1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Xu Y, Zhou X, Wang X, Jin Y, Zhou L, Ye J. Progress of mesenchymal stem cells (MSCs) & MSC-Exosomes combined with drugs intervention in liver fibrosis. Biomed Pharmacother 2024; 176:116848. [PMID: 38834005 DOI: 10.1016/j.biopha.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Liver fibrosis is an intrahepatic chronic damage repair response caused by various reasons such as alcoholic liver, fatty liver, viral hepatitis, autoimmune diseases, etc., and is closely related to the progression of liver disease. Currently, the mechanisms of liver fibrosis and its treatment are hot research topics in the field of liver disease remedy. Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential, which can ameliorate fibrosis through hepatic-directed differentiation, paracrine effects, and immunomodulation. However, the low inner-liver colonization rate, low survival rate, and short duration of intervention after stem cell transplantation have limited their wide clinical application. With the intensive research on liver fibrosis worldwide, it has been found that MSCs and MSCs-derived exosomes combined with drugs have shown better intervention efficiency than utilization of MSCs alone in many animal models of liver fibrosis. In this paper, we review the interventional effects and mechanisms of mesenchymal stem cells and their exosomes combined with drugs to alleviate hepatic fibrosis in vivo in animal models in recent years, which will provide new ideas to improve the efficacy of mesenchymal stem cells and their exosomes in treating hepatic fibrosis in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China.
| |
Collapse
|
3
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
4
|
Wu HW, Chen HD, Chen YH, Mao XL, Feng YY, Li SW, Zhou XB. The Effects of Programmed Cell Death of Mesenchymal Stem Cells on the Development of Liver Fibrosis. Stem Cells Int 2023; 2023:4586398. [PMID: 37214784 PMCID: PMC10195177 DOI: 10.1155/2023/4586398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stem cells have shown noticeable potential for unlimited self-renewal. They can differentiate into specific somatic cells, integrate into target tissues via cell-cell contact, paracrine effects, exosomes, and other processes and then regulate the target cells and tissues. Studies have demonstrated that transplantation of MSCs could decrease the expression and concentration of collagen in the liver, thereby reducing liver fibrosis. A growing body of evidence indicates that apoptotic MSCs could inhibit harmful immune responses and reduce inflammatory responses more effectively than viable MSCs. Accumulating evidence suggests that mitochondrial transfer from MSCs is a novel strategy for the regeneration of various damaged cells via the rescue of their respiratory activities. This study is aimed at reviewing the functions of MSCs and the related roles of the programmed cell death of MSCs, including autophagy, apoptosis, pyroptosis, and ferroptosis, as well as the regulatory pathogenic mechanisms of MSCs in liver fibrosis. Research has demonstrated that the miR-200B-3p gene is differentially expressed gene between LF and normal liver samples, and that the miR-200B-3p gene expression is positively correlated with the degree of liver fibrosis, suggesting that MSCs could inhibit liver fibrosis through pyroptosis. It was confirmed that circulating monocytes could deliver MSC-derived immunomodulatory molecules to different sites by phagocytosis of apoptotic MSCs, thereby achieving systemic immunosuppression. Accordingly, it was suggested that characterization of the programmed cell death-mediated immunomodulatory signaling pathways in MSCs should be a focus of research.
Collapse
Affiliation(s)
- Hong-wei Wu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - He-dan Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-yi Feng
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
6
|
Mechanisms of Action of Mesenchymal Stem Cells in Metabolic-Associated Fatty Liver Disease. Stem Cells Int 2023; 2023:3919002. [PMID: 36644008 PMCID: PMC9839417 DOI: 10.1155/2023/3919002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease worldwide. However, its pathophysiological mechanism is complicated, and currently, it has no FDA-approved pharmacological therapies. In recent years, mesenchymal stem cell (MSC) therapy has attracted increasing attention in the treatment of hepatic diseases. MSCs are multipotent stromal cells that originated from mesoderm mesenchyme, which have self-renewal and multipotent differentiation capability. Recent experiments and studies have found that MSCs have the latent capacity to be used for MAFLD treatment. MSCs have the potential to differentiate into hepatocytes, which could be induced into hepatocyte-like cells (HLCs) with liver-specific morphology and function under appropriate conditions to promote liver tissue regeneration. They can also reduce liver tissue injury and reverse the development of MAFLD by regulating immune response, antifibrotic activities, and lipid metabolism. Moreover, several advantages are attributed to MSC-derived exosomes (MSC-exosomes), such as targeted delivery, reliable reparability, and poor immunogenicity. After entering the target cells, MSC-exosomes help regulate cell function and signal transduction; thus, it is expected to become an emerging treatment for MAFLD. In this review, we comprehensively discussed the roles of MSCs in MAFLD, main signaling pathways of MSCs that affect MAFLD, and mechanisms of MSC-exosomes on MAFLD.
Collapse
|
7
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
8
|
Cellular Therapies in Pediatric Liver Diseases. Cells 2022; 11:cells11162483. [PMID: 36010561 PMCID: PMC9406752 DOI: 10.3390/cells11162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the gold standard for the treatment of pediatric end-stage liver disease and liver based metabolic disorders. Although liver transplant is successful, its wider application is limited by shortage of donor organs, surgical complications, need for life long immunosuppressive medication and its associated complications. Cellular therapies such as hepatocytes and mesenchymal stromal cells (MSCs) are currently emerging as an attractive alternative to liver transplantation. The aim of this review is to present the existing world experience in hepatocyte and MSC transplantation and the potential for future effective applications of these modalities of treatment.
Collapse
|
9
|
Ma C, Han L, Wu J, Tang F, Deng Q, He T, Wu Z, Ma C, Huang W, Huang R, Pan G. MSCs cell fates in murine acute liver injury and chronic liver fibrosis induced by carbon tetrachloride. Drug Metab Dispos 2022; 50:DMD-AR-2022-000958. [PMID: 35882404 DOI: 10.1124/dmd.122.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has shown potential benefits in multiple diseases. However, their clinic performance is not as satisfactory as expected. This study aimed to provide an alternative explanation by comparing MSCs' fates in different liver diseases. The distribution and therapeutic effects of hMSCs were investigated in acute liver injury (ALI) and chronic liver fibrosis (CLF) mice models, respectively. The two models were induced by single or repeated injection of carbon tetrachloride (CCl4) separately. The increase of hMSCs exposure in the liver (AUCliver 0-72 h) were more significant in ALI than in CLF (177.1% vs. 96.2%). In the ALI model, the hMSCs exposures in the lung (AUClung 0-72 h) increased by nearly 50% while decreased by 60.7% in CLF. The efficacy satellite study indicated that hMSCs could significantly ameliorate liver injury in ALI, but its effects in CLF were limited. In the ALI, suppressed Natural Killer (NK) cell activities were observed, while NK cell activities were increased in CLF. The depletion of NK cells could increase hMSCs exposure in mice. For mice MSC (mMSCs), their cell fates in ALI were very similar to hMSCs in ALI: mMSCs' exposure in the liver and lung increased in ALI. In conclusion, our study revealed the distinct cell pharmacokinetic patterns of MSCs in ALI and CLF mice, which might be at least partially attributed to the different NK cell activities in the two liver diseases. This finding provided a novel insight into the varied MSCs' therapeutic efficacy in the clinic. Significance Statement Currently, there is little knowledge about the PK behavior of cell products like MSCs. This study was the first time investigating the influence of liver diseases on cell fates and efficacies of MSCs and the underneath rationale. The exposure was distinct between two representative liver disease models, which directly linked with the therapeutic performance that MSCs achieved. The difference could be attributed to the NK cells-mediated MSCs clearance.
