1
|
Hada Y, Uchida HA, Okamoto S, Otaka N, Katayama K, Subramanian V, Daugherty A, Wada J. Neutrophil Elastase Inhibition by Sivelestat (ONO-5046) Attenuates AngII-Induced Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Mice. Am J Hypertens 2024; 37:349-357. [PMID: 37982444 DOI: 10.1093/ajh/hpad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/05/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is an arterial disease characterized by dilatation of the aortic wall. It has been suggested that neutrophil counts and neutrophil elastase activity are associated with AAA. We investigated whether a neutrophil elastase (NE) inhibitor, sivelestat (Siv), had a protective effect against angiotensin II (AngII)-induced AAAs. METHODS Male apolipoprotein E-deficient mice were assigned into three groups: Vehicle + saline, AngII + saline, and AngII + Siv. All mice were administered intraperitoneally with either Siv or vehicle twice daily after AngII infusion. RESULTS In the 4-week AngII infusion study, plasma NE concentration (P = 0.041) and its activity (P = 0.011) were elevated by AngII. These increases were attenuated by Siv (concentration:P = 0.010, activity:P = 0.027). Further, plasma elastase activity was closely correlated with aortic width (R = 0.6976, P < 0.001). In the 1-week AngII infusion study, plasma and tissue elastase activity increased by AngII (plasma:P = 0.034, tissue:P < 0.001), but were reduced by Siv (plasma:P = 0.014, tissue:P = 0.024). AngII increased aortic width (P = 0.011) but was attenuated by co-administration of Siv (P = 0.022). Moreover, Siv decreased the incidence of AAAs (P = 0.009). Elastin fragmentation induced by AngII was reduced by Siv. Many inflammatory cells that were either CD68 or Gr-1 positive were observed in the AngII + saline group, whereas few inflammatory cells were accumulated in the AngII + Siv group. MMP-2 and MMP-9 were enhanced by AngII, but were reduced by Siv. In vitro, MMP-2 activity was induced by human NE (medium:P < 0.001, cells:P = 0.001), which was attenuated by co-incubation of Siv in medium (P < 0.001) and protein of human aortic smooth muscle cells (P = 0.001). CONCLUSIONS Siv attenuated AngII-induced AAA through the inhibition of NE.
Collapse
Affiliation(s)
- Yoshiko Hada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Shugo Okamoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
- Department of Nephrology and Rheumatology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Katsuyoshi Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Venkateswaran Subramanian
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
2
|
Yap C, Wanga S, Wüst RCI, van Os BW, Pijls MME, Keijzer S, van Zanten E, Koolbergen DR, Driessen AHG, Balm R, Yeung KK, de Vries CJM, Houtkooper RH, Lindeman JHN, de Waard V. Doxycycline induces mitochondrial dysfunction in aortic smooth muscle cells. Vascul Pharmacol 2024; 154:107279. [PMID: 38272196 DOI: 10.1016/j.vph.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The antibiotic doxycycline is known to inhibit inflammation and was therefore considered as a therapeutic to prevent abdominal aortic aneurysm (AAA) growth. Yet mitochondrial dysfunction is a key-characteristic of clinical AAA disease. We hypothesize that doxycycline impairs mitochondrial function in the aorta and aortic smooth muscle cells (SMCs). Doxycycline induced mitonuclear imbalance, reduced proliferation and diminished expression of typical contractile smooth muscle cell (SMC) proteins. To understand the underlying mechanism, we studied krüppel-like factor 4 (KLF4). The expression of this transcription factor was enhanced in SMCs after doxycycline treatment. Knockdown of KLF4, however, did not affect the doxycycline-induced SMC phenotypic changes. Then we used the bioenergetics drug elamipretide (SS-31). Doxycycline-induced loss of SMC contractility markers was not rescued, but mitochondrial genes and mitochondrial connectivity improved upon elamipretide. Thus while doxycycline is anti-inflammatory, it also induces mitochondrial dysfunction in aortic SMCs and causes SMC phenotypic switching, potentially contributing to aortic aneurysm pathology. The drug elamipretide helps mitigate the harmful effects of doxycycline on mitochondrial function in aortic SMC, and may be of interest for treatment of aneurysm diseases with pre-existing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Carmen Yap
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Shaynah Wanga
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Cardiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Behavioural and Movement Sciences, Myology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Bram W van Os
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maud M E Pijls
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
| | - Sofie Keijzer
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eva van Zanten
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
| | - David R Koolbergen
- Amsterdam UMC location University of Amsterdam, Cardiothoracic Surgery, Meibergdreef 9, Amsterdam, the Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC location University of Amsterdam, Cardiothoracic Surgery, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ron Balm
- Amsterdam UMC location University of Amsterdam, Vascular Surgery, Meibergdreef 9, Amsterdam, the Netherlands
| | - Kak Khee Yeung
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Vascular Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Carlie J M de Vries
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology, and Metabolism, Amsterdam, the Netherlands
| | - Jan H N Lindeman
- Leiden University Medical Center, Vascular Surgery, Leiden, the Netherlands
| | - Vivian de Waard
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Panagiotou N, McGuinness D, Jaminon AMG, Mees B, Selman C, Schurgers L, Shiels PG. Microvesicle-Mediated Tissue Regeneration Mitigates the Effects of Cellular Ageing. Cells 2023; 12:1707. [PMID: 37443741 PMCID: PMC10340655 DOI: 10.3390/cells12131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| | - Dagmara McGuinness
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
| | - Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University,
Maastricht, 6229 ER Maastricht, NetherlandsThe Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre (MUMC),
Maastricht, The Netherlands;
| | - Colin Selman
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Leon Schurgers
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Paul G. Shiels
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| |
Collapse
|
4
|
Wang D, Hao X, Jia L, Jing Y, Jiang B, Xin S. Cellular senescence and abdominal aortic aneurysm: From pathogenesis to therapeutics. Front Cardiovasc Med 2022; 9:999465. [PMID: 36187019 PMCID: PMC9515360 DOI: 10.3389/fcvm.2022.999465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
As China’s population enters the aging stage, the threat of abdominal aortic aneurysm (AAA) mainly in elderly patients is becoming more and more serious. It is of great clinical significance to study the pathogenesis of AAA and explore potential therapeutic targets. The purpose of this paper is to analyze the pathogenesis of AAA from the perspective of cellular senescence: on the basis of clear evidence of cellular senescence in aneurysm wall, we actively elucidate specific molecular and regulatory pathways, and to explore the targeted drugs related to senescence and senescent cells eliminate measures, eventually improve the health of patients with AAA and prolong the life of human beings.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
5
|
Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion? Cells 2022; 11:cells11061043. [PMID: 35326494 PMCID: PMC8947535 DOI: 10.3390/cells11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create “aneurysm” tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated.
