1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
3
|
Miceli V. Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy. World J Stem Cells 2024; 16:7-18. [PMID: 38292438 PMCID: PMC10824041 DOI: 10.4252/wjsc.v16.i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential. MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs. These cells are characterized by easy accessibility, few ethical concerns, and adaptability to in vitro cultures, making them a valuable resource for cell therapy in several clinical conditions. Over the years, it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors, including cytokines, growth factors, and exosomes (EXOs), which modulate the tissue microenvironment and facilitate repair and regeneration processes. Consequently, MSC-derived products, such as conditioned media and EXOs, are now being extensively evaluated for their potential medical applications, offering advantages over the long-term use of whole MSCs. However, the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods. To address these concerns and to enhance MSC therapeutic potential, researchers have explored many priming strategies, including exposure to inflammatory molecules, hypoxic conditions, and three-dimensional culture techniques. These approaches have optimized MSC secretion of functional factors, empowering them with enhanced immunomodulatory, angiogenic, and regenerative properties tailored to specific medical conditions. In fact, various priming strategies show promise in the treatment of numerous diseases, from immune-related disorders to acute injuries and cancer. Currently, in order to exploit the full therapeutic potential of MSC therapy, the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders. In other words, to unlock the complete potential of MSCs in regenerative medicine, it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione, Palermo 90127, Italy.
| |
Collapse
|
4
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
5
|
Medina Pizaño MY, Loera Arias MDJ, Montes de Oca Luna R, Saucedo Cárdenas O, Ventura Juárez J, Muñoz Ortega MH. Neuroimmunomodulation of adrenoblockers during liver cirrhosis: modulation of hepatic stellate cell activity. Ann Med 2023; 55:543-557. [PMID: 36826975 PMCID: PMC9970206 DOI: 10.1080/07853890.2022.2164047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The sympathetic nervous system and the immune system are responsible for producing neurotransmitters and cytokines that interact by binding to receptors; due to this, there is communication between these systems. Liver immune cells and nerve fibres are systematically distributed in the liver, and the partial overlap of both patterns may favour interactions between certain elements. Dendritic cells are attached to fibroblasts, and nerve fibres are connected via the dendritic cell-fibroblast complex. Receptors for most neuroactive substances, such as catecholamines, have been discovered on dendritic cells. The sympathetic nervous system regulates hepatic fibrosis through sympathetic fibres and adrenaline from the adrenal glands through the blood. When there is liver damage, the sympathetic nervous system is activated locally and systemically through proinflammatory cytokines that induce the production of epinephrine and norepinephrine. These neurotransmitters bind to cells through α-adrenergic receptors, triggering a cellular response that secretes inflammatory factors