1
|
Valkai S, Petrovszki D, Fáskerti Z, Baumgärtner M, Biczók B, Dakos K, Dósa K, Kirner BB, Kocsis AE, Nagy K, Andó I, Dér A. Optical Interferometric Device for Rapid and Specific Detection of Biological Cells. BIOSENSORS 2024; 14:421. [PMID: 39329796 PMCID: PMC11430435 DOI: 10.3390/bios14090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting interference pattern, too. By registering and interpreting the variation in the image, the presence of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937 cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability of the device predicts its applicability as a rapid test in clinical diagnostics.
Collapse
Affiliation(s)
- Sándor Valkai
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Dániel Petrovszki
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Zsombor Fáskerti
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | | | - Brigitta Biczók
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Kira Dakos
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Kevin Dósa
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Berill B Kirner
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Anna E Kocsis
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Krisztina Nagy
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - István Andó
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, 6726 Szeged, Hungary
| | - András Dér
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Zia S, Pizzuti V, Paris F, Alviano F, Bonsi L, Zattoni A, Reschiglian P, Roda B, Marassi V. Emerging technologies for quality control of cell-based, advanced therapy medicinal products. J Pharm Biomed Anal 2024; 246:116182. [PMID: 38772202 DOI: 10.1016/j.jpba.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.
Collapse
Affiliation(s)
| | - Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DiBiNem), University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Zattoni
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Pierluigi Reschiglian
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Barbara Roda
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy.
| | - Valentina Marassi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
3
|
Ashraf A, ElDin NB, Rostom Y, El-Zeany BA, Sedik GA. Novel RP-HPLC-DAD approach for simultaneous determination of chlorphenoxamine hydrochloride and caffeine with their related substances. BMC Chem 2024; 18:133. [PMID: 39030644 PMCID: PMC11264915 DOI: 10.1186/s13065-024-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
Ensuring the quality control of active pharmaceutical ingredients is crucial for drug products being introduced into the market. Even for established drugs, it is necessary to maintain a cutting-edge impurity control system. To analyze caffeine and chlorphenoxamine hydrochloride in their binary mixture, as well as theophylline and chlorphenoxamine N-oxide as related substances, a reversed phase-high performance liquid chromatography combined with a diode array detector system was created. The chromatographic separation was conducted using a C18 X-select Waters® column. The mobile phase consisted of 20.0 mM potassium dihydrogen phosphate modified to pH 3 with o-phosphoric acid and methanol. A gradient elution program was adopted at a flow rate of 1.3 mL/min and detected at a wavelength of 222 nm. The present methodology demonstrates a concentration ranging from 2-60, 1-80, 0.5-20 to 0.4-20 µg/mL for chlorphenoxamine hydrochloride, caffeine, chlorphenoxamine N-Oxide and theophylline, respectively. Chlorphenoxamine N-Oxide, being an impurity of chlorphenoxamine was prepared by refluxing intact drug with 5% H2O2 for 24 h at 100 °C. One of the objectives of the analytical community is to promote the adoption of green analysis methods, which involve the development of environmentally friendly techniques. The levels of greenness and whiteness were evaluated using four specific tools: Eco-Scale System, GAPI, AGREE, and RGB tool. Furthermore, we have evaluated the greenness of the analytical method presented and compared its performance and greenness to that of the approach described in the literature. In this study, results from CPX and CAF analysis were compared to those obtained in a previous study. The result shows that there is no notable variation in precision and accuracy. The proposed method was validated in accordance with the requirements of ICH.