Collapse
|
6
|
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166403. [DOI: 10.1016/j.bbadis.2022.166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
7
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
8
|
Gandhi R, Cawthorne C, Craggs LJL, Wright JD, Domarkas J, He P, Koch-Paszkowski J, Shires M, Scarsbrook AF, Archibald SJ, Tsoumpas C, Bailey MA. Cell proliferation detected using [ 18F]FLT PET/CT as an early marker of abdominal aortic aneurysm. J Nucl Cardiol 2021; 28:1961-1971. [PMID: 31741324 PMCID: PMC8648642 DOI: 10.1007/s12350-019-01946-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a focal aortic dilatation progressing towards rupture. Non-invasive AAA-associated cell proliferation biomarkers are not yet established. We investigated the feasibility of the cell proliferation radiotracer, fluorine-18-fluorothymidine ([18F]FLT) with positron emission tomography/computed tomography (PET/CT) in a progressive pre-clinical AAA model (angiotensin II, AngII infusion). METHODS AND RESULTS Fourteen-week-old apolipoprotein E-knockout (ApoE-/-) mice received saline or AngII via osmotic mini-pumps for 14 (n = 7 and 5, respectively) or 28 (n = 3 and 4, respectively) days and underwent 90-minute dynamic [18F]FLT PET/CT. Organs were harvested from independent cohorts for gamma counting, ultrasound scanning, and western blotting. [18F]FLT uptake was significantly greater in 14- (n = 5) and 28-day (n = 3) AAA than in saline control aortae (n = 5) (P < 0.001), which reduced between days 14 and 28. Whole-organ gamma counting confirmed greater [18F]FLT uptake in 14-day AAA (n = 9) compared to saline-infused aortae (n = 4) (P < 0.05), correlating positively with aortic volume (r = 0.71, P < 0.01). Fourteen-day AAA tissue showed increased expression of thymidine kinase-1, equilibrative nucleoside transporter (ENT)-1, ENT-2, concentrative nucleoside transporter (CNT)-1, and CNT-3 than 28-day AAA and saline control tissues (n = 3 each) (all P < 0.001). CONCLUSIONS [18F]FLT uptake is increased during the active growth phase of the AAA model compared to saline control mice and late-stage AAA.
Collapse
Affiliation(s)
- Richa Gandhi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Christopher Cawthorne
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lucinda J L Craggs
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
| | - John D Wright
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Experimental & PreClinical Imaging Facility (ePIC), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Juozas Domarkas
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Ping He
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Joanna Koch-Paszkowski
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Experimental & PreClinical Imaging Facility (ePIC), School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Michael Shires
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Andrew F Scarsbrook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Stephen J Archibald
- Department of Biomedical Science, PET Research Centre, University of Hull, Hull, United Kingdom
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom.
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Invicro, London, United Kingdom.
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49c Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- The Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds, United Kingdom
| |
Collapse
|
9
|
Gandhi R, Bell M, Bailey M, Tsoumpas C. Prospect of positron emission tomography for abdominal aortic aneurysm risk stratification. J Nucl Cardiol 2021; 28:2272-2282. [PMID: 33977372 PMCID: PMC8648657 DOI: 10.1007/s12350-021-02616-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysm (AAA) disease is characterized by an asymptomatic, permanent, focal dilatation of the abdominal aorta progressing towards rupture, which confers significant mortality. Patient management and surgical decisions rely on aortic diameter measurements via abdominal ultrasound surveillance. However, AAA rupture can occur at small diameters or may never occur at large diameters, implying that anatomical size is not necessarily a sufficient indicator. Molecular imaging may help identify high-risk patients through AAA evaluation independent of aneurysm size, and there is the question of the potential role of positron emission tomography (PET) and emerging role of novel radiotracers for AAA. Therefore, this review summarizes PET studies conducted in the last 10 years and discusses the usefulness of PET radiotracers for AAA risk stratification. The most frequently reported radiotracer was [18F]fluorodeoxyglucose, indicating inflammatory activity and reflecting the biomechanical properties of AAA. Emerging radiotracers include [18F]-labeled sodium fluoride, a calcification marker, [64Cu]DOTA-ECL1i, an indicator of chemokine receptor type 2 expression, and [18F]fluorothymidine, a marker of cell proliferation. For novel radiotracers, preliminary trials in patients are warranted before their widespread clinical implementation. AAA rupture risk is challenging to evaluate; therefore, clinicians may benefit from PET-based risk assessment to guide patient management and surgical decisions.
Collapse
Affiliation(s)
- Richa Gandhi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49 Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Michael Bell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49 Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
| | - Marc Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49 Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, 8.49 Worsley Building, Clarendon Way, Leeds, LS2 9NL, United Kingdom.
| |
Collapse
|
10
|
Chen G, Xu Y, Yao Y, Cao Y, Liu Y, Chai H, Chen W, Chen X. IKKε knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med 2021; 22:1051. [PMID: 34434265 PMCID: PMC8353624 DOI: 10.3892/etm.2021.10485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of nuclear factor-κB kinase subunit ε (IKKε) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKε function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKε small interfering RNA to investigate the effect of IKKε on AAA formation, cell apoptosis and autophagy. IKKε deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKε deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKε knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKε deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKε played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKε function in the formation of AAA.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
11
|
Tao W, Hong Y, He H, Han Q, Mao M, Hu B, Zhang H, Huang X, You W, Liang X, Zhang Y, Li X. MicroRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm. J Cell Mol Med 2021; 25:6056-6069. [PMID: 34132029 PMCID: PMC8366448 DOI: 10.1111/jcmm.16485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) senescence contributes to abdominal aortic aneurysm (AAA) formation although the underlying mechanisms remain unclear. This study aimed to investigate the role of miR-199a-5p in regulating VSMC senescence in AAA. VSMC senescence was determined by a senescence-associated β-galactosidase (SA-β-gal) assay. RT-PCR and Western blotting were performed to measure miRNA and protein level, respectively. The generation of reactive oxygen species (ROS) was evaluated by H2DCFDA staining. Dual-luciferase reporter assay was used to validate the target gene of miR-199a-5p. VSMCs exhibited increased senescence in AAA tissue relative to healthy aortic tissue from control donors. Compared with VSMCs isolated from control donors (control-VSMCs), those derived from patients with AAA (AAA-VSMCs) exhibited increased cellular senescence and ROS production. Angiotensin II (Ang II) induced VSMC senescence by promoting ROS generation. The level of miR-199a-5p expression was upregulated in the plasma from AAA patients and Ang II-treated VSMCs. Mechanistically, Ang II treatment significantly elevated miR-199a-5p level, thereby stimulating ROS generation by repressing Sirt1 and consequent VSMC senescence. Nevertheless, Ang II-induced VSMC senescence was partially attenuated by a miR-199a-5p inhibitor or Sirt1 activator. Our study revealed that miR-199a-5p aggravates Ang II-induced VSMC senescence by targeting Sirt1 and that miR-199a-5p is a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Wuyuan Tao
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yimei Hong
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Haiwei He
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Qian Han
- Department of MedicineState Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory HealthGuangzhouChina
| | - Mengmeng Mao
- Department of MedicineState Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory HealthGuangzhouChina
| | - Bei Hu
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hao Zhang
- School of PharmacyBengbu Medical CollegeBengbuChina
| | - Xiaoran Huang
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wei You
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xiaoting Liang
- Clinical Translational Medical Research CenterShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yuelin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xin Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
12
|
Searching for new molecular markers for cells obtained from abdominal aortic aneurysm. J Appl Genet 2021; 62:487-497. [PMID: 34080122 PMCID: PMC8357660 DOI: 10.1007/s13353-021-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 10/26/2022]
Abstract
The aim of the study was to investigate specific potential markers for cells obtained from three layers of human AAA divided into three segments along the AAA based on morphological differences. The isolated cells were compared to control commercial cell types from healthy human abdominal aortas. For each type of aortic layer, three specimens from 6 patients were compared. Total RNA was isolated from 36 cell cultures for gene expression profiling and potential new cytometry markers were typed. Isolated cells were analyzed by flow cytometry by using fluorochrome-conjugated antibodies to markers: CNN1, MYH10, ENG, ICAM2, and TEK. The relative expression of 45 genes in primary cell cultures and control lines was analyzed. Statistically significant differences were found in the expression of most of the analyzed genes between individual layers and control lines. Based on relative expression, antibodies were selected for flow cytometry. Gene expression profiles allowed to select new potential cytometry markers: CNN1, MYH10, MYOCD, ENG, ICAM2, TEK. However, none of the tested markers seems to be optimal and characteristic for a specific layer of AAA.