Collapse
Affiliation(s)
- Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jiajun Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Feng Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Ting He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,School of Pharmaceutical Sciences, Nanjing Tech University, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica; Nanjing University of Chinese Medicine, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, China
| | - Wei Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| |
Collapse
|
10
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Eissa M, Elarabany N, Hyder A. In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation. In Vitro Cell Dev Biol Anim 2020; 56:341-348. [PMID: 32270392 DOI: 10.1007/s11626-020-00436-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an interesting alternative to liver or hepatocyte transplantation to treat liver injuries. Many studies have reported that MSCs can treat several diseases, including liver damage, just by injection into the bloodstream, without evidence of differentiation. The improvements were attributed to the organotrophic factors, low immunogenicity, immunomodulatory, and anti-inflammatory effects of MSCs, rather than their differentiation. The aim of the present study was to answer the question of whether the presence of BM-MSCs in the hepatic microenvironment will lead to their differentiation to functional hepatocyte-like cells. The hepatic microenvironment was mimicked in vitro by culture for 21 d with liver extract. The resulted cells expressed marker genes of the hepatic lineage including AFP, CK18, and Hnf4a. Functionally, they were able to detoxify ammonia into urea, to store glycogen as observed by PAS staining, and to synthesize glucose from pyruvate/lactate mixture. Phenotypically, the expression of MSC surface markers CD90 and CD105 decreased by differentiation. This evidenced differentiation into hepatocyte-like cells was accompanied by a downregulation of the stem cell marker genes sox2 and Nanog and the cell cycle regulatory genes ANAPC2, CDC2, Cyclin A1, and ABL1. The present results suggest a clear differentiation of BM-MSCs into functional hepatocyte-like cells by the extracted liver microenvironment. This differentiation is confirmed by a decrease in the stemness and mitotic activities. Tracking transplanted BM-MSCs and proving their in vivo differentiation remains to be elucidated.
Collapse
Affiliation(s)
- Manar Eissa
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Naglaa Elarabany
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
13
|
Eom YW, Kang SH, Kim MY, Lee JI, Baik SK. Mesenchymal stem cells to treat liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:563. [PMID: 32775364 PMCID: PMC7347787 DOI: 10.21037/atm.2020.02.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are being developed for stem cell therapy and can be efficiently used in regenerative medicine. To date, more than 1,000 clinical trials have used MSCs; of these, more than 80 clinical trials have targeted liver disease. MSCs migrate to damaged liver tissues, differentiate into hepatocytes, reduce liver inflammatory responses, reduce liver fibrosis, and act as antioxidants. According to the reported literature, MSCs are safe, have no side effects, and improve liver function; however, their regenerative therapeutic effects are unsatisfactory. Here, we explain, in detail, the basic therapeutic effects and recent clinical advances of MSCs. Furthermore, we discuss future research directions for improving the regenerative therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Hee Kang
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong In Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
14
|
Fathy M, Okabe M, Saad Eldien HM, Yoshida T. AT-MSCs Antifibrotic Activity is Improved by Eugenol through Modulation of TGF-β/Smad Signaling Pathway in Rats. Molecules 2020; 25:molecules25020348. [PMID: 31952158 PMCID: PMC7024200 DOI: 10.3390/molecules25020348] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Abstract
For hepatic failure, stem cell transplantation has been chosen as an alternative therapy, especially for mesenchymal stem cells (MSCs). The aim of this study was to investigate the effect of eugenol (EUG) on the in vivo antifibrotic activity of adipose tissue-derived MSCs (AT-MSCs) and the underlying mechanism. After characterization of MSCs, rats were divided into five groups, Group 1 (normal control), Group 2 (CCl4), Group 3 (CCl4 + AT-MSCs), Group 4 (CCl4 + EUG) and Group 5 (CCl4 + AT-MSCs + EUG). Biochemical and histopathological investigations were performed. Furthermore, expression of type 1 collagen, α-SMA, TGF-β1, Smad3 and P-Smad3 was estimated. Compared to the single treatment with AT-MSCs, the combination treatment of the fibrotic rats with AT-MSCs and EUG significantly improved the plasma fibrinogen concentration, IL-10 level and proliferating cell nuclear antigen expression, and also significantly decreased the serum levels of liver enzymes, IL-6, IL-1β, TNF-α, type III collagen, hyaluronic acid, hydroxyproline and the TGF-β growth factor. Furthermore, the combination treatment significantly decreased the hepatic expression of fibrotic markers genes (Type 1 collagen and α-SMA) and proteins (α-SMA, TGF-β1 and phospho-Smad3) more than the treatment with AT-MSCs alone. We demonstrated that the combination treatment with EUG and AT-MSCs strongly inhibited the advancement of CCl4-induced hepatic fibrosis, compared with AT-MSCs alone, through TGF-β/Smad pathway inhibition. This approach is completely novel, so more investigations are necessary to improve our perception of the underlying molecular mechanisms accountable for the effects of EUG on the antifibrotic potential of AT-MSCs.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.F.); (M.O.)
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.F.); (M.O.)
| | - Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Jouf 74311, Saudi Arabia;
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Toshiko Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.F.); (M.O.)
- Correspondence: ; Tel.: +81-76-434-7211
| |
Collapse
|
15
|
Abstract
Liver disease has been targeted as the fifth most common cause of death worldwide and tends to steadily rise. In the last three decades, several publications focused on the quantification of liver fibrosis by means of the estimation of the collagen proportional area (CPA) in liver biopsies obtained from digital image analysis (DIA). In this paper, early and recent studies on this topic have been reviewed according to these research aims: the datasets used for the analysis, the employed image processing techniques, the obtained results, and the derived conclusions. The purpose is to identify the major strengths and “gray-areas” in the landscape of this topic.