Collapse
Affiliation(s)
- Ahmed Ashraf
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Yasmin Rostom
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Badr A El-Zeany
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Limpikirati PK, Mongkoltipparat S, Denchaipradit T, Siwasophonpong N, Pornnopparat W, Ramanandana P, Pianpaktr P, Tongchusak S, Tian MT, Pisitkun T. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics. J Pharm Anal 2024; 14:100916. [PMID: 39035218 PMCID: PMC11259812 DOI: 10.1016/j.jpha.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 07/23/2024] Open
Abstract
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
Collapse
Affiliation(s)
- Patanachai K. Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sorrayut Mongkoltipparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Thinnaphat Denchaipradit
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nathathai Siwasophonpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Wudthipong Pornnopparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Parawan Ramanandana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Phumrapee Pianpaktr
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Songsak Tongchusak
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Maoxin Tim Tian
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Johanna I, Daudeij A, Devina F, Nijenhuis C, Nuijen B, Romberg B, de Haar C, Haanen J, Dolstra H, Bremer E, Sebestyen Z, Straetemans T, Jedema I, Kuball J. Basics of advanced therapy medicinal product development in academic pharma and the role of a GMP simulation unit. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100411. [PMID: 38192616 PMCID: PMC10772236 DOI: 10.1016/j.iotech.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Following successes of authorized chimeric antigen receptor T-cell products being commercially marketed in the United States and European Union, product development of T-cell-based cancer immunotherapy consisting of cell-based advanced therapy medicinal products (ATMPs) has gained further momentum. Due to their complex characteristics, pharmacological properties of living cell products are, in contrast to classical biological drugs such as small molecules, more difficult to define. Despite the availability of many new advanced technologies that facilitate ATMP manufacturing, translation from research-grade to clinical-grade manufacturing in accordance with Good Manufacturing Practices (cGMP) needs a thorough product development process in order to maintain the same product characteristics and activity of the therapeutic product after full-scale clinical GMP production as originally developed within a research setting. The same holds true for transferring a fully developed GMP-grade production process between different GMP facilities. Such product development from the research to GMP-grade manufacturing and technology transfer processes of established GMP-compliant procedures between facilities are challenging. In this review, we highlight some of the main obstacles related to the product development, manufacturing process, and product analysis, as well as how these hinder rapid access to ATMPs. We elaborate on the role of academia, also referred to as 'academic pharma', and the added value of GMP production and GMP simulation facilities to keep innovation moving by reducing the development time and to keep final production costs reasonable.
Collapse
Affiliation(s)
- I. Johanna
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - A. Daudeij
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - F. Devina
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - C. Nijenhuis
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam
| | - B. Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam
| | - B. Romberg
- Department of Pharmacy, University Medical Center Utrecht, Utrecht
| | - C. de Haar
- Department of Pharmacy, University Medical Center Utrecht, Utrecht
| | - J. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - H. Dolstra
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen
| | - E. Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Z. Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - T. Straetemans
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - I. Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - J. Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| |
Collapse
|
6
|
Pawar SD, Kumar GJ, Chikkondra A, Lal B, Radhakrishnanand P, Murty US, Sahu PL, Dubey S, Soni A, Kumar P. Synthesis, characterization, method development, and validation of nor-ethylmorphine hydrochloride reference material using established analytical techniques for dope control analysis. Drug Test Anal 2021; 14:388-392. [PMID: 34652878 DOI: 10.1002/dta.3178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Ethylmorphine is permitted internationally for therapeutic purposes where morphine is not indicated across the globe. Nor-ethylmorphine a major metabolite of ethylmorphine. To differentiate the intake of morphine from ethylmorphine, nor-ethylmorphine stable reference material is desirable. There is no available commercial source and no data for reference material context for this substance. Therefore, nor-ethylmorphine HCl was synthesized and characterized, and purity and potency were assessed using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and high-performance liquid chromatography (HPLC). Purity and potency were found to be 98.29% and 96.40%, respectively, providing a fit for purpose reference material for doping control analysis in sports.
Collapse
Affiliation(s)
- Sachin D Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Gangasani J Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Aruna Chikkondra
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Banwari Lal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Upadhyayula S Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - P L Sahu
- National Dope Testing Laboratory, New Delhi, India
| | - Sachin Dubey
- National Dope Testing Laboratory, New Delhi, India
| | - Arpit Soni
- National Dope Testing Laboratory, New Delhi, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| |
Collapse
|
7
|
Joseph A, Kumar GJ, Pawar SD, Hirlekar BU, Bharatam PV, Konda S, Mudiam MKR, Murty US, Sahu PL, Dubey S, Radhakrishnanand P, Adye DR, Borkar RM, Thirupathi C, Kumar P. Analytical developments of p-hydroxy prenylamine reference material for dope control research: Characterization and purity assessment. Drug Test Anal 2021; 14:224-232. [PMID: 34617411 DOI: 10.1002/dta.3171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Prenylamine was initially used for the treatment of angina pectoris and later on withdrawn from the market in 1988 due to cardiac arrhythmias concern. The major phase I metabolite of prenylamine is p-hydroxy prenylamine that has a chiral center in the structure. Even though p-hydroxy prenylamine was synthesized earlier, it lacked complete analytical developments for chiral high-performance liquid chromatography (HPLC) separation. However, p-hydroxy prenylamine reference material is not commercially available. The innovation of this manuscript is the development and validation of a chiral HPLC separation method and more extensive characterization of the reference material than previously reported method. Therefore, it was hypothesized to develop and validate normal phase HPLC method for p-hydroxy prenylamine reference material. p-Hydroxy prenylamine was synthesized in two batches and characterized successfully using 13 C NMR, 1 H NMR, high-resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A normal phase chiral HPLC method was developed to analyze the p-hydroxy prenylamine purity. Separation of the p-hydroxy prenylamine enantiomers were achieved using ultra-high-performance liquid chromatography (UHPLC) on a ChiralCel ODH column at wavelength of 220 nm. The developed method was validated in terms of its linearity, accuracy, precision, and robustness for purification, purity assessment, and stability studies. Proton and carbon peaks were confirmed by nuclear magnetic resonance (NMR) analysis. Functional groups were confirmed by FT-IR. Loss on drying was 0.3% and 0.6% for Batches 1 and 2, respectively. The purity of the developed reference material for Batches 1 and 2 was found to be 99.59% and 100%, respectively. Therefore, the synthesized batches of p-hydroxy prenylamine can be used in dope testing as reference material.