Collapse
|
13
|
Hemmings KE, Riches-Suman K, Bailey MA, O’Regan DJ, Turner NA, Porter KE. Role of MicroRNA-145 in DNA Damage Signalling and Senescence in Vascular Smooth Muscle Cells of Type 2 Diabetic Patients. Cells 2021; 10:cells10040919. [PMID: 33923614 PMCID: PMC8073820 DOI: 10.3390/cells10040919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.
Collapse
Affiliation(s)
- Karen E. Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Kirsten Riches-Suman
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Marc A. Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - David J. O’Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Department of Cardiac Surgery, Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Correspondence:
| |
Collapse
|
14
|
Bell M, Gandhi R, Shawer H, Tsoumpas C, Bailey MA. Imaging Biological Pathways in Abdominal Aortic Aneurysms Using Positron Emission Tomography. Arterioscler Thromb Vasc Biol 2021; 41:1596-1606. [PMID: 33761759 DOI: 10.1161/atvbaha.120.315812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael Bell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Richa Gandhi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Heba Shawer
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| |
Collapse
|
15
|
Regulation of SMC traction forces in human aortic thoracic aneurysms. Biomech Model Mechanobiol 2021; 20:717-731. [PMID: 33449277 PMCID: PMC7979631 DOI: 10.1007/s10237-020-01412-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/12/2020] [Indexed: 01/03/2023]
Abstract
Smooth muscle cells (SMCs) usually express a contractile phenotype in the healthy aorta. However, aortic SMCs have the ability to undergo profound changes in phenotype in response to changes in their extracellular environment, as occurs in ascending thoracic aortic aneurysms (ATAA). Accordingly, there is a pressing need to quantify the mechanobiological effects of these changes at single cell level. To address this need, we applied Traction Force Microscopy (TFM) on 759 cells coming from three primary healthy (AoPrim) human SMC lineages and three primary aneurysmal (AnevPrim) human SMC lineages, from age and gender matched donors. We measured the basal traction forces applied by each of these cells onto compliant hydrogels of different stiffness (4, 8, 12, 25 kPa). Although the range of force generation by SMCs suggested some heterogeneity, we observed that: 1. the traction forces were significantly larger on substrates of larger stiffness; 2. traction forces in AnevPrim were significantly higher than in AoPrim cells. We modelled computationally the dynamic force generation process in SMCs using the motor-clutch model and found that it accounts well for the stiffness-dependent traction forces. The existence of larger traction forces in the AnevPrim SMCs were related to the larger size of cells in these lineages. We conclude that phenotype changes occurring in ATAA, which were previously known to reduce the expression of elongated and contractile SMCs (rendering SMCs less responsive to vasoactive agents), tend also to induce stronger SMCs. Future work aims at understanding the causes of this alteration process in aortic aneurysms.
Collapse
|
16
|
Dermal fibroblasts cultured from donors with type 2 diabetes mellitus retain an epigenetic memory associated with poor wound healing responses. Sci Rep 2021; 11:1474. [PMID: 33446687 PMCID: PMC7809350 DOI: 10.1038/s41598-020-80072-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of Type 2 diabetes mellitus (T2DM) is escalating globally. Patients suffer from multiple complications including the development of chronic wounds that can lead to amputation. These wounds are characterised by an inflammatory environment including elevated tumour necrosis factor alpha (TNF-α). Dermal fibroblasts (DF) are critical for effective wound healing, so we sought to establish whether there were any differences in DF cultured from T2DM donors or those without diabetes (ND-DF). ND- and T2DM-DF when cultured similarly in vitro secreted comparable concentrations of TNF-α. Functionally, pre-treatment with TNF-α reduced the proliferation of ND-DF and transiently altered ND-DF morphology; however, T2DM-DF were resistant to these TNF-α induced changes. In contrast, TNF-α inhibited ND- and T2DM-DF migration and matrix metalloprotease expression to the same degree, although T2DM-DF expressed significantly higher levels of tissue inhibitor of metalloproteases (TIMP)-2. Finally, TNF-α significantly increased the secretion of pro-inflammatory cytokines (including CCL2, CXCL1 and SERPINE1) in ND-DF, whilst this effect in T2DM-DF was blunted, presumably due to the tendency to higher baseline pro-inflammatory cytokine expression observed in this cell type. Collectively, these data demonstrate that T2DM-DF exhibit a selective loss of responsiveness to TNF-α, particularly regarding proliferative and secretory functions. This highlights important phenotypic changes in T2DM-DF that may explain the susceptibility to chronic wounds in these patients.
Collapse
|
17
|
Huang T, Liu S, Liu R, Pan B, Wang W. Inhibition of miR-188-5p Suppresses Progression of Experimental Abdominal Aortic Aneurysms. J Cardiovasc Pharmacol 2021; 77:107-114. [PMID: 33105327 DOI: 10.1097/fjc.0000000000000915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/29/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Abdominal aortic aneurysm (AAA) is an aging-related degenerative disease. miR-188-5p was reported to induce cell senescence and play a key role in aging-related disease. Therefore, in this study, we investigated miR-188-5p expression during progression in experimental AAAs. Furthermore, we investigated whether inhibition of miR-188-5p could suppress AAA progression. Experimental AAAs were created in 9-12-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase. Expression of miR-188-5p levels were assessed in aneurysmal and control aortae during the progression of aneurysm. For inhibition experiment, miR-188 inhibiting group mice were injected with AAV2-miR188-5p sponge through tail vein and control group mice were injected with AAV2-CMV-GFP. Influences on experimental AAA progression were assessed by measurements of aortic diameter and histopathologic analysis at sacrifice. Meanwhile, immunohistochemistry and fluorescence in situ hybridization were used to determine the inflammatory cells infiltration and colocalization of miR-188-5p in aortic sections. Expression of miR-188-5p is upregulated during progression of AAA. Importantly, miR-188-5p inhibition treatment prevented enlargement of experimental aneurysms. Meanwhile, miR-188-5p inhibition regimens attenuated medial elastin degradation, smooth muscle cell depletion, and mural angiogenesis and the accumulation of macrophages, T cells, and angiogenesis. Furthermore, colocalization of miR188-5p with CD68 and CD3 was observed, which suggest miR-188-5p was expressed mainly in infiltrated macrophages and T cells. Expression of miR-188-5p is increased in experimental AAAs. Treatment with miR-188-5p inhibition limits experimental AAA progression, with histologic evidence of reduced neovessels and attenuated mural leukocyte infiltration. These findings underscore the potential significance of miR-188-5p in aneurysm pathogenesis and as a target for suppression of AAA disease.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- CD3 Complex/metabolism
- Chemotaxis, Leukocyte
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Genetic Therapy
- Macrophages
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- T-Lymphocytes/metabolism
- Mice
Collapse
Affiliation(s)
- Tingting Huang
- Departments of Vascular Surgery; and
- Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Liu
- Departments of Vascular Surgery; and
| | - Rui Liu
- Departments of Vascular Surgery; and
| | | | - Wei Wang
- Departments of Vascular Surgery; and
| |
Collapse
|
18
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
19
|
Xu E, Hu X, Li X, Jin G, Zhuang L, Wang Q, Pei X. Analysis of long non-coding RNA expression profiles in high-glucose treated vascular endothelial cells. BMC Endocr Disord 2020; 20:107. [PMID: 32689997 PMCID: PMC7372841 DOI: 10.1186/s12902-020-00593-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus is often associated with microvascular and macrovascular lesions, and hyperglycemia-induced vascular endothelial cell damage is a key factor. METHODS We investigated long non-coding RNAs (lncRNAs) and mRNAs that are affected by hyperglycemia-induced damage using human umbilical vein endothelial cells (HUVECs) as a model. HUVECs were cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 6 d, and then lncRNAs and protein-coding transcripts were profiled by RNA-seq. RESULT Among 40,379 lncRNAs screened, 214 were upregulated (log2 [fold-change] > 1, FDR < 0.05) and 197 were downregulated (log2 [fold-change] < - 1, FDR < 0.05) in response to high-glucose. Furthermore, among 28,431 protein-coding genes screened, 778 were upregulated and 998 were downregulated. A total of 945 lncRNA/mRNA pairs were identified, including 126 differentially expressed lncRNAs predicted to target 201 mRNAs, among which 26 were cis-regulatory interactions. The corresponding lncRNA-mRNA network was composed of 354 lncRNA nodes, 1167 mRNA nodes and 9735 edges. Dozens of lncRNAs with high degree may play important roles in high-glucose-induced HUVEC damage, including ENST00000600527, NONHSAT037576.2, NONHSAT135706.2, ENST00000602127, NONHSAT200243.1, NONHSAT217282.1, NONHSAT176260.1, NONHSAT199075.1, NONHSAT067063.2, NONHSAT058417.2. CONCLUSION These observations may provide novel insights into the regulatory molecules and pathways of hyperglycemia-related endothelial dysfunction in diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Erqin Xu
- Room of Physical Diagnostics, Clinical College of Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, P.R. China
| | - Xiaolei Hu
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China
| | - Xiaoli Li
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China
| | - Guoxi Jin
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China
| | - Langen Zhuang
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China
| | - Qiong Wang
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China
| | - Xiaoyan Pei
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu Zone, Bengbu, Anhui Province, 233004, People's Republic of China.
| |
Collapse
|
20
|
Tribological Characteristics of Human Vascular Smooth Muscle Cells: The Implication of Disease State on Friction. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotri.2020.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Jafarihaghighi F, Ardjmand M, Mirzadeh A, Hassani MS, Parizi SS. Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 2020; 21:377-403. [PMID: 32415569 DOI: 10.1007/s10561-020-09837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases are a leading cause of death. Vascular surgery is mainly used to solve this problem. However, the generation of a functional and suitable substitute for small diameter (< 6 mm) displacement is challengeable. Moreover, synthetic prostheses, made of polyethylene terephthalate and extended polytetrafluoroethylene show have shown insufficient performance. Therefore, the challenges dominating the use of autografts have prevented their efficient use. Tissue engineering is highlighted in regenerative medicine perhaps in aiming to address the issue of end-stage organ failure. While organs and complex tissues require the vascular supply to support the graft survival and render the bioartificial organ role, vascular tissue engineering has shown to be a hopeful method for cell implantation by the production of tissues in vitro. Bioreactors are a salient point in vascular tissue engineering due to the capability for reproducible and controlled variations showing a new horizon in blood vessel substitution. This review strives to display the overview of current concepts in the development of small-diameter by using bioreactors. In this work, we show a critical look at different factors for developing small-diameter and give suggestions for future studies.
Collapse
Affiliation(s)
- Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mohammad Salar Hassani
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahriar Salemi Parizi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Biomechanical Restoration Potential of Pentagalloyl Glucose after Arterial Extracellular Matrix Degeneration. Bioengineering (Basel) 2019; 6:bioengineering6030058. [PMID: 31277241 PMCID: PMC6783915 DOI: 10.3390/bioengineering6030058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to quantify pentagalloyl glucose (PGG) mediated biomechanical restoration of degenerated extracellular matrix (ECM). Planar biaxial tensile testing was performed for native (N), enzyme-treated (collagenase and elastase) (E), and PGG (P) treated porcine abdominal aorta specimens (n = 6 per group). An Ogden material model was fitted to the stress-strain data and finite element computational analyses of simulated native aorta and aneurysmal abdominal aorta were performed. The maximum tensile stress of the N group was higher than that in both E and P groups for both circumferential (43.78 ± 14.18 kPa vs. 10.03 ± 2.68 kPa vs. 13.85 ± 3.02 kPa; p = 0.0226) and longitudinal directions (33.89 ± 8.98 kPa vs. 9.04 ± 2.68 kPa vs. 14.69 ± 5.88 kPa; p = 0.0441). Tensile moduli in the circumferential direction was found to be in descending order as N > P > E (195.6 ± 58.72 kPa > 81.8 ± 22.76 kPa > 46.51 ± 15.04 kPa; p = 0.0314), whereas no significant differences were found in the longitudinal direction (p = 0.1607). PGG binds to the hydrophobic core of arterial tissues and the crosslinking of ECM fibers is one of the possible explanations for the recovery of biomechanical properties observed in this study. PGG is a beneficial polyphenol that can be potentially translated to clinical practice for preventing rupture of the aneurysmal arterial wall.
Collapse
|
23
|
Post A, Diaz-Rodriguez P, Balouch B, Paulsen S, Wu S, Miller J, Hahn M, Cosgriff-Hernandez E. Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model. Acta Biomater 2019; 89:84-94. [PMID: 30878448 PMCID: PMC6558989 DOI: 10.1016/j.actbio.2019.03.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
There is a growing clinical need to address high failure rates of small diameter (<6 mm) synthetic vascular grafts. Although there is a strong empirical correlation between low patency rates and low compliance of synthetic grafts, the mechanism by which compliance mismatch leads to intimal hyperplasia is poorly understood. To elucidate this relationship, synthetic vascular grafts were fabricated that varied compliance independent of other graft variables. A computational model was then used to estimate changes in fluid flow and wall shear stress as a function of graft compliance. The effect of compliance on arterial remodeling in an ex vivo organ culture model was then examined to identify early markers of intimal hyperplasia. The computational model prediction of low wall shear stress of low compliance grafts and clinical control correlated well with alterations in arterial smooth muscle cell marker, extracellular matrix, and inflammatory marker staining patterns at the distal anastomoses. Conversely, high compliance grafts displayed minimal changes in fluid flow and arterial remodeling, similar to the sham control. Overall, this work supports the intrinsic link between compliance mismatch and intimal hyperplasia and highlights the utility of this ex vivo organ culture model for rapid screening of small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: We present an ex vivo organ culture model as a means to screen vascular grafts for early markers of intimal hyperplasia, a leading cause of small diameter vascular graft failure. Furthermore, a computational model was used to predict the effect of graft compliance on wall shear stress and then correlate these values to changes in arterial remodeling in the organ culture model. Combined, the ex vivo bioreactor system and computational model provide insight into the mechanistic relationship between graft-arterial compliance mismatch and the onset of intimal hyperplasia.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Patricia Diaz-Rodriguez
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Samantha Paulsen
- Department of Biomedical Engineering, Rice University, Houston, TX 77005, United States
| | - Siliang Wu
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, United States
| | - Jordan Miller
- Department of Biomedical Engineering, Rice University, Houston, TX 77005, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | | |
Collapse
|
24
|
Hibender S, Wanga S, van der Made I, Vos M, Mulder BJM, Balm R, de Vries CJM, de Waard V. Renal cystic disease in the Fbn1C1039G/+ Marfan mouse is associated with enhanced aortic aneurysm formation. Cardiovasc Pathol 2019; 38:1-6. [DOI: 10.1016/j.carpath.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/24/2022] Open
|
25
|
Pant T, Dhanasekaran A, Fang J, Bai X, Bosnjak ZJ, Liang M, Ge ZD. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 2018; 18:197. [PMID: 30342478 PMCID: PMC6196023 DOI: 10.1186/s12872-018-0939-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous RNA transcripts longer than 200 nucleotides which regulate epigenetically the expression of genes but do not have protein-coding potential. They are emerging as potential key regulators of diabetes mellitus and a variety of cardiovascular diseases. Diabetic cardiomyopathy (DCM) refers to diabetes mellitus-elicited structural and functional abnormalities of the myocardium, beyond that caused by ischemia or hypertension. The purpose of this review was to summarize current status of lncRNA research for DCM and discuss the challenges and possible strategies of lncRNA research for DCM. A systemic search was performed using PubMed and Google Scholar databases. Major conference proceedings of diabetes mellitus and cardiovascular disease occurring between January, 2014 to August, 2018 were also searched to identify unpublished studies that may be potentially eligible. The pathogenesis of DCM involves elevated oxidative stress, myocardial inflammation, apoptosis, and autophagy due to metabolic disturbances. Thousands of lncRNAs are aberrantly regulated in DCM. Manipulating the expression of specific lncRNAs, such as H19, metastasis-associated lung adenocarcinoma transcript 1, and myocardial infarction-associated transcript, with genetic approaches regulates potently oxidative stress, myocardial inflammation, apoptosis, and autophagy and ameliorates DCM in experimental animals. The detail data regarding the regulation and function of individual lncRNAs in DCM are limited. However, lncRNAs have been considered as potential diagnostic and therapeutic targets for DCM. Overexpression of protective lncRNAs and knockdown of detrimental lncRNAs in the heart are crucial for defining the role and function of lncRNAs of interest in DCM, however, they are technically challenging due to the length, short life, and location of lncRNAs. Gene delivery vectors can provide exogenous sources of cardioprotective lncRNAs to ameliorate DCM, and CRISPR–Cas9 genome editing technology may be used to knockdown specific lncRNAs in DCM. In summary, current data indicate that LncRNAs are a vital regulator of DCM and act as the promising diagnostic and therapeutic targets for DCM.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhi-Dong Ge
- Department of Ophthalmology, Stanford School of Medicine, 1651 Page Mill Road, Stanford, CA, 94304, USA.