Collapse
|
16
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
18
|
Rong X, Yang Y, Zhang G, Zhang H, Li C, Wang Y. Antler stem cells as a novel stem cell source for reducing liver fibrosis. Cell Tissue Res 2019; 379:195-206. [PMID: 31428875 DOI: 10.1007/s00441-019-03081-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Liver fibrosis results from collagen fiber deposition. Antler stem cells (ASCs) naturally in vivo differentiate into cartilage, which is only made of Col II in collagen component; whereas liver fibrosis is caused by over-abundance of Col I and III. In addition, ASCs can effectively promote regenerative wound healing in which tissue contains very few collagen fibers (Col I). In this study, we investigate the therapeutic effects of ASCs in a rat model of CCl4-induced liver fibrosis. Rats were treated with ASCs for 4 weeks in vivo, then biochemical and histopathological analyses were performed. Furthermore, we established cell co-culture systems of hepatic stellate cells (HSCs) and ASCs and of M1 macrophages and ASCs in vitro. Mesenchymal stem cells (MSCs) were used as a positive control. The results showed that ASC transplantation alleviated liver fibrosis effectively as evidenced by reduced collagen accumulation, decreased fatty degeneration, increased hepatocyte regeneration, decreased inflammation and significantly enhanced liver function; moreover, ASCs decreased the expression of pro-fibrogenic factors including TGF-β and α-SMA. Additionally, our study showed that ASCs inhibit HSC activation and proliferation by controlling the expression of MMPs, TIMP1, TGF-β, α-SMA and COL1A2 involved in these processes. Our results suggested that ASCs alleviate liver fibrosis effectively and inhibit HSC activation. Thus, ASCs may serve as a novel stem cell source for the treatment of liver fibrosis in the clinic.
Collapse
Affiliation(s)
- Xiaoli Rong
- The Scientific Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai St,, Changchun, 130033, Jilin, China
| | - Yanyan Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, 130033, Jilin, China
| | - Guokun Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, 130112, Jilin, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin St., Changchun, 130021, Jilin, China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 4899 Juye St., Changchun, 130112, Jilin, China.
| | - Yimin Wang
- The Scientific Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai St,, Changchun, 130033, Jilin, China.
| |
Collapse
|
19
|
Aithal AP, Bairy LK, Seetharam RN, Rao MK. Human bone marrow-derived mesenchymal stromal cells in combination with silymarin regulate hepatocyte growth factor expression and genotoxicity in carbon tetrachloride induced hepatotoxicity in Wistar rats. J Cell Biochem 2019; 120:13026-13036. [PMID: 30873677 DOI: 10.1002/jcb.28573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND To evaluate the antimutagenic potential of combination treatment of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) and silymarin and its effect on hepatocyte growth factor levels in CCl4 induced hepatotoxicity in Wistar rats. METHODS Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4 + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study. RESULTS Combination treatment of silymarin and high dose BM-MSCs significantly (P < 0.05) restored the plasma hepatocyte growth factor levels which were comparable with normal levels and exhibited significant antimutagenic and antiapoptotic activity by decreasing the frequency of structural chromosomal aberrations and suppressing the DNA fragmentation in liver tissue samples. The combination treatment produced significant hepatoprotective effect which was supported by histopathology and scanning electron microscopy study. CONCLUSION Results indicate that the treatment of BM-MSCs in combination with silymarin had a better hepatoprotective and antimutagenic effect and represents a novel strategy for the treatment of hepatotoxicity.
Collapse
Affiliation(s)
- Ashwini P Aithal
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Laxminarayana K Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - Mohandas Kg Rao
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
20
|
Yeruva T, Lee CH. Regulation of Vaginal Microbiome by Nitric Oxide. Curr Pharm Biotechnol 2019; 20:17-31. [PMID: 30727888 DOI: 10.2174/1389201020666190207092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
In this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| |
Collapse
|
21
|
Tan F, Huang Y, Pei Q, Liu H, Pei H, Zhu H. Matrix stiffness mediates stemness characteristics via activating the Yes-associated protein in colorectal cancer cells. J Cell Biochem 2019; 120:2213-2225. [PMID: 30218452 DOI: 10.1002/jcb.27532] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Matrix stiffness is an essential physical microenvironment in solid cancer. However, its influence on cancer stemness still remains elusive. Colorectal cancer (CRC) cell line HCT-116 was cultured in the matrix with various stiffness. The siYAP was applied to detect the changes of stemness markers. The cancer stemness markers, Yes-associated protein (YAP), Lamin A/C and downstream protein molecules, and their activation were measured after the treatment with anti-β1-integrin and FAK inhibitors. In CRC tissue samples, collagen deposition and the expression of α-SMA and CD133 were detected. The study found that the expression level of stemness markers and Lamin A/C increased as the matrix stiffness raised and was regulated by YAP activation in CRC stem cells. Inhibition of β1-integrin and FAK activation in a high stiffness cell culture medium significantly decreased the activation of YAP, PI3K, and AKT. Collagen was highly deposited in the CRC invasive tumor front (ITF), and the expression of CD133 was higher in ITF compared with normal tissue and the tumor cells. Moreover, the expression level of α-SMA was positively correlated with CD133 expression level. Together, our results suggest that activation of YAP in CRC plays an important role in the promotion of cancer stem cell properties by extracellular matrix stiffness in CRC.
Collapse
Affiliation(s)
- Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Hunan Normal University, Changsha, China
| | - Qian Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23:1657-1670. [PMID: 30635966 PMCID: PMC6378173 DOI: 10.1111/jcmm.14115] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jinfeng Duan
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
23
|
Maria ATJ, Rozier P, Fonteneau G, Sutra T, Maumus M, Toupet K, Cristol JP, Jorgensen C, Guilpain P, Noël D. iNOS Activity Is Required for the Therapeutic Effect of Mesenchymal Stem Cells in Experimental Systemic Sclerosis. Front Immunol 2018; 9:3056. [PMID: 30622540 PMCID: PMC6308989 DOI: 10.3389/fimmu.2018.03056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 01/22/2023] Open
Abstract
Objectives: Fibrosis is a hallmark of systemic sclerosis (SSc), an intractable disease where innovative strategies are still being sought. Among novel anti-fibrotic approaches, mesenchymal stromal/stem cell (MSC)-based therapy appears promising. Previously, we reported anti-fibrotic effects of MSC in an experimental model of SSc, through various mechanisms (tissue remodeling, immunomodulation, anti-oxidant defense). Since immunomodulation is a pivotal mechanism for MSC therapeutic effects, we investigated the specific role of critical molecules associated with MSC immunosuppressive properties and hypothesized that MSC defective for these molecules would be less effective in reducing fibrosis in SSc. Methods: SSc was induced by 6-week daily intradermal injections of hypochlorite (HOCl) in mice. MSC were isolated from the bone marrow of wild type mice (WT) or mice knockout for IL1RA, IL6, or iNOS (IL1RA−/−, IL6−/−, or iNOS−/− MSC, respectively). Treated-mice received 2.5 × 105 MSC intravenous infusion at d21. Skin thickness, histological and biological parameters were evaluated in skin and blood at d42. Results: IL1RA−/− and IL6−/− MSC exerted similar anti-fibrotic properties as WT MSC, with a reduction of skin thickness together with less collagen deposition. Conversely, iNOS−/− MSC did not exert anti-fibrotic functions as shown by a similar skin thickness progression as non-treated HOCl-SSc mice. Compared with WT MSC, iNOS−/− MSC kept some immunosuppressive and tissue remodeling properties, but lost their capacity to reduce oxidative stress in HOCl-SSc mice. Conclusion: Our study highlights the crucial role of iNOS, whose activity is required for the anti-fibrotic properties of MSC in experimental SSc, with a special emphasis on NO-related anti-oxidant functions.