Collapse
Affiliation(s)
- Athira Joseph
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Sachin Dattram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Bhakti Umesh Hirlekar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Satyanand Konda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - P L Sahu
- National Dope Testing Laboratory, J.L.N Stadium Complex, East Gate No. 10, Near MTNL Building, New Delhi, 110003, India
| | - Sachin Dubey
- National Dope Testing Laboratory, J.L.N Stadium Complex, East Gate No. 10, Near MTNL Building, New Delhi, 110003, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Daya Raju Adye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| | - Choppari Thirupathi
- Daicel Chiral Technologies (India) Private Limited, IKP Knowledge Park, Survey No. 542/2, Koltur Village, Shamirpet Mandal, Medchal-Malkagiri, Hyderabad, Telanagana, 500101, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Guwahati, Assam, 781101, India
| |
Collapse
|
8
|
Pasqua S, Niotta MC, Di Martino G, Sottile D, Douradinha B, Miele M, Timoneri F, Di Bella M, Cuscino N, Di Bartolo C, Conaldi PG, D’Apolito D. Complete intra-laboratory validation of a LAL assay for bacterial endotoxin determination in EBV-specific cytotoxic T lymphocytes. Mol Ther Methods Clin Dev 2021; 22:320-329. [PMID: 34514024 PMCID: PMC8408548 DOI: 10.1016/j.omtm.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Endotoxin content is a critical factor that affects the safety of biological pharmaceutical products. International pharmacopoeias describe several reference methods to determine endotoxin levels in advanced therapy medicinal product (ATMP) preparations. Administration of ATMPs must be done as rapidly as possible to ensure complete viability and potency of the cellular product. To evaluate the endotoxin content in the shortest time possible, we chose to validate an alternative method based on the use of the Charles River Portable Testing System (PTS) and FDA-approved cartridges, compliant with the requirements of the European Pharmacopoeia and providing results in <20 min. Here, we describe a unique and complete validation approach for instrument, personnel, and analytical method for assessment of endotoxins in ATMP matrices. The PTS system provides high sensitivity and fast quantitative results and uses less raw material and accessories compared with compendial methods. It is also less time consuming and less prone to operator variability. Our validation approach is suitable for a validated laboratory with trained personnel capable of conducting the ATMP release tests, and with very low intra-laboratory variability, and meets the criteria required for an alternative approach to endotoxin detection for in-process and product-release testing of ATMPs.
Collapse
|
9
|
Burtsev V, Erzina M, Guselnikova O, Miliutina E, Kalachyova Y, Svorcik V, Lyutakov O. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 2021; 146:3686-3696. [PMID: 33955973 DOI: 10.1039/d0an02360d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detection of trace amounts of poorly water-soluble pharmaceuticals or related (bio)solutions represents a key challenge in environment protection and clinical diagnostics. However, this task is complicated by low concentrations of pharmaceuticals, complex sample matrices, and sophisticated sample preparative routes. In this work, we present an alternative approach on the basis of an on-line flow extraction procedure and SERS measurements performed in a microfluidic regime. The advantages of our approach were demonstrated using ibuprofen (Ibu), which is considered as a common pharmaceutical contaminant in wastewater and should be monitored in various bioliquids. The extraction of Ibu from water to the dichloromethane phase was performed with an optimized microfluidic mixer architecture. As SERS tags, lipophilic functionalized gold multibranched nanoparticles (AuMs) were added to the organic phase. After microfluidic extraction, Ibu was captured by the functionalized AuM surface and recognized by on-line SERS measurements with up to 10-8 M detection limit. The main advantages of the proposed approach can be regarded as its simplicity, lack of need for preliminary sample preparation, high reliability, the absence of sample pretreatment, and low detection limits.
Collapse
Affiliation(s)
- Vasilii Burtsev
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Mariia Erzina
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Olga Guselnikova
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Elena Miliutina
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Yevgeniya Kalachyova
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| |
Collapse
|
10
|
Singh N, Bansal P, Maithani M, Chauhan Y. Development and Validation of a Novel Stability-Indicating RP-HPLC Method for Simultaneous Determination of Tezacaftor and Ivacaftor in Fixed Dose Combination. J Chromatogr Sci 2021; 58:346-354. [PMID: 31953544 DOI: 10.1093/chromsci/bmz120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 11/14/2022]
Abstract
A simple and precise novel stability-indicating method for the simultaneous estimation of tezacaftor and ivacaftor in combined tablet dosage form was developed and validated using reversed-phase high-performance liquid chromatography (RP-HPLC). The method is being reported for the first time and includes an estimation of degradation products produced post-stress conditions without any extraction or derivatization. The chromatographic separation of the drugs was achieved with a Symmetry Shield RP18 Column (100 Å, 5 μm, 4.6 mm × 250 mm) using a mixture of buffer, methanol and acetonitrile (42:27:31 v/v/v) as mobile phase. The buffer used in mobile phase contained 35 mM potassium dihydrogen phosphate, and its pH was adjusted to 7.0 ± 0.02 with 20% orthophosphoric acid. The instrument was set at flow rate of 1.2 mL min-1 at ambient temperature and the wavelength of UV-visible detector at 275 nm. The developed method could be suitable for the quantitative determination of these drugs in pharmaceutical preparations and also for quality control in bulk manufacturing. Stress testing was performed to prove the specificity. No interference was observed from its stress degradation products. The statistical analysis was done by using F-test and t-test at 95% confidence level.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Quality Control, Oasis Labs, Singapore, Singapore
| | - Parveen Bansal
- Multidisciplinary Research Unit, University Center of Excellence in Research (UCER), Baba Farid University of Health Sciences (BFUHS), Faridkot, Punjab
| | - Mukesh Maithani
- Multidisciplinary Research Unit, University Center of Excellence in Research (UCER), Baba Farid University of Health Sciences (BFUHS), Faridkot, Punjab
| | - Yashpal Chauhan
- Department of Quality Control, Oasis Labs, Singapore, Singapore
| |
Collapse
|
11
|
Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rawan Huwaitat
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
- Department of Pharmacy Al‐Zaytoonah University of Jordan Amman Jordan
| | - Sophie M. Coulter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Simon L. Porter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Garry Laverty
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| |
Collapse
|
12
|
Mareschi K, Castiglia S, Adamini A, Rustichelli D, Marini E, Banche Niclot AGS, Bergallo M, Labanca L, Ferrero I, Fagioli F. Inactivated Platelet Lysate Supports the Proliferation and Immunomodulant Characteristics of Mesenchymal Stromal Cells in GMP Culture Conditions. Biomedicines 2020; 8:biomedicines8070220. [PMID: 32708843 PMCID: PMC7400095 DOI: 10.3390/biomedicines8070220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) isolated from bone marrow (BM-MSCs) are considered advanced therapy medicinal products (ATMPs) and need to be produced according to good manufacturing practice (GMP) in their clinical use. Human platelet lysate (HPL) is a good GMP-compliant alternative to animal serum, and we have demonstrated that after pathogen inactivation with psoralen, it was safer and more efficient to use psoralen in the production of MSCs following GMP guidelines. In this study, the MSCs cultivated in fetal bovine serum (FBS-MSC) or inactivated HPL (iHPL-MSC) were compared for their immunomodulatory properties. We studied the effects of MSCs on (1) the proliferation of total lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate in Th1 versus Th2 Ly; (2) the immunophenotype of different T-cell subsets; (3) and the cytokine release to verify Th1, Th2, and Th17 polarization. These were analyzed by using an in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulatory properties observed in the FBS-MSC co-cultures. Furthermore, a more efficient effect on the increase of naïve T- cells and in the Th1 cytokine release from iHPL was observed. This study confirms that iHPL, used as a medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion, and also to preserve their immunomodulatory proprieties.
Collapse
Affiliation(s)
- Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
- Correspondence: ; Tel.: +39-11-3135420
| | - Sara Castiglia
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Aloe Adamini
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Deborah Rustichelli
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Alessia Giovanna Santa Banche Niclot
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Massimiliano Bergallo
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Luciana Labanca
- Blood Component Production and Validation Center, City of Health and Science of Turin, S. Anna Hospital, 10126 Turin, Italy;
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| |
Collapse
|
13
|
Maithani M, Raturi R, Gupta V, Bansal P. Assessment of compliance level of ICH guidelines for organic volatile impurities in common ayurvedic hepatic formulations. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0159/jcim-2018-0159.xml. [PMID: 30870142 DOI: 10.1515/jcim-2018-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/07/2018] [Indexed: 11/15/2022]
Abstract
Background Herbal medicines have been used in the treatment of liver diseases for a long time. In recent years, the use of herbal medicines for protection from other strong antibiotics as well as drugs that can damage the liver during their metabolism in liver and for treatment of liver diseases has increased all over the world. It is important to mention that a number of organic solvents are used at different stages of extraction/formulation development for these traditional preparations in industries/pharmacies. In addition, some of these solvents possess established carcinogenic properties and may enter the formulation as residual solvents. Hence as per ICH guidelines it is mandatory to keep the level of these solvents up to permissible limits. There has been a lot of hue and cry that ayurvedic formulations available in the market are not properly standardized for their quality due to lack of stringent regulations and standards from regulatory authorities. Therefore the aim of present work was to assess the compliance of ICH guidelines for level of organic volatile impurities in common marketed ayurvedic hepatic formulations. Methods In this study, 25 ayurvedic herbal formulations available as OTC product have been assessed for presence of residual solvents using gas chromatography with flame ionization detector. Results This study on 25 fast moving hepatic formulations in the market reflects that no residual solvents were detected in any of the formulations however if present were within prescribed permissible limits of ICH guidelines. The data was also subjected to statistical analysis (F-test and t-test at 95% confidence level). Conclusions Results indicate the safety of these hepatic formulations with respect to residual solvents. In addition presents a simple, linear, specific, accurate, precise and rugged gas chromatographic method for estimation of residual solvents.
Collapse
Affiliation(s)
- M Maithani
- Multidisciplinary Research Unit, University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, India
| | - R Raturi
- Multidisciplinary Research Unit, University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, India
| | - V Gupta
- Multidisciplinary Research Unit, University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, India
| | - P Bansal
- Multidisciplinary Research Unit, University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, India
| |
Collapse
|
14
|
Viganò M, Budelli S, Lavazza C, Montemurro T, Montelatici E, de Cesare S, Lazzari L, Orlandi AR, Lunghi G, Giordano R. Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production. Stem Cells Int 2018; 2018:3038565. [PMID: 30254681 PMCID: PMC6142742 DOI: 10.1155/2018/3038565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSC) for cellular therapy in European Union are classified as advanced therapy medicinal products (ATMPs), and their production must fulfill the requirements of Good Manufacturing Practice (GMP) rules. Despite their classification as medicinal products is already well recognized, there is still a lack of information and indications to validate methods and to adapt the noncompendial and compendial methods to these peculiar biological products with intrinsic characteristics that differentiate them from classic synthetic or biologic drugs. In the present paper, we present the results of the validation studies performed in the context of MSC development as ATMPs for clinical experimental use. Specifically, we describe the validation policies followed for sterility testing, endotoxins, adventitious viruses, cell count, and immunophenotyping. Our work demonstrates that it is possible to fully validate analytical methods also for ATMPs and that a risk-based approach can fill the gap between the prescription of the available guidelines shaped on traditional medicinal products and the peculiar characteristics of these novel and extremely promising new drugs.
Collapse
Affiliation(s)
- Mariele Viganò
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Budelli
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, EPIGET Lab, Università degli Studi di Milano, Milan, Italy
| | - Cristiana Lavazza
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Montemurro
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Montelatici
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania de Cesare
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Lazzari
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Rosa Orlandi
- Clinical Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Lunghi
- Clinical Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosaria Giordano
- Department of Transfusion Medicine & Hematology, Laboratory of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Abstract
This report summarizes the proceedings of the 4th European Bone Sarcoma Networking Meeting, held in London, England, on 21 June 2017. The meeting brought together scientific and clinical researchers and representatives from sarcoma charities from 19 countries representing five networks across Europe, to present and discuss new developments on bone sarcoma. In view of the challenges is poses, the meeting focussed primarily on osteosarcoma with presentations on developments in our understanding of osteosarcoma genetics and immunology as well as results from preclinical investigations and discussion of recent and ongoing clinical trials. These include studies examining the efficacy of multi-targeted tyrosine kinase inhibitors and checkpoint inhibitors, as well as those with molecular profiling to stratify patients for specific therapies. Discussion was centred on generation of new hypotheses for collaborative biological and clinical investigations, the ultimate goal being to improve therapy and outcome in patients with bone sarcomas.
Collapse
|
16
|
Formulation and Development of a Validated UV-Spectrophotometric Analytical Method of Rutin Tablet. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017; 2017:2624947. [PMID: 28593189 PMCID: PMC5448154 DOI: 10.1155/2017/2624947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 12/02/2022]
Abstract
Rutin is available in some foods, fruits, and vegetables. It has various beneficial medical effects making it useful in the treatment of various diseases. Rutin is available in different oral dosage forms such as tablets or capsules, widely available in the market. Rutin and many herbal medicines lack quality control due to unavailability of analytical methods. In this study, we formulated rutin tablet and studied its stability using a simple developed analytical method. The dissolution profile of our formulated tablet was also inspected. The results showed that our developed method was linear (R2 = 0.999), precise (% RSD = 0.026), and accurate (% recovery = 98.55–103.34). The formulated rutin tablet was stable under accelerated conditions as well as room temperature for 150 days (% assay > 91.69). The dissolution profile over 45 minutes of our formulated tablet showed a better dissolution (26.5%) compared with the internationally marketed Rutin® tablet (18.5%). This study can serve as a guideline to companies that manufacture herbal products to improve their formulated herbs and apply validated analytical methods to check the quality of their product.
Collapse
|
17
|
Batrawi N, Wahdan S, Abualhasan M. Analytical Method Validation of High-Performance Liquid Chromatography and Stability-Indicating Study of Medroxyprogesterone Acetate Intravaginal Sponges. ANALYTICAL CHEMISTRY INSIGHTS 2017; 12:1177390117690152. [PMID: 28469407 PMCID: PMC5345923 DOI: 10.1177/1177390117690152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
Abstract
Medroxyprogesterone acetate is widely used in veterinary medicine as intravaginal dosage for the synchronization of breeding cycle in ewes and goats. The main goal of this study was to develop reverse-phase high-performance liquid chromatography method for the quantification of medroxyprogesterone acetate in veterinary vaginal sponges. A single high-performance liquid chromatography/UV isocratic run was used for the analytical assay of the active ingredient medroxyprogesterone. The chromatographic system consisted of a reverse-phase C18 column as the stationary phase and a mixture of 60% acetonitrile and 40% potassium dihydrogen phosphate buffer as the mobile phase; the pH was adjusted to 5.6. The method was validated according to the International Council for Harmonisation (ICH) guidelines. Forced degradation studies were also performed to evaluate the stability-indicating properties and specificity of the method. Medroxyprogesterone was eluted at 5.9 minutes. The linearity of the method was confirmed in the range of 0.0576 to 0.1134 mg/mL (R2 > 0.999). The limit of quantification was shown to be 3.9 µg/mL. Precision and accuracy ranges were found to be %RSD <0.2 and 98% to 102%, respectively. Medroxyprogesterone capacity factor value of 2.1, tailing factor value of 1.03, and resolution value of 3.9 were obtained in accordance with ICH guidelines. Based on the obtained results, a rapid, precise, accurate, sensitive, and cost-effective analysis procedure was proposed for quantitative determination of medroxyprogesterone in vaginal sponges. This analytical method is the only available method to analyse medroxyprogesterone in veterinary intravaginal dosage form.
Collapse
Affiliation(s)
- Nidal Batrawi
- The Advanced Veterinary Manufacturing Company, Ramallah, Palestine
| | - Shorouq Wahdan
- The Advanced Veterinary Manufacturing Company, Ramallah, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, An-Najah National University, Nablus, Palestine
| |
Collapse
|
18
|
Modh HB, Bhadra AK, Patel KA, Chaudhary RK, Jain NK, Roy I. Specific detection of tetanus toxoid using an aptamer-based matrix. J Biotechnol 2016; 238:15-21. [PMID: 27637315 DOI: 10.1016/j.jbiotec.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Batch-to-batch variation of therapeutic proteins produced by biological means requires rigorous monitoring at all stages of the production process. A large number of animals are employed for risk assessment of biologicals, which has low ethical and economic acceptability. Research is now focussed on the validation of in vitro and ex vivo tests to replace live challenges. Among in vitro methods, enzyme-linked immunosorbent assay (ELISA) is considered to be the gold standard for estimation of integrity of tetanus toxoid. ELISA utilizes antibodies for detection, which, because of their biological origin and limited modifiability, may have low stability and result in irreproducibility. We have developed a method using highly specific and selective RNA aptamers for detection of tetanus toxoid. Using displacement assay, we first identified aptamers which bind to different aptatopes on the surface of the toxoid. Pairs of these aptamers were employed as capture-detection ligands in a sandwich-ALISA (aptamer-linked immobilized sorbent assay) format. The binding efficiency was confirmed by the fluorescence intensity in each microtire plate well. Using aptamers alone, detection of tetanus toxoid was possible with the same level of sensitivity as antibody. Aptamers were also used in the capture ALISA format. Adjuvanted tetanus toxoid was subjected to accelerated stress testing, including thermal, mechanical and freeze-thawing stress conditions. The loss in antigenicity of the preparation determined by ALISA in each case was found to be similar to that determined by conventional ELISA. Thus, it is possible to replace antibodies with aptamers to develop a more robust detection tool for tetanus toxoid.
Collapse
Affiliation(s)
- Harshvardhan B Modh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ankan K Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rajeev K Chaudhary
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Nishant K Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
19
|
Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol 2016; 44:138-150.e1. [DOI: 10.1016/j.exphem.2015.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/22/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022]
|
20
|
Torre ML, Lucarelli E, Guidi S, Ferrari M, Alessandri G, De Girolamo L, Pessina A, Ferrero I. Ex Vivo Expanded Mesenchymal Stromal Cell Minimal Quality Requirements for Clinical Application. Stem Cells Dev 2015; 24:677-85. [DOI: 10.1089/scd.2014.0299] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Simona Guidi
- CTP Tecnologie di Processo S.p.A. Advanced Therapy Division, Poggibonsi, Siena, Italy
| | - Maura Ferrari
- Cell Culture Centre, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Giulio Alessandri
- Laboratory of Cellular Neurobiology, Department of Cerebrovascular Disease, IRCCS Neurological Institute, Carlo Besta, Milan, Italy
| | - Laura De Girolamo
- Orthopedic Biotechnology Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Ivana Ferrero
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Health and Science of Turin, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | | |
Collapse
|
21
|
Zhang R, He YF, Chen M, Chen CM, Zhu QJ, Lu H, Wei ZH, Li F, Zhang XX, Xu CJ, Yu L. Diagnosis of 25 genotypes of human papillomaviruses for their physical statuses in cervical precancerous/cancerous lesions: a comparison of E2/E6E7 ratio-based vs. multiple E1-L1/E6E7 ratio-based detection techniques. J Transl Med 2014; 12:282. [PMID: 25269554 PMCID: PMC4192431 DOI: 10.1186/s12967-014-0282-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/24/2014] [Indexed: 01/15/2023] Open
Abstract
Background Cervical lesions caused by integrated human papillomavirus (HPV) infection are highly dangerous because they can quickly develop into invasive cancers. However, clinicians are currently hampered by the lack of a quick, convenient and precise technique to detect integrated/mixed infections of various genotypes of HPVs in the cervix. This study aimed to develop a practical tool to determine the physical status of different HPVs and evaluate its clinical significance. Methods The target population comprised 1162 women with an HPV infection history of > six months and an abnormal cervical cytological finding. The multiple E1-L1/E6E7 ratio analysis, a novel technique, was developed based on determining the ratios of E1/E6E7, E2/E6E7, E4E5/E6E7, L2/E6E7 and L1/E6E7 within the viral genome. Any imbalanced ratios indicate integration. Its diagnostic and predictive performances were compared with those of E2/E6E7 ratio analysis. The detection accuracy of both techniques was evaluated using the gold-standard technique “detection of integrated papillomavirus sequences” (DIPS). To realize a multigenotypic detection goal, a primer and probe library was established. Results The integration rate of a particular genotype of HPV was correlated with its tumorigenic potential and women with higher lesion grades often carried lower viral loads. The E1-L1/E6E7 ratio analysis achieved 92.7% sensitivity and 99.0% specificity in detecting HPV integration, while the E2/E6E7 ratio analysis showed a much lower sensitivity (75.6%) and a similar specificity (99.3%). Interference due to episomal copies was observed in both techniques, leading to false-negative results. However, some positive results of E1-L1/E6E7 ratio analysis were missed by DIPS due to its stochastic detection nature. The E1-L1/E6E7 ratio analysis is more efficient than E2/E6E7 ratio analysis and DIPS in predicting precancerous/cancerous lesions, in which both positive predictive values (36.7%-82.3%) and negative predictive values (75.9%-100%) were highest (based on the results of three rounds of biopsies). Conclusions The multiple E1-L1/E6E7 ratio analysis is more sensitive and predictive than E2/E6E7 ratio analysis as a triage test for detecting HPV integration. It can effectively narrow the range of candidates for colposcopic examination and cervical biopsy, thereby lowering the expense of cervical cancer prevention. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0282-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
| | - Yi-feng He
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Mo Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| | - Chun-mei Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Qiu-jing Zhu
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
| | - Zhen-hong Wei
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
| | - Fang Li
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
| | - Xiao-xin Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Cong-jian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
22
|
Castiglia S, Mareschi K, Labanca L, Lucania G, Leone M, Sanavio F, Castello L, Rustichelli D, Signorino E, Gunetti M, Bergallo M, Bordiga AM, Ferrero I, Fagioli F. Inactivated human platelet lysate with psoralen: a new perspective for mesenchymal stromal cell production in Good Manufacturing Practice conditions. Cytotherapy 2014; 16:750-63. [PMID: 24529555 PMCID: PMC7185570 DOI: 10.1016/j.jcyt.2013.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) are ideal candidates for regenerative and immunomodulatory therapies. The use of xenogeneic protein-free Good Manufacturing Practice-compliant growth media is a prerequisite for clinical MSC isolation and expansion. Human platelet lysate (HPL) has been efficiently implemented into MSC clinical manufacturing as a substitute for fetal bovine serum (FBS). Because the use of human-derived blood materials alleviates immunologic risks but not the transmission of blood-borne viruses, the aim of our study was to test an even safer alternative than HPL to FBS: HPL subjected to pathogen inactivation by psoralen (iHPL). METHODS Bone marrow samples were plated and expanded in α-minimum essential medium with 10% of three culture supplements: HPL, iHPL and FBS, at the same time. MSC morphology, growth and immunophenotype were analyzed at each passage. Karyotype, tumorigenicity and sterility were analyzed at the third passage. Statistical analyses were performed. RESULTS The MSCs cultivated in the three different culture conditions showed no significant differences in terms of fibroblast colony-forming unit number, immunophenotype or in their multipotent capacity. Conversely, the HPL/iHPL-MSCs were smaller, more numerous, had a higher proliferative potential and showed a higher Oct-3/4 and NANOG protein expression than did FBS-MSCs. Although HPL/iHPL-MSCs exhibit characteristics that may be attributable to a higher primitive stemness than FBS-MSCs, no tumorigenic mutations or karyotype modifications were observed. CONCLUSIONS We demonstrated that iHPL is safer than HPL and represents a good, Good Manufacturing Practice-compliant alternative to FBS for MSC clinical production that is even more advantageous in terms of cellular growth and stemness.
Collapse
Affiliation(s)
- Sara Castiglia
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Katia Mareschi
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy; Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Luciana Labanca
- Blood Component Production and Validation Center, City of Science and Health of Turin, S. Anna Hospital, Turin, Italy
| | - Graziella Lucania
- Blood Component Production and Validation Center, City of Science and Health of Turin, S. Anna Hospital, Turin, Italy
| | - Marco Leone
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Fiorella Sanavio
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Laura Castello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Deborah Rustichelli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Elena Signorino
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Monica Gunetti
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | | | - Anna Maria Bordiga
- Blood Component Production and Validation Center, City of Science and Health of Turin, S. Anna Hospital, Turin, Italy
| | - Ivana Ferrero
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy; Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy
| |
Collapse
|