| |
Collapse
|
26
|
Myasoedova VA, Chistiakov DA, Grechko AV, Orekhov AN. Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol 2018; 123:159-167. [PMID: 30172754 DOI: 10.1016/j.yjmcc.2018.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) is a family of Zn2+ endopeptidases that process various components of the extracellular matrix. These enzymes are also involved in activation and inhibition of signaling cascades through proteolytic cleavage of surface receptors. Moreover, MMPs play a key role in tissue remodeling and and repair. Dysregulation of MMPs is observed in patholofgical conditions, including atherosclerosis, which is associated with hyperactivation of MMPs, aberrant tissue remodeling and neovascularization of the growing atherosclerotic plaques. This makes MMPs interesting therapeutic targets that can be employed for developing novel therapies to treat atherosclerosis and its complications. Currently, a growing number of synthetic MMP inhibitors is available. In this review, we will discuss the role of these enzymes in atherosclerosis pathology and the ways of their pothential therapeutic use.
Collapse
Affiliation(s)
- Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russia
| | - Alexander N Orekhov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.
| |
Collapse
|
27
|
Zhai H, Qi X, Li Z, Zhang W, Li C, Ji L, Xu K, Zhong H. TIMP‑3 suppresses the proliferation and migration of SMCs from the aortic neck of atherosclerotic AAA in rabbits, via decreased MMP‑2 and MMP‑9 activity, and reduced TNF‑α expression. Mol Med Rep 2018; 18:2061-2067. [PMID: 29956789 PMCID: PMC6072177 DOI: 10.3892/mmr.2018.9224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/05/2017] [Indexed: 01/20/2023] Open
Abstract
The present study investigated the role of tissue inhibitor of matrix metalloproteinase‑3 (TIMP‑3) in regulating the proliferation, migration, apoptosis and activity of matrix metalloproteinase (MMP)‑2 and ‑9, during the development of an atherosclerotic abdominal artery aneurysm (AAA). Experiments were conducted using rabbit AAA neck (NA) smooth muscle cells (SMCs), to investigate the potential for TIMP‑3 to be used as a novel stent coating in preventing aortic dilation adjacent to the AAA. The atherosclerotic AAA model was induced in New Zealand white rabbits via a 6‑week high‑cholesterol diet, followed by incubation of the targeted aortic region with elastase. SMCs were isolated from the aorta adjacent to the aneurysm 30 days after AAA model induction, and stimulated with 3, 10, 30 or 100 ng/ml TIMP‑3. Cell proliferation was investigated using Cell Counting Kit‑8 reagent, migration was examined using a Boyden chamber assay and apoptotic rate was analyzed using the Annexin V‑fluorescein isothiocyanate Apoptosis Detection kit. Gelatin zymography and ELISA were used to measure the activity of MMP‑2 and MMP‑9, and the expression of tumor necrosis factor‑α (TNF‑α), respectively. Analysis of cell proliferation indicated that 10, 30 and 100 ng/ml TIMP‑3 reduced cell viability. Cell migration was decreased by 10, 30 and 100 ng/ml TIMP‑3. MMP‑2 activity was inhibited by 10, 30 and 100 ng/ml TIMP‑3, and MMP‑9 activity was suppressed by 30 and 100 ng/ml TIMP‑3. The protein levels of secreted TNF‑α were reduced by 10, 30 and 100 ng/ml TIMP‑3. The present study demonstrated the ability of 30 and 100 ng/ml TIMP‑3 to attenuate migration and proliferation, and to inhibit the activity of MMP‑2, MMP‑9 and TNF‑α secretion of NA SMCs. In conclusion, TIMP‑3 may be considered a potential therapeutic drug for use in a novel drug‑eluting stent, to attenuate the progressive dilation of the aortic NA.
Collapse
Affiliation(s)
- Huan Zhai
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xun Qi
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zixuan Li
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Zhang
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chenguang Li
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Ji
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke Xu
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongshan Zhong
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
28
|
Alshanwani AR, Riches-Suman K, O'Regan DJ, Wood IC, Turner NA, Porter KE. MicroRNA-21 drives the switch to a synthetic phenotype in human saphenous vein smooth muscle cells. IUBMB Life 2018; 70:649-657. [DOI: 10.1002/iub.1751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Aliah R. Alshanwani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| | - Kirsten Riches-Suman
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- School of Chemistry and Biosciences; University of Bradford; Bradford UK
| | - David J. O'Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
- Department of Cardiac Surgery; The Yorkshire Heart Centre, Leeds General Infirmary; Leeds UK
| | - Ian C. Wood
- Faculty of Biological Sciences, School of Biomedical Sciences; University of Leeds; Leeds UK
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine; University of Leeds; Leeds UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds; Leeds UK
| |
Collapse
|
29
|
Luo X, Liu J, Zhou H, Chen L. Apelin/APJ system: A critical regulator of vascular smooth muscle cell. J Cell Physiol 2018; 233:5180-5188. [PMID: 29215755 DOI: 10.1002/jcp.26339] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
APJ, an orphan G protein-coupled receptor, is first identified through homology cloning in 1993. Apelin is endogenous ligand of APJ extracted from bovine stomach tissue in 1998. Apelin/APJ system is widely expressed in many kinds of cells such as endothelial cells, cardiomyocytes, especially vascular smooth muscle cell. Vascular smooth muscle cell (VSMC), an integral part of the vascular wall, takes part in many normal physiological processes. Our experiment firstly finds that apelin/APJ system enhances VSMC proliferation by ERK1/2-cyclin D1 signal pathway. Accumulating studies also show that apelin/APJ system plays a pivotal role in mediating the function of VSMC. In this paper, we review the exact role of apelin/APJ system in VSMC, including induction of proliferation and migration, enhance of contraction and relaxation, inhibition of calcification. Furthermore, we discuss the role of apelin/APJ system in vascular diseases, such as atherosclerosis, hypertension, and chronic kidney disease (CKD) from the point of VSMC. Above all, apelin/APJ system is a promising target for managing vascular disease.
Collapse
Affiliation(s)
- Xuling Luo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jiaqi Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Hong Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
30
|
Ramadan A, Singh KK, Quan A, Plant PJ, Al-Omran M, Teoh H, Verma S. Loss of vascular smooth muscle cell autophagy exacerbates angiotensin II-associated aortic remodeling. J Vasc Surg 2017; 68:859-871. [PMID: 29273297 DOI: 10.1016/j.jvs.2017.08.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The pathophysiologic processes of abdominal aortic aneurysms (AAAs) and atherosclerosis often intersect. Given that anomalies in vascular smooth muscle cell (SMC) autophagy have been noted in models of atherosclerosis, we sought to evaluate the potential role that SMC autophagy may play in the initiation and progression of AAAs. METHODS Studies were conducted in ATG7flx/flxSM22α-Cretg/+ (SMC ATG7 knockout [SMC-ATG7-KO]) and ATG7WT/WT; SM22α-Cretg/+ (SMC ATG7 wild-type [SMC-ATG7-WT]) littermates that were continuously infused with angiotensin II (Ang II; 1.5 mg/kg/d) for up to 12 weeks. Mortality, morbidity, hemodynamics, and aortic remodeling were documented. RESULTS During the 12-week observation window, all of the Ang II-treated SMC-ATG-WT mice (n = 6) survived, whereas 10 of the 19 Ang II-treated SMC-ATG-KO mice had died by week 7 (log-rank test, P < .001). Mean arterial pressure (128.07 ± 3.4 mm Hg for Ang II-treated SMC-ATG-KO vs 138.5 ± 5.87 mm Hg for Ang II-treated SMC-ATG-WT mice) and diastolic arterial pressure (109.7 ± 2.55 mm Hg for Ang II-treated SMC-ATG7-KO vs 119.4 ± 2.12 mm Hg for Ang II-treated SMC-ATG7-WT mice) were significantly different between the two groups (P < .01). Cardiac rupture, myocardial infarct, end-organ damage, pleural effusion, and venous distention were noted in Ang II-treated SMC-ATG7-KO but not in Ang II-treated SMC-ATG7-WT mice. Although the suprarenal aortic diameters of the Ang II-treated SMC-ATG7-KO group demonstrated a trending increase (at week 4, 1.26 ± 0.06 mm [n = 14] for Ang II-treated SMC-ATG-KO mice vs 1.09 ± 0.02 mm [n = 5] for Ang II-treated SMC-ATG-WT mice; P < .05), only 2 of the 19 developed abdominal aortic dissections. CONCLUSIONS Mice with SMC ATG7 deficiency that are chronically infused with Ang II do not tend to develop dissecting AAA but do exhibit adverse aortic remodeling and appreciable cardiac failure-associated mortality.
Collapse
Affiliation(s)
- Azza Ramadan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Krishna K Singh
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Pamela J Plant
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Surgery, King Saud University, Riyadh, Kingdom of Saudi Arabia; King Saud University-Li Ka Shing Collaborative Research Program, Riyadh, Kingdom of Saudi Arabia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Liang ES, Cheng W, Yang RX, Bai WW, Liu X, Zhao YX. Peptidyl-prolyl isomerase Pin1 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in ApoE -/- mice. J Mol Cell Cardiol 2017; 114:334-344. [PMID: 29269260 DOI: 10.1016/j.yjmcc.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/29/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
Peptidyl-prolyl isomerase Pin1 has been reported to be associated with endothelial dysfunction. However, the role of smooth muscle Pin1 in the vascular system remains unclear. Here, we examined the potential function of Pin1 in smooth muscle cells (SMCs) and its contribution to abdominal aortic aneurysm (AAA) pathogenesis. The level of Pin1 expression was found to be elevated in human AAA tissues and mainly localized to SMCs. We constructed smooth muscle-specific Pin1 knockout mice to explore the role of this protein in AAA formation and to elucidate the underlying mechanisms. AAA formation and elastin degradation were hindered by Pin1 depletion in the angiotensin II-induced mouse model. Pin1 depletion reversed the angiotensin II-induced pro-inflammatory and synthetic SMC phenotype switching via the nuclear factor (NF)-κB p65/Klf4 axis. Moreover, Pin1 depletion inhibited the angiotensin II-induced matrix metalloprotease activities. Mechanically, Pin1 deficiency destabilized NF-κB p65 by promoting its polyubiquitylation. Further, we found STAT1/3 bound to the Pin1 promoter, revealing that activation of STAT1/3 was responsible for the increased expression of Pin1 under angiotensin II stimulation. Thus, these results suggest that Pin1 regulates pro-inflammatory and synthetic SMC phenotype switching and could be a novel therapeutic target to limit AAA pathogenesis.
Collapse
Affiliation(s)
- Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wen Cheng
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rui-Xue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yu-Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Riches K, Clark E, Helliwell RJ, Angelini TG, Hemmings KE, Bailey MA, Bridge KI, Scott DJA, Porter KE. Progressive Development of Aberrant Smooth Muscle Cell Phenotype in Abdominal Aortic Aneurysm Disease. J Vasc Res 2017; 55:35-46. [PMID: 29232676 DOI: 10.1159/000484088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/07/2017] [Indexed: 11/08/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a silent, progressive disease with a high mortality and an increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (≥5 cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm. Human AAA-SMC presented a secretory phenotype and expressed elevated levels of the differentiation marker miR-145 (2.2-fold, p < 0.001) and the senescence marker SIRT-1 (1.3-fold, p < 0.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine aneurysmal cells were frequently multi-nucleated (3.9-fold, p < 0.001, and 1.8-fold, p < 0.01, respectively, vs. control cells) and displayed an aberrant nuclear morphology. Human AAA-SMC exhibited higher levels of the DNA damage marker γH2AX (3.9-fold, p < 0.01, vs. control SMC). These features did not correlate with patients' chronological age and are therefore potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control and aneurysmal) were indistinguishable from one another across all parameters. The principal limitation of human studies is tissue availability only at the end stage of the disease. Refinement of a porcine bioreactor model would facilitate the study of temporal modulation of SMC behaviour during aneurysm development and potentially identify therapeutic targets to limit AAA progression.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/complications
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Rupture/etiology
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Cell Differentiation
- Cell Shape
- Cells, Cultured
- Cellular Senescence
- DNA Damage
- Dilatation, Pathologic
- Disease Progression
- Histones/metabolism
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Sirtuin 1/metabolism
- Sus scrofa
Collapse
Affiliation(s)
- Kirsten Riches
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liang B, Che J, Zhao H, Zhang Z, Shi G. MiR-195 promotes abdominal aortic aneurysm media remodeling by targeting Smad3. Cardiovasc Ther 2017; 35. [PMID: 28665537 DOI: 10.1111/1755-5922.12286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bing Liang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Jianbo Che
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Hui Zhao
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Zhi Zhang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Gongning Shi
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| |
Collapse
|
34
|
Ramadan A, Al-Omran M, Verma S. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Atherosclerosis 2017; 257:288-296. [PMID: 28139205 DOI: 10.1016/j.atherosclerosis.2017.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Azza Ramadan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Department of Surgery, University of Toronto, ON, Canada.
| |
Collapse
|
35
|
Busch A, Holm A, Wagner N, Ergün S, Rosenfeld M, Otto C, Baur J, Kellersmann R, Lorenz U. Extra- and Intraluminal Elastase Induce Morphologically Distinct Abdominal Aortic Aneurysms in Mice and Thus Represent Specific Subtypes of Human Disease. J Vasc Res 2016; 53:49-57. [DOI: 10.1159/000447263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/28/2016] [Indexed: 11/19/2022] Open
|
36
|
Hibender S, Franken R, van Roomen C, Ter Braake A, van der Made I, Schermer EE, Gunst Q, van den Hoff MJ, Lutgens E, Pinto YM, Groenink M, Zwinderman AH, Mulder BJM, de Vries CJM, de Waard V. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model. Arterioscler Thromb Vasc Biol 2016; 36:1618-26. [PMID: 27283746 PMCID: PMC4961273 DOI: 10.1161/atvbaha.116.307841] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure–lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell–specific sirtuin-1–deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1C1039G/+ MFS mouse model. Approach and Results— Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal–regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Conclusions— Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS.
Collapse
Affiliation(s)
- Stijntje Hibender
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Romy Franken
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Cindy van Roomen
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Anique Ter Braake
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Ingeborg van der Made
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Edith E Schermer
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Quinn Gunst
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Maurice J van den Hoff
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Esther Lutgens
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Yigal M Pinto
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Maarten Groenink
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Aeilko H Zwinderman
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Barbara J M Mulder
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Carlie J M de Vries
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.)
| | - Vivian de Waard
- From the Department of Medical Biochemistry (S.H., C.v.R., A.t.B., E.E.S., E.L., C.J.M.d.V., V.d.W.), Department of Cardiology (R.F., M.G., B.J.M.M.), Department of Experimental Cardiology (I.v.d.M., Y.M.P.), Heart Failure Research Center (Q.G., M.J.v.d.H.), Department of Radiology (M.G.), Department of Clinical Epidemiology and Biostatistics (A.H.Z.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Cardiovascular Prevention (IPEK) and Ludwig Maximilians University, Munich, Germany (E.L.).
| |
Collapse
|
37
|
Parvizi M, Bolhuis-Versteeg LA, Poot AA, Harmsen MC. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnol J 2016; 11:932-44. [DOI: 10.1002/biot.201500519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/24/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Mojtaba Parvizi
- University of Groningen; University Medical Center Groningen, Department of Pathology and Medical Biology; Groningen the Netherlands
| | | | - André A. Poot
- Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
| | - Martin C. Harmsen
- University of Groningen; University Medical Center Groningen, Department of Pathology and Medical Biology; Groningen the Netherlands
| |
Collapse
|
38
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
39
|
Mourmoura E, Vasilaki A, Giannoukas A, Michalodimitrakis E, Pavlidis P, Tsezou A. Evidence of deregulated cholesterol efflux in abdominal aortic aneurysm. Acta Histochem 2016; 118:97-108. [PMID: 26725543 DOI: 10.1016/j.acthis.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
Previous studies indicated that lipids may be associated with abdominal aortic aneurysm (AAA); however the molecular mechanism involved is unclear. Our study aimed to investigate the expression pattern of cholesterol efflux related proteins in AAA. Liver X receptors (LXRα and LXRβ), ATP-binding-cassette transporter A1 (ABCA1), Apolipoprotein AI (ApoAI), smooth muscle α-actin (α-SM) and vimentin expression levels were evaluated in human AAA, atherosclerotic (ATH) and normal abdominal aortic tissues. We found significant differences in LXRα, LXRβ and ABCA1 mRNA expression levels between AAA, ATH and normal whole aortic tissues and also within the AAA, ATH and normal "intima-media" layers. Specifically, LXRα, LXRβ and ABCA1 mRNA levels were decreased in AAA compared to ATH-whole tissues, as well as in AAA "intima-media" compared to ATH and normal "intima-media" layers. Moreover, immunohistochemical evaluation revealed that LXRα and ABCA1 immunoreactivities (IR) were reduced in the AAA media compared to the normal and ATH media layers and that they were also reduced in the intima layer of AAA and ATH tissues, whereas ApoAI-IR was increased in the AAA and ATH aortic walls compared to normal pointing to possible deregulation of the cholesterol efflux mechanism in AAA. Furthermore, double staining for vimentin and α-SM showed vimentin expression in the intima and inner media layer of AAA with sparse vimentin positive SMCs designating possible SMCs phenotype switch from contractile to synthetic form. In addition, histochemical analysis showed excessive lipid accumulation in the AAA wall, while co-staining using Oil Red O with α-SM or CD68 revealed lipid accumulation in SMCs and macrophages, respectively. Our study provides novel evidence for impaired cholesterol efflux in AAA associated with lipid accumulation in SMCs and macrophages, as well as switch of SMCs phenotype from contractile to synthetic form.
Collapse
Affiliation(s)
- Evanthia Mourmoura
- University of Thessaly, Faculty of Medicine, Department of Cytogenetics and Molecular Genetics, Biopolis, Larissa 41100, Greece
| | - Anna Vasilaki
- University of Thessaly, Faculty of Medicine, Department of Pharmacology, Biopolis, Larissa 41100, Greece
| | - Athanasios Giannoukas
- University of Thessaly, Faculty of Medicine, Department of Vascular Surgery, Mezourlo, Larissa 41100, Greece
| | | | - Pavlos Pavlidis
- Democritus University of Thrace, Faculty of Medicine, Department of Forensic Medicine, Alexandroupolis 68100, Greece
| | - Aspasia Tsezou
- University of Thessaly, Faculty of Medicine, Department of Cytogenetics and Molecular Genetics, Biopolis, Larissa 41100, Greece; University of Thessaly, Faculty of Medicine, Department of Biology, Biopolis, Larissa 41100, Greece.
| |
Collapse
|
40
|
Lai CH, Wang KC, Lee FT, Tsai HW, Ma CY, Cheng TL, Chang BI, Yang YJ, Shi GY, Wu HL. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS One 2016; 11:e0146565. [PMID: 26741694 PMCID: PMC4711799 DOI: 10.1371/journal.pone.0146565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor (TLR) family plays a key role in innate immunity and various inflammatory responses. TLR4, one of the well-characterized pattern-recognition receptors, can be activated by endogenous damage-associated molecular pattern molecules such as high mobility group box 1 (HMGB1) to sustain sterile inflammation. Evidence suggested that blockade of TLR4 signaling may confer protection against abdominal aortic aneurysm (AAA). Herein we aimed to obtain further insight into the mechanism by which TLR4 might promote aneurysm formation. Characterization of the CaCl2-induced AAA model in mice revealed that upregulation of TLR4 expression, localized predominantly to vascular smooth muscle cells (VSMCs), was followed by a late decline during a 28-day period of AAA development. In vitro, TLR4 expression was increased in VSMCs treated with HMGB1. Knockdown of TLR4 by siRNA attenuated HMGB1-enhanced production of proinflammatory cytokines, specifically interleukin-6 and monocyte chemoattractant protein-1 (MCP-1), and matrix-degrading matrix metalloproteinase (MMP)-2 from VSMCs. In vivo, two different strains of TLR4-deficient (C57BL/10ScNJ and C3H/HeJ) mice were resistant to CaCl2-induced AAA formation compared to their respective controls (C57BL/10ScSnJ and C3H/HeN). Knockout of TLR4 reduced interleukin-6 and MCP-1 levels and HMGB1 expression, attenuated macrophage accumulation, and eventually suppressed MMP production, elastin destruction and VSMC loss. Finally, human AAA exhibited higher TLR4 expression that was localized to VSMCs. These data suggest that TLR4 signaling contributes to AAA formation by promoting a proinflammatory status of VSMCs and by inducing proteinase release from VSMCs during aneurysm initiation and development.
Collapse
Affiliation(s)
- Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Wang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Tzu Lee
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yuan Ma
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Ing Chang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jen Yang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| | - Hua-Lin Wu
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| |
Collapse
|
41
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
42
|
Abstract
An aortic aneurysm (AA) is a common disease with potentially life-threatening complications. Despite significant improvements in the diagnosis and treatment of AA, the associated morbidity and mortality remain high. MicroRNAs (miRNAs, miR) are small noncoding ribonucleic acids that negatively regulate gene expression at the posttranscriptional level by inhibiting mRNA translation or promoting mRNA degradation. miRNAs are recently reported to be critical modulators for vascular cell functions such as cell migration, contraction, differentiation, proliferation, and apoptosis. Increasing evidences suggest crucial roles of miRNAs in the pathogenesis and progression of cardiovascular diseases such as coronary artery disease, heart failure, arterial hypertension, and cardiac arrhythmias. Recently, some miRNAs, such as miR-24, miR-155, miR-205, miR-712, miR-21, miR-26a, miR-143/145, miR-29, and miR-195, have been demonstrated to be differentially expressed in the diseased aortic tissues and strongly associated with the development of AA. In the present paper, we reviewed the recent available literature regarding the role of miRNAs in the pathogenesis of AA. Moreover, we discuss the potential use of miRNAs as diagnostic and prognostic biomarkers and novel targets for development of effective therapeutic strategies for AA.
Collapse
|
43
|
Bailey MA, Aggarwal R, Bridge KI, Griffin KJ, Iqbal F, Phoenix F, Purdell-Lewis J, Thomas T, Johnson AB, Ariëns RAS, Scott DJA, Ajjan RA. Aspirin therapy is associated with less compact fibrin networks and enhanced fibrinolysis in patients with abdominal aortic aneurysm. J Thromb Haemost 2015; 13:795-801. [PMID: 25660763 DOI: 10.1111/jth.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Thrombotic changes in fibrin networks contribute to increased cardiovascular risk in patients with abdominal aortic aneurysm (AAA). Given that aspirin modulates the fibrin network, we aimed to determine if aspirin therapy is associated with changes in ex-vivo fibrin clot characteristics in AAA patients and also conducted an exploratory analysis of 5-year mortality in these individuals. METHODS We recruited 145 male patients, divided into controls (aortic diameter < 3 cm, n = 49), AAA not taking aspirin (AAA-Asp, n = 50) and AAA on 75 mg day(-1) aspirin (AAA+Asp, n = 46), matched for aneurysm size. Characteristics of clots made from plasma and plasma-purified fibrinogen were investigated using turbidimetric analysis, permeation studies, and confocal and electron microscopy. Plasma fibrinogen, D-dimer and inflammatory marker levels were also measured. RESULTS Maximum absorbance (MA) of plasma clots from controls was lower than that of AAA patients not on aspirin (AAA-Asp) at 0.30 ± 0.01 and 0.38 ± 0.02 au, respectively (P = 0.002), whereas aspirin-treated subjects had MA similar to controls (0.31 ± 0.02 P = 0.9). Plasma clot lysis time displayed an identical pattern at 482 ± 15, 597 ± 24 and 517 ± 27 s for control, AAA-Asp and AAA+Asp (P = 0.001 and P = 0.8). The lysis time of clots made from purified fibrinogen of AAA-Asp was longer than that of AAA+Asp patients (756 ± 47 and 592 ± 52 s, respectively; P = 0.041). Permeation studies and confocal and electron microscopy showed increased clot density in AAA-Asp compared with the AAA+Asp group. Mortality in AAA-Asp and AAA+Asp was similar, despite increased cardiovascular risk in the latter group, and both exhibited higher mortality than controls. CONCLUSION Aspirin improves fibrin clot characteristics in patients with AAA, which may have important clinical implications.
Collapse
Affiliation(s)
- M A Bailey
- Division of Cardiovascular & Diabetes Research, School of Medicine, The Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK; The Leeds Vascular Institute, The Leeds General Infirmary, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Duggirala A, Delogu F, Angelini TG, Smith T, Caputo M, Rajakaruna C, Emanueli C. Non coding RNAs in aortic aneurysmal disease. Front Genet 2015; 6:125. [PMID: 25883602 PMCID: PMC4381652 DOI: 10.3389/fgene.2015.00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023] Open
Abstract
An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches. Non-coding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs have opened the field of ncRNAs capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers for aortic aneurysm. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focus at ncRNA roles in aorta aneurysms. We discuss the potential of therapeutic interventions targeting ncRNAs and we describe the research models allowing for mechanistic studies and clinical translation attempts for controlling aneurysm progression. Furthermore, we discuss the potential role of microRNAs and lncRNAs as clinical biomarkers.
Collapse
Affiliation(s)
- Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Francesca Delogu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | | | - Tanya Smith
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK ; Rush Centre for Congenital and Structural Heart Disease, Rush University Medical Centre Chicago, IL, USA
| | - Cha Rajakaruna
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| |
Collapse
|
45
|
Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015; 65:698-703. [PMID: 25667214 DOI: 10.1161/hypertensionaha.114.03618] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mingyi Wang
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| | - Soo Hyuk Kim
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Robert E Monticone
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| |
Collapse
|
46
|
Ferland DJ, Darios ES, Watts SW. The persistence of active smooth muscle in the female rat cervix through pregnancy. Am J Obstet Gynecol 2015; 212:244.e1-8. [PMID: 25108144 DOI: 10.1016/j.ajog.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/13/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE A controversy exists as to whether functional smooth muscle exists in the cervix before and during pregnancy, potentially continuous with the uterus. We hypothesized that cervical smooth muscle persists through pregnancy and is functional. STUDY DESIGN Uteri and cervices were taken from female virgin, 11 day, and 20 day (near labor) pregnant rats. All experiments used the uterus as a positive control. Three different smooth muscle proteins (smooth muscle α-actin, SM-22α, and calponin-1) allowed immunohistochemical detection of the continuous nature of the smooth muscle from the vagina, cervix, and uterus. Tissues were also hung in isolated tissue baths for the measurement of isometric smooth muscle contraction. Uterine and cervical homogenates were also used in Western analyses to measure protein expression. RESULTS Immunohistochemistry revealed there to be smooth muscle as validated by an expression of all 3 markers in the cervix. This smooth muscle was continuous with that of the vagina and uterus. Smooth muscle α-actin was detected in virgin tissue (291.3 ± 32.2 arbitrary densitometry units/β-actin), day 11 (416.8 ± 19.5), and day 20 pregnant tissue (293.0 ± 34.4). The virgin, day 11, and day 20 cervices contracted 2.18 ± 0.24 g, 1.46 ± 0.08 g, and 3.88 ± 0.49 g (respectively) to depolarizing KCl. Cervices contracted at day 20 to the cholinergic muscarinic agonist carbamylcholine (maximum, 133% ± 18.2% KCl contraction, n = 4). CONCLUSION These findings strongly support that smooth muscle is present in the cervix through pregnancy and continuous with the uterus.
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI.
| |
Collapse
|