Collapse
Affiliation(s)
- Alexandre T J Maria
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | - Pauline Rozier
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | | | - Thibault Sutra
- Laboratory of Biochemistry, University Hospital of Montpellier, Montpellier, France.,Inserm U1046, Phymedexp, Lapeyronie Hospital, Montpellier, France
| | - Marie Maumus
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Karine Toupet
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- Laboratory of Biochemistry, University Hospital of Montpellier, Montpellier, France.,Inserm U1046, Phymedexp, Lapeyronie Hospital, Montpellier, France
| | - Christian Jorgensen
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie Hospital, Montpellier, France
| | - Philippe Guilpain
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie Hospital, Montpellier, France
| |
Collapse
|
24
|
Aithal AP, Bairy LK, Seetharam RN, Kumar N. Haemostatic potential of human bone marrow-derived mesenchymal stromal cells in Wistar rats with carbon tetrachloride induced liver cirrhosis. Stem Cell Investig 2018; 5:21. [PMID: 30148154 DOI: 10.21037/sci.2018.07.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/21/2018] [Indexed: 01/12/2023]
Abstract
Background To evaluate the haemostatic potential of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in carbon tetrachloride (CCl4) induced liver cirrhosis in Wistar rats. Methods This was an experimental study. Liver cirrhosis was induced in adult female Wistar rats using CCl4. Rats were randomly divided into 6 groups with ten rats in each group: group 1 (normal control group), group 2 (received only CCl4), group 3 (CCl4 + low dose BM-MSCs), group 4 (CCl4 + high dose BM-MSCs), group 5 (CCl4 + silymarin), group 6 (CCl4 + high dose BM-MSCs + silymarin). Thirty days after the treatment, blood samples were collected for liver enzyme level analysis, prothrombin time test and plasma fibrinogen estimations. The rats were then sacrificed, livers were excised and used for histopathological and scanning electron microscopy (SEM) study. Results BM-MSCs and the combination treatment of high dose BM-MSCs and silymarin effectively decreased the prothrombin time and increased plasma fibrinogen concentration in rats with CCl4 induced liver cirrhosis. BM-MSCs treatment produces significant anti-fibrotic effect which was supported by the liver enzyme level analysis, histopathology and SEM study. Conclusions Results indicate that treatment of BM-MSCs in combination with silymarin had a better haemostatic effect when compared to the administration of BM-MSCs alone.
Collapse
Affiliation(s)
- Ashwini P Aithal
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Laxminarayana K Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates (UAE)
| | | | - Naveen Kumar
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
25
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
26
|
Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68:1272-1285. [PMID: 29425678 DOI: 10.1016/j.jhep.2018.01.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) in the treatment of liver fibrosis is predominantly based on their immunosuppressive properties, and their ability to secrete various trophic factors. This potential has been investigated in clinical and preclinical studies. Although the therapeutic mechanisms of MSC transplantation are still not fully characterised, accumulating evidence has revealed that various trophic factors secreted by MSCs play key therapeutic roles in regeneration by alleviating inflammation, apoptosis, and fibrosis as well as stimulating angiogenesis and tissue regeneration in damaged liver. In this review, we summarise the safety, efficacy, potential transplantation routes and therapeutic effects of MSCs in patients with liver fibrosis. We also discuss some of the key strategies to enhance the functionality of MSCs, which include sorting and/or priming with factors such as cytokines, as well as genetic engineering.
Collapse
Affiliation(s)
- Mohammed Alfaifi
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Philip N Newsome
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, UK; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
27
|
Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:447-456. [PMID: 29216568 DOI: 10.1016/j.jphotobiol.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
Abstract
Stem cell transplantation is a novel strategy for regenerative medicine in liver disease. This study was conducted to explore the modulatory effect of Nigella sativa oil (NSO) on the therapeutic potential of mesenchymal stem cells (MSCs) against irradiation-induced liver damage in rats. Liver damage was induced by a total body exposure to a single dose of 7Gy. NSO (2mg/kg/day) was then given orally for 4 consecutive weeks starting 24h after irradiation with or without a single intravenous MSCs administration, then rats were sacrificed four weeks after exposure to γ radiation. Data revealed that irradiation elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, increased hepatic malondialdehyde (MDA) content and reduced hepatic superoxide dismutase (SOD) activity. Furthermore, it caused elevation in pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) associated with reduction in anti-inflammatory cytokine interleukin-10 (IL-10) and it increased fibrogenic marker transforming growth factor-β (TGF-β) in liver tissues. It was observed that combined NSO/MSCs therapy provided more beneficial tissue repair comparable to MSCs alone as demonstrated by modulating the tested parameters. Finally, these results were confirmed by histopathological examination. In conclusion, dual therapy with NSO and MSCs could serve as a promising approach for alleviating radiation-induced liver injury in patients with radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
28
|
Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M, Volarevic V. Mesenchymal Stem Cell-Dependent Modulation of Liver Diseases. Int J Biol Sci 2017; 13:1109-1117. [PMID: 29104502 PMCID: PMC5666326 DOI: 10.7150/ijbs.20240] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure and cirrhosis display sequential and overlapping severe pathogenic processes that include inflammation, hepatocyte necrosis, and fibrosis, carrying a high mortality rate. Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells with immunonodulatory characteristics. MSCs are considered to act through multiple mechanisms to coordinate a dynamic, integrated response to liver inflammation and fibrosis, which prevents the progressive distortion of hepatic architecture. Accordingly, MSCs as well as their products have been investigated as a novel therapeutic approach for the treatment of inflammatory and fibrotic liver diseases. In this review, we highlight the current findings on the MSC-based modulation of liver inflammation and fibrosis, and the possible use of MSCs in the therapy of immune-mediated liver pathology. We briefly describe the cellular and molecular mechanisms involved in MSC-dependent modulation of cytokine production, phenotype and function of liver infiltrated inflammatory cells and compare effects of engrafted MSCs versus MSC-generated conditioned medium (MSC-CM) in the therapy of acute liver injury. In order to elucidate therapeutic potential of MSCs and their products in modulation of chronic liver inflammation and fibrosis, we present the current findings regarding pathogenic role of immune cells in liver fibrosis and describe mechanisms involved in MSC-dependent modulation of chronic liver inflammation with the brief overview of on-going and already published clinical trials that used MSCs for the treatment of immune mediated chronic liver diseases. The accumulating evidence shows that MSCs had a significant beneficial effect in the treatment of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Marina Gazdic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics
| | - Aleksandar Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Bojana Simovic Markovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ana Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ivanka Dimova
- Department of medical genetics, Medical University Sofia, Sofia, Bulgaria
| | | | - Nebojsa Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Miodrag Stojkovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics.,Spebo Medical, Leskovac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| |
Collapse
|
29
|
Anjum MS, Mehmood A, Ali M, Butt H, Khan SN, Riazuddin S. Transplantation of stromal-derived factor 1α and basic fibroblast growth factor primed insulin-producing cells reverses hyperglycaemia in diabetic rats. Growth Factors 2017; 35:88-99. [PMID: 28835141 DOI: 10.1080/08977194.2017.1363745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defective insulin production is associated with severely reduced islet cell mass leading to diabetes. Growth factors preconditioned stem cells have arisen as an effective therapy to treat many diseases including diabetes. The current study was designed to assess the effect of pretreatment of ASCs derived IPCs with combination of stromal cell derived factor 1 alpha (SDF1α) and basic fibroblast growth factor (bFGF) in improving glucose tolerance in streptozotocin induced diabetic rats. The results showed maximally significant reduction in hyperglycaemia and fibrosis, while up-regulation of survival and pancreas-specific genes, insulin levels and homing of transplanted cells in SDF-1α + bFGF IPCs transplanted rats as compared with other groups. Moreover, increased expression of insulin, glucagon and Glut-2 in pancreas of the SDF-1α + bFGF IPCs transplanted group indicated more regeneration of pancreas. Hence, the use of IPCs preconditioned with SDF-1α + bFGF would be more effective for treating diabetes.
Collapse
Affiliation(s)
- Muhammad Sohail Anjum
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Azra Mehmood
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Muhammad Ali
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Hira Butt
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Shaheen N Khan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sheikh Riazuddin
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
- b Allama Iqbal Medical College, University of Health Sciences , Lahore , Pakistan
- c Pakistan Institute of Medical Sciences (PIMS) , Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU) , Islamabad , Pakistan
| |
Collapse
|
30
|
Therapeutic Effect and Location of GFP-Labeled Placental Mesenchymal Stem Cells on Hepatic Fibrosis in Rats. Stem Cells Int 2017; 2017:1798260. [PMID: 28491093 PMCID: PMC5405597 DOI: 10.1155/2017/1798260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Liver fibrosis is a chronic progressive liver disease, but no established effective treatment exists except for liver transplantation. The present study was designed to investigate the effect of human placenta mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) on carbon tetrachloride- (CCl4-) induced liver fibrosis in rats. Methods. Liver fibrosis was induced by subcutaneous injection with CCl4; hPMSCs were directly transplanted into rats through the caudal vein. The therapeutic efficacy of hPMSCs on liver fibrosis was measured by liver function tests, liver elastography, histopathology, Masson's trichrome and Sirius red staining, and immunohistochemical studies. The expression levels of fibrotic markers, transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA), were assessed using real-time polymerase chain reaction. Results. We demonstrated that liver fibrosis was significantly dampened in the hPMSC transplantation group according to the Laennec fibrosis scoring system and histological data. The Sirius red-stained collagen area and the elastography score were significantly reduced in the hPMSC-treated group. Meanwhile, hPMSC administration significantly decreased TGF-β1 and α-SMA expression and enhanced liver functions in CCl4-induced fibrotic rats. Conclusion. This study indicates that transplantation of hPMSCs could repair liver fibrosis induced by CCl4 in rats, which may serve as a valuable therapeutic approach to treat liver diseases.
Collapse
|
31
|
Combined effect of bone marrow derived mesenchymal stem cells and nitric oxide inducer on injured gastric mucosa in a rat model. Tissue Cell 2016; 48:644-652. [DOI: 10.1016/j.tice.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022]
|
32
|
Li Q, Zhang C, Fu X. Will stem cells bring hope to pathological skin scar treatment? Cytotherapy 2016; 18:943-956. [PMID: 27293205 DOI: 10.1016/j.jcyt.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Pathological skin scars, such as keloids, aesthetically and psychosocially affect patients. The quest for scar reduction and the increasing recognition of patient satisfaction has led to the continued exploration of scar treatment. Stem cells are a promising source for tissue repair and regeneration. The multi-potency and secretory functions of these cells could offer possible treatments for pathological scars and have been examined in recent studies. Here, we analyze the factors that influence the formation of pathological skin scars, summarize recent research on pathological scar treatment with stem cells and elaborate on the possible mechanisms of this treatment. Additionally, other effects of stem cell treatments are also presented while evaluating potential side effects of stem cell-based pathological scar treatments. Thus, this review may provide meaningful guidance in the clinic for scar treatments with stem cells.
Collapse
Affiliation(s)
- Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Cuiping Zhang
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China; Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China.
| |
Collapse
|
33
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
34
|
Wang C, Kemp-Harper BK, Kocan M, Ang SY, Hewitson TD, Samuel CS. The Anti-fibrotic Actions of Relaxin Are Mediated Through a NO-sGC-cGMP-Dependent Pathway in Renal Myofibroblasts In Vitro and Enhanced by the NO Donor, Diethylamine NONOate. Front Pharmacol 2016; 7:91. [PMID: 27065874 PMCID: PMC4815292 DOI: 10.3389/fphar.2016.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The anti-fibrotic hormone, relaxin, has been inferred to disrupt transforming growth factor (TGF)-β1/Smad2 phosphorylation (pSmad2) signal transduction and promote collagen-degrading gelatinase activity via a nitric oxide (NO)-dependent pathway. Here, we determined the extent to which NO, soluble guanylate cyclase (sGC) and cyclic guanosine monophosphate (cGMP) were directly involved in the anti-fibrotic actions of relaxin using a selective NO scavenger and sGC inhibitor, and comparing and combining relaxin's effects with that of an NO donor. METHODS AND RESULTS Primary renal cortical myofibroblasts isolated from injured rat kidneys were treated with human recombinant relaxin (RLX; 16.8 nM), the NO donor, diethylamine NONOate (DEA/NO; 0.5-5 μM) or the combined effects of RLX (16.8 nM) and DEA/NO (5 μM) over 72 h. The effects of RLX (16.8 nM) and DEA/NO (5 μM) were also evaluated in the presence of the NO scavenger, hydroxocobalamin (HXC; 100 μM) or sGC inhibitor, ODQ (5 μM) over 72 h. Furthermore, the effects of RLX (30 nM), DEA/NO (5 μM) and RLX (30 nM) + DEA/NO (5 μM) on cGMP levels were directly measured, in the presence or absence of ODQ (5 μM). Changes in matrix metalloproteinase (MMP)-2, MMP-9 (cell media), pSmad2 and α-smooth muscle actin (α-SMA; a measure myofibroblast differentiation) (cell layer) were assessed by gelatin zymography and Western blotting, respectively. At the highest concentration tested, both RLX and DEA/NO promoted MMP-2 and MMP-9 levels by 25-33%, while inhibiting pSmad2 and α-SMA expression by up to 50% (all p < 0.05 vs. untreated and vehicle-treated cells). However, 5μM of DEA/NO was required to produce the effects seen with 16.8 nM of RLX over 72 h. The anti-fibrotic effects of RLX or DEA/NO alone were completely abrogated by HXC and ODQ (both p < 0.01 vs. RLX alone or DEA/NO alone), but were significantly enhanced when added in combination (all p < 0.05 vs. RLX alone). Additionally, the direct cGMP-promoting effects of RLX, DEA/NO and RLX+DEA/NO (which all increased cGMP levels by 12-16-fold over basal levels; all p < 0.01 vs. vehicle-treated cells) were significantly inhibited by pre-treatment of ODQ (all p < 0.05 vs. the respective treatments alone). CONCLUSION These findings confirmed that RLX mediates its TGF-β1-inhibitory and gelatinase-promoting effects via a NO-sGC-cGMP-dependent pathway, which was additively augmented by co-administration of DEA/NO.
Collapse
Affiliation(s)
- Chao Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Martina Kocan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia
| | - Sheng Yu Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia
| | - Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, ParkvilleVIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of MelbourneParkville, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University Clayton, VIC, Australia
| |
Collapse
|
35
|
Wan Y, Garner J, Wu N, Phillip L, Han Y, McDaniel K, Annable T, Zhou T, Francis H, Glaser S, Huang Q, Alpini G, Meng F. Role of stem cells during diabetic liver injury. J Cell Mol Med 2016; 20:195-203. [PMID: 26645107 PMCID: PMC4727564 DOI: 10.1111/jcmm.12723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.
Collapse
Affiliation(s)
- Ying Wan
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Jessica Garner
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Levine Phillip
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Yuyan Han
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tami Annable
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
36
|
Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. J Heart Lung Transplant 2015; 34:1481-8. [DOI: 10.1016/j.healun.2015.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/02/2015] [Accepted: 05/28/2015] [Indexed: 01/04/2023] Open
|
37
|
Mohamed SS, Ahmed LA, Attia WA, Khattab MM. Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats. Biochem Pharmacol 2015; 98:403-11. [PMID: 26453143 DOI: 10.1016/j.bcp.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation has emerged as a promising technique for regenerative medicine in cardiovascular therapeutics. However, the results have been less than optimal. The aim of the present study was to investigate whether nicorandil could offer an additional benefit over bone marrow-derived mesenchymal stem cell therapy in isoproterenol-induced myocardial damage and its progression to heart failure in rats. Isoproterenol was injected subcutaneously for 2 consecutive days at doses of 85 and 170 mg/kg/day, respectively. Nicorandil (3 mg/kg/day) was then given orally with or without a single intravenous bone marrow-derived mesenchymal stem cell administration. Electrocardiography and echocardiography were recorded 2 weeks after the beginning of treatment. Rats were then sacrificed and the ventricle was isolated for estimation of tumor necrosis factor-alpha, vascular endothelial growth factor and transforming growth factor-beta. Moreover, protein expressions of caspase-3, connexin-43 as well as endothelial and inducible nitric oxide synthases were evaluated. Finally, histological studies of myocardial fibrosis and blood vessel density were performed and cryosections were done for estimation cell homing. Combined nicorandil/bone marrow-derived mesenchymal stem cell therapy provided an additional improvement compared to cell therapy alone toward reducing isoproterenol-induced cardiac hypertrophy, fibrosis and inflammation. Notably, combined therapy induced significant increase in angiogenesis and cell homing and prevented isoproterenol-induced changes in contractility and apoptotic markers. In conclusion, combined nicorandil/bone marrow-derived mesenchymal stem cell therapy was superior to cell therapy alone toward preventing isoproterenol-induced heart failure in rats through creation of a supportive environment for mesenchymal stem cells.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Wael A Attia
- Pediatric Department, Pediatric Cardiology Unit, Abou EL-Reesh Children Hospital, Cairo, Egypt.
| | - Mahmoud M Khattab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
38
|
Wang W, Lee Y, Lee CH. Effects of nitric oxide on stem cell therapy. Biotechnol Adv 2015; 33:1685-96. [PMID: 26394194 DOI: 10.1016/j.biotechadv.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.
Collapse
Affiliation(s)
- Wuchen Wang
- School of Pharmacy University of Missouri, Kansas City, USA
| | - Yugyung Lee
- School of Computing and Engineering, University of Missouri, Kansas City, USA
| | - Chi H Lee
- School of Pharmacy University of Missouri, Kansas City, USA.
| |
Collapse
|
39
|
Abstract
Currently, the most effective treatment for end-stage liver fibrosis is liver transplantation; however, transplantation is limited by a shortage of donor organs, surgical complications, immunological rejection, and high medical costs. Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have the potential to differentiate into hepatocytes, and therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. In addition, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis and enhance liver functionality. Despite these advantages, issues remain; MSCs also have fibrogenic potential and the capacity to promote tumor cell growth and oncogenicity. This paper summarizes the properties of MSCs for regenerative medicine and their therapeutic mechanisms and clinical application in the treatment of liver fibrosis. We also present several outstanding risks, including their fibrogenic potential and their capacity to promote pre-existing tumor cell growth and oncogenicity.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Soon Koo Baik, M.D. Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-1223 Fax: +82-33-745-6782 E-mail:
| |
Collapse
|
40
|
Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Liver Fibrosis in Rats. Transplant Direct 2015; 1:e16. [PMID: 27500218 DOI: 10.1097/txd.0000000000000525] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) are a valuable cell source in regenerative medicine. Recently, several studies have shown that MSCs can be easily isolated from human amnion. In this study, we investigated the therapeutic effect of transplantation of human amnion-derived MSCs (hAMSCs) in rats with liver fibrosis. METHODS Liver fibrosis was induced by an intraperitoneal injection of 2 mL/kg of 50% carbon tetrachloride twice a week for 6 weeks. At 3 weeks, hAMSCs (1 × 10(6) cells) were transplanted intravenously. Rats were sacrificed at 7 weeks, and histological analyses and quantitative reverse-transcription polymerase chain reaction were performed. In vitro experiments were conducted to investigate the effect of hAMSCs on the activation of Kupffer cells. RESULTS Transplantation of hAMSCs significantly reduced the fibrotic area, deposition of type-I collagen, the number of α-smooth muscle actin-positive hepatic stellate cells, and CD68-positive Kupffer cells in the livers. messenger RNA expression of α-smooth muscle actin and tissue inhibitor of metalloproteinase-1 was significantly decreased and the expression of matrix metalloproteinase-9 and hepatocyte growth factor was significantly increased in the liver of hAMSC-treated rats. Transplantation of hAMSCs at 3 weeks plus 5 weeks did not have an additive effect. In vitro experiments demonstrated that Kupffer cell activation induced by lipopolysaccharide was significantly decreased by culturing with conditioned medium obtained from hAMSCs. CONCLUSIONS Transplantation of hAMSCs provided significant improvement in a rat model of liver fibrosis, possibly through the inhibition of Kupffer cell and hepatic stellate cell activation. hAMSCs may be a potential new treatment for liver fibrosis.
Collapse
|
41
|
Duong HTT, Dong Z, Su L, Boyer C, George J, Davis TP, Wang J. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2291-2304. [PMID: 25641921 DOI: 10.1002/smll.201402870] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Polymeric nanoparticles are designed to transport and deliver nitric oxide (NO) into hepatic stellate cells (HSCs) for the potential treatment of both liver fibrosis and portal hypertension. The nanoparticles, incorporating NO donor molecules (S-nitrosoglutathione compound), are designed for liver delivery, minimizing systemic delivery of NO. The nanoparticles are decorated with vitamin A to specifically target HSCs. We demonstrate, using in vitro and in vivo experiments, that the targeted nanoparticles are taken up specifically by rat primary HSCs and the human HSC cell line accumulating in the liver. When nanoparticles, coated with vitamin A, release NO in liver cells, we find inhibition of collagen I and α-smooth muscle actin (α-SMA), fibrogenic genes associated with activated HSCs expression in primary rat liver and human activated HSCs without any obvious cytotoxic effects. Finally, NO-releasing nanoparticles targeted with vitamin A not only attenuate endothelin-1 (ET-1) which elicites HSC contraction but also acutely alleviates haemodynamic disorders in bile duct-ligated-induced portal hypertension evidenced by decreasing portal pressure (≈20%) and unchanging mean arterial pressure. This study clearly shows, for the first time, the potential for HSC targeted nanoparticle delivery of NO as a treatment for liver diseases with proven efficacy for alleviating both liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Hien T T Duong
- Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhixia Dong
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Shanghai First People's hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lin Su
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Jianhua Wang
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Peng SY, Chou CJ, Cheng PJ, Ko IC, Kao YJ, Chen YH, Cheng WTK, Shaw SWS, Wu SC. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J Obstet Gynecol 2015; 53:151-7. [PMID: 25017258 DOI: 10.1016/j.tjog.2014.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Liver fibrosis results from the wound healing response to chronic liver damage. Advanced liver fibrosis results in cirrhosis and liver failure, and liver transplantation is often the only option for effective therapy; however, the shortage of available donor livers limits this treatment. Thus, new therapies for advanced liver fibrosis are essential. MATERIALS AND METHODS Amniotic fluid contains an abundance of stem cells, which are derived from all three germ layers of the developing fetus. These cells do not induce teratomas in vivo and do not pose any ethical concerns. To generate liver fibrosis models, male ICR mice were treated with CCl4 via oral gavage for 4 weeks, and the serum levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin were higher than in the control group following chemical induction. To assess the potential of amniotic-fluid-derived stem cells (mAFSCs) to ameliorate liver fibrosis in vivo, mAFSCs were isolated from amniotic fluid of 13.5-day-old transgenic mice, which globally express the fluorescent protein, enhanced green fluorescent protein (EGFP), for tracing purposes (EGFP-mAFSCs). Single cells were injected via the mesentery (1 × 10(6) cells/mouse) of transplanted mice with liver fibrosis. RESULTS Four weeks after EGFP-mAFSC transplantation, the serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin levels of recipient mice in the EGFP-mAFSC-injected group were significantly decreased when compared with mice in the saline-injected group. Additionally, fibrotic tissues were evaluated using Masson's trichrome staining 4 weeks after cell transplantation. Shrinkage of the fibrotic area was observed in the EGFP-mAFSC-injected group. The tissue-repair effects were also confirmed by hydroxyproline content analysis. CONCLUSION The possible repair mechanism from our data revealed that EGFP-mAFSCs may fuse with the recipient liver cells. Overall, EGFP-mAFSCs can ameliorate liver fibrosis in mice, thus providing insight into the future development of regenerative medicine.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - I-Chen Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jung Kao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsu Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Surgery, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Winston Teng-Kui Cheng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - S W Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK.
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
van Dijk CGM, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C. The complex mural cell: pericyte function in health and disease. Int J Cardiol 2015; 190:75-89. [PMID: 25918055 DOI: 10.1016/j.ijcard.2015.03.258] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells that can be distinguished from vascular smooth muscle cells by their specific morphology and expression of distinct molecular markers. Found in the microvascular beds distributed throughout the body, they are well known for their regulation of a healthy vasculature. In this review, we examine the mechanism of pericyte support to vasomotion, and the known pathways that regulate pericyte response in angiogenesis and neovascular stabilization. We will also discuss the role of pericytes in vascular basement membrane and endothelial barrier function regulation. In contrast, recent findings have indicated that pericyte dysfunction, characterized by changes in pericyte contractility or pericyte loss of microvascular coverage, plays an important role in onset and progression of vascular-related and fibrogenic diseases. From a therapeutic point of view, pericytes have recently been identified as a putative pool of endogenous mesenchymal stem cells that could be activated in response to tissue injury to contribute to the regenerative process on multiple levels. We will discuss the mechanisms via which pericytes are involved in disease onset and development in a number of pathophysiological conditions, as well as present the evidence that supports a role for multipotent pericytes in tissue regeneration. The emerging field of pericyte research will not only contribute to the identification of new drug targets in pericyte dysfunction associated diseases, but may also boost the use of this cell type in future cell-based regenerative strategies.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Frederieke E Nieuweboer
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Jia Yi Pei
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Yan Juan Xu
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Petra Burgisser
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Elise van Mulligen
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Hamid el Azzouzi
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
45
|
Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem 2014; 71:141-53. [DOI: 10.1007/s13105-014-0373-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/21/2023]
|
46
|
Huuskes BM, Wise AF, Cox AJ, Lim EX, Payne NL, Kelly DJ, Samuel CS, Ricardo SD. Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB J 2014; 29:540-53. [PMID: 25395452 DOI: 10.1096/fj.14-254789] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) results from the development of fibrosis, ultimately leading to end-stage renal disease (ESRD). Although human bone marrow-derived mesenchymal stem cells (MSCs) can accelerate renal repair following acute injury, the establishment of fibrosis during CKD may affect their potential to influence regeneration capacity. Here we tested the novel combination of MSCs with the antifibrotic serelaxin to repair and protect the kidney 7 d post-unilateral ureteral obstruction (UUO), when fibrosis is established. Male C57BL6 mice were sham-operated or UUO-inured (n = 4-6) and received vehicle, MSCs (1 × 10(6)), serelaxin (0.5 mg/kg per d), or the combination of both. In vivo tracing studies with luciferin/enhanced green fluorescent protein (eGFP)-tagged MSCs showed specific localization in the obstructed kidney where they remained for 36 h. Combination therapy conferred significant protection from UUO-induced fibrosis, as indicated by hydroxyproline analysis (P < 0.001 vs. vehicle, P < 0.05 vs. MSC or serelaxin alone). This was accompanied by preserved structural architecture, decreased tubular epithelial injury (P < 0.01 vs. MSCs alone), macrophage infiltration, and myofibroblast localization in the kidney (both P < 0.01 vs. vehicle). Combination therapy also stimulated matrix metalloproteinase (MMP)-2 activity over either treatment alone (P < 0.05 vs. either treatment alone). These results suggest that the presence of an antifibrotic in conjunction with MSCs ameliorates established kidney fibrosis and augments tissue repair to a greater extent than either treatment alone.
Collapse
Affiliation(s)
- Brooke M Huuskes
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Andrea F Wise
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Alison J Cox
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Ee X Lim
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Natalie L Payne
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Darren J Kelly
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- *Department of Anatomy and Developmental Biology and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia; and Australia Regenerative Medicine Institute (ARMI) and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
47
|
Quintanilha LF, Takami T, Hirose Y, Fujisawa K, Murata Y, Yamamoto N, Goldenberg RCDS, Terai S, Sakaida I. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol Res 2014; 44:E206-17. [PMID: 23889977 DOI: 10.1111/hepr.12204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
AIM To overcome current limitations of therapy for liver diseases, cell-based therapies using mesenchymal stem cells (MSC) have been attempted through basic and clinical approaches. Oxidative stress is a crucial factor in hepatology, and reactive oxygen species (ROS) are well-established molecules responsible for its deleterious effects. The antioxidant properties of MSC were recently demonstrated, and therefore we examined the antioxidant activity of canine MSC (cMSC), their effects on isolated hepatocytes in vitro and their curative potential against thioacetamide (TAA)-induced liver injury in vivo. METHODS To evaluate the ability of cMSC to challenge oxidative stress, cell viability, cytotoxicity and ROS were measured in cultured cMSC treated with TAA. Also, cMSC were co-cultured with hepatocytes in the same injury condition, and the ROS level was measured exclusively in hepatocytes. Finally, to verify the curative potential of cMSC, 2.0 × 10(6) cells or phosphate-buffered saline were injected systemically in non-obese diabetic/severe combined immunodeficiency mice that received TAA injections twice a week for 13 weeks. We then evaluated histological parameters, serum injury markers and redox homeostasis. RESULTS cMSC overcame TAA-induced oxidative stress in vitro, as shown by increased viability and lower cytotoxicity and ROS levels. Moreover, hepatocytes co-cultured with cMSC also showed decreased cellular ROS. The in vivo study showed that mice treated with cMSC presented with an ameliorated histological pattern, suppressed fibrosis, lower serum injury marker levels and better oxidative parameters. CONCLUSION We concluded that cMSC injection reduce TAA-induced liver injury through antioxidant activities and hepatoprotective effects, showing a curative potential in liver diseases.
Collapse
Affiliation(s)
- Luiz Fernando Quintanilha
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Advances in mesenchymal stem cells combined with traditional Chinese medicine therapy for liver fibrosis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:147-55. [PMID: 24861835 DOI: 10.1016/s2095-4964(14)60022-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Liver fibrosis is a primary cause of liver cirrhosis, and even hepatocarcinoma. Recently, the usage of mesenchymal stem cells (MSCs) has been investigated to improve liver fibrosis. It has been reported that the differentiation, proliferation and migration of MSCs can be regulated by traditional Chinese medicine treatment; however, the mechanisms are still unclear. In this article, the authors review the characteristics of MSCs such as multidirectional differentiation and homing, and its application in animal experiments and clinical trials. The authors also list areas that need further investigation, andlook at the future prospects of clinical application of MSCs.
Collapse
|
49
|
Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ 2014; 21:1758-68. [PMID: 25034782 PMCID: PMC4211372 DOI: 10.1038/cdd.2014.85] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
IL-17 is one of the most potent and most actively investigated proinflammatory cytokines. In this study, we examined the effect of IL-17 on mesenchymal stem cells (MSCs) under the influence of inflammatory cytokines. Ironically, IL-17 dramatically enhanced the immunosuppressive effect of MSCs induced by IFNγ and TNFα, revealing a novel role of IL-17 in immunosuppression. Interestingly, we found that this action of IL-17 was dependent on the promoted expression of a key immune suppressive molecule, inducible nitric oxide synthase (iNOS), in MSCs. In a concanavalin A (ConA)-induced hepatitis mouse model, we found that IL-17 also enhanced the in vivo immunosuppressive effect of MSCs in an iNOS-dependent manner. Moreover, this promoting effect of IL-17 was found to be exerted through enhancing mRNA stability by modulating the protein level of ARE/poly(U)-binding/degradation factor 1 (AUF1), a well-known factor that promotes mRNA decay. In auf1−/− MSCs, IFNγ and TNFα could induce maximal immunosuppressive effect, both in vitro and in vivo, without the need for IL-17. Thus, our studies demonstrated that in the presence of MSCs, IL-17 promotes immunosuppression.
Collapse
|
50
|
Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int 2014; 2014:340257. [PMID: 25132856 PMCID: PMC4123563 DOI: 10.1155/2014/340257] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs.
Collapse
|