|
Borowski A, Vetter T, Kuepper M, Wohlmann A, Krause S, Lorenzen T, Virchow JC, Luttmann W, Friedrich K. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain. Cytokine 2012. [PMID: 23199813 DOI: 10.1016/j.cyto.2012.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range.
Collapse
Affiliation(s)
- Andreas Borowski
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Signaling cascades initiated by TSLP-mediated signals in different cell types. Cell Immunol 2012; 279:174-9. [PMID: 23246679 DOI: 10.1016/j.cellimm.2012.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/29/2012] [Accepted: 10/02/2012] [Indexed: 01/31/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) has been well characterized as a consequence of its ability to modulate allergic and neoplastic diseases. However, downstream signaling mediated by TSLP varies significantly between the cell type and species examined. Since this observation is often overlooked and in some cases ignored, this review aims to consolidate the molecular pathways activated by TSLP receptors expressed by various human and mouse cell types.
Collapse
|
25
|
Zhao H, Li M, Wang L, Su Y, Fang H, Lin J, Mohabeer N, Li D. Angiotensin II Induces TSLP via an AT1 Receptor/NF-KappaB Pathway, Promoting Th17 Differentiation. Cell Physiol Biochem 2012; 30:1383-97. [DOI: 10.1159/000343327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 12/28/2022] Open
|
26
|
Redhu NS, Gounni AS. Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy 2011; 42:994-1005. [PMID: 22168549 DOI: 10.1111/j.1365-2222.2011.03919.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 01/08/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key pro-allergic cytokine that has recently been linked to chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). High levels of TSLP were detected in bronchial mucosa of asthma and COPD patients suggesting TSLP's biological role beyond a signature 'Th2-favoring' or 'pro-allergic cytokine'. Besides inflammatory cells, airway structural cells produce and are targets of TSLP suggesting a potential autocrine loop that may have a profound effect on local inflammatory response and airway remodelling. This review sums up diverse mechanisms that mediate TSLP/TSLP receptor-signalling network in chronic airway diseases.
Collapse
Affiliation(s)
- N S Redhu
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
27
|
Li M, Zhang J, Wu Y, Li J. The regulation of thymic stromal lymphopoietin in gut immune homeostasis. Dig Dis Sci 2011; 56:2215-20. [PMID: 21318591 DOI: 10.1007/s10620-011-1587-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/14/2011] [Indexed: 12/09/2022]
Abstract
Thymic stromal lymphopoietin is a novel IL-7-like cytokine that exerts immunomodulatory effects and is constitutively expressed by intestinal epithelial cells in response to commensal bacteria colonization. Thymic stromal lymphopoietin can directly or indirectly promote Th2 and Treg responses, and is believed to inhibit Th1 and Th17 responses and limit the expression of proinflammatory cytokines such as IL-17 and IFN-γ. In response to infection by enteric pathogens, intestinal epithelial cells upregulate thymic stromal lymphopoietin expression in order to generate balance between inflammation and immune clearance. Recently, however, aberrant expression of thymic stromal lymphopoietin has been associated with inflammatory bowel disease. Thus, we sought to examine the relationship between the TLSP-TSLPR pathway and inflammation in hopes of contributing to the search for a novel therapeutic target to treat a variety of inflammatory diseases, including inflammatory bowel disease.
Collapse
Affiliation(s)
- Ming Li
- Institute of Immunology, PLA, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Redhu NS, Saleh A, Halayko AJ, Ali AS, Gounni AS. Essential role of NF-κB and AP-1 transcription factors in TNF-α-induced TSLP expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L479-85. [DOI: 10.1152/ajplung.00301.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human airway smooth muscle (HASM) cells are a rich source of inflammatory mediators that may propagate the airway inflammatory responses. Recent studies from our laboratory and others demonstrate that HASM cells express the proallergic cytokine thymic stromal lymphopoietin (TSLP) in vitro and in vivo. Compelling evidence from in vitro studies and animal models suggest that the TSLP is a critical factor sufficient and necessary to induce or maintain the allergic airway inflammation. Despite of an immense interest in pathophysiology of TSLP in allergic inflammation, the triggers and mechanisms of TSLP expression remain inadequately understood. In this study, we found that TNF-α upregulates the TSLP mRNA and induces high levels of TSLP protein release in primary human ASM cells. Interestingly, TNF-α induced the TSLP promoter activity ( P < 0.05; n = 4) in HASM that was mediated by upstream NF-κB and activator protein-1 (AP-1) binding sites. Mutation in NF-κB and AP-1 binding sites completely abrogated the effect of TNF-α-mediated TSLP promoter activity and so did the expression of a dominant-negative mutant construct of IκB kinase. Furthermore, the peptide inhibitors of IκB kinase or NF-κB inhibited the TNF-α-induced TSLP protein release ( P < 0.05; n = 3) in HASM. Collectively, our data suggest a novel important biological role for NF-κB pathway in TNF-α-induced TSLP expression in HASM and recommend this as a prime target for anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - Andrew J. Halayko
- Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
29
|
Wohlmann A, Sebastian K, Borowski A, Krause S, Friedrich K. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Biol Chem 2010; 391:181-186. [PMID: 20128689 DOI: 10.1515/bc.2010.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-(IL)-7-like cytokine with emerging pathological importance for the development of atopic diseases such as allergic asthma bronchiale. The TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor, shares the IL-7R alpha-subunit with the IL-7 receptor system. The specific TSLPR alpha-chain shows similarities with the gammac receptor chain, but has some unusual features within the receptor family in both its ligand-binding and cytoplasmic domain. The murine TSLPR signals via the signal transducers and activators of transcription STAT5 and STAT3, but is unique among cytokine receptors in that it activates STATs without the involvement of Janus (JAK) tyrosine kinases, but instead utilizes the Src type kinase Tec. Here, we show by Western blotting and reporter gene experiments in combination with the application of a specific JAK inhibitor that the human TSLP receptor, in contrast, requires the function of JAK1 and JAK2 for STAT activation. Moreover, we demonstrate that the human TSLPR mediates gene regulation not only through STAT5 and STAT3 but has also the potential to mediate transcription via STAT1. Our work should help to understand more thoroughly how TSLP triggers inflammatory responses in the course of atopic diseases.
Collapse
Affiliation(s)
- Andreas Wohlmann
- Institute of Biochemistry II, University of Jena Medical School, Nonnenplan 2, D-07743 Jena, Germany
| | - Katrin Sebastian
- Institute of Biochemistry II, University of Jena Medical School, Nonnenplan 2, D-07743 Jena, Germany
| | - Andreas Borowski
- Institute of Biochemistry II, University of Jena Medical School, Nonnenplan 2, D-07743 Jena, Germany
| | - Sebastian Krause
- Institute of Biochemistry II, University of Jena Medical School, Nonnenplan 2, D-07743 Jena, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University of Jena Medical School, Nonnenplan 2, D-07743 Jena, Germany
| |
Collapse
|
30
|
Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. THE JOURNAL OF IMMUNOLOGY 2010; 184:7134-43. [PMID: 20483734 DOI: 10.4049/jimmunol.0902515] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) plays a pivotal role in allergic diseases such as asthma, chronic obstructive pulmonary disease, and atopic dermatitis. Enhanced TSLP expression has been detected in asthmatic airways that correlated with both the expression of Th2-attracting chemokines and with disease severity. Although cumulative evidence suggests that human airway smooth muscle (HASM) cells can initiate or perpetuate the airway inflammation by secreting a variety of inflammatory cell products such as cytokines and chemokines, the role of TSLP in this pathway is not known. In the current study, we sought to investigate whether HASM cells express the TSLP receptor (TSLPR) and whether it is functional. We first demonstrated that primary HASM cells express the transcript and protein of both TSLPR subunits (TSLPR and IL-7Ralpha). Functionally, TSLPR-mediated HASM activation induced a significant increase in CXC (IL-8/CXCL8), CC (eotaxin-1/CCL11) chemokines, and proinflammatory cytokine IL-6 expression. Furthermore, using biochemical and genetic approaches, we found that TSLP-induced proinflammatory gene expression in HASM involved the transcriptional mechanisms, MAPKs (ERK1/2, p38, and JNK), and STAT3 activation. Finally, TSLPR immunoreactivity in bronchial sections from mild allergic asthmatics suggested the potential in vivo TSLP targeting of HASM. Altogether, our data suggest that the TSLPR-mediated HASM activation induces proinflammatory cytokine and chemokines release that may facilitate inflammatory immune cells recruitment in airways. In addition, it may be inferred that TSLPR is involved in the pathogenesis of allergic asthma through the activation of HASM cells by TSLP.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
There is considerable worldwide interest in identifying genes related to susceptibility to asthma. Progress has been slow in part because of the complexity and heterogeneity of the disease. Although at least 170 genes located on 10 chromosomes have been associated with or in linkage with asthma and asthma-related phenotypes, the majority of the reports have either been preliminary or the results have been controversial. In order to overcome the problems with the inherent complexity of asthma and methodological issues, the authors propose a strategy for identification of asthma susceptibility genes based on theories of systems biology and bioinformatics and candidate gene approach.
Collapse
Affiliation(s)
- Ming-Liang Gu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
32
|
Scheeren FA, van Lent AU, Nagasawa M, Weijer K, Spits H, Legrand N, Blom B. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol 2010; 40:955-65. [DOI: 10.1002/eji.200939419] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res 2009; 690:24-39. [PMID: 19769993 PMCID: PMC2923754 DOI: 10.1016/j.mrfmmm.2009.09.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
Allergic asthma is a complex and chronic inflammatory disorder which is associated with airway hyper-responsiveness and tissue remodelling of the airway structure. Although originally thought to be a Th2-driven inflammatory response to inhaled innocuous allergen, the immune response in asthma is now considered highly heterogeneous. There are now various in vivo systems which have been designed to examine the pathways leading to the development of this chronic immune response and reflect, in part this heterogeneity. Furthermore, the emergence of endogenous immunoregulatory pathways and active pro-resolving mediators hold great potential for future therapeutic intervention. In this review, the key cellular and molecular mediators relating to chronic allergic airway disease are discussed, as well as emerging players in the regulation of chronic allergic inflammation.
Collapse
Affiliation(s)
- Jenna R Murdoch
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
34
|
Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 2009; 226:172-90. [PMID: 19161424 DOI: 10.1111/j.1600-065x.2008.00713.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is compelling evidence that epithelial cells (ECs) at mucosal surfaces, beyond their role in creating a physical barrier, are integral components of innate and adaptive immunity. The capacity of these cells to license the functions of specific immune cell populations in the airway and gastrointestinal tract offers the prospect of novel therapeutic strategies to target multiple inflammatory diseases in which barrier immunity is dysregulated. In this review, we discuss the critical functions of EC-derived thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 in the development and regulation of T-helper 2 (Th2) cytokine-dependent immune responses. We first highlight recent data that have provided new insights into the factors that control expression of this triad of cytokines and their receptors. In addition, we review their proinflammatory and immunoregulatory functions in models of mucosal infection and inflammation. Lastly, we discuss new findings indicating that despite their diverse structural features and differential expression of their receptors, TSLP, IL-25, and IL-33 cross-regulate one another and share overlapping properties that influence Th2 cytokine-dependent responses at mucosal sites.
Collapse
Affiliation(s)
- Steven A Saenz
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | | | | |
Collapse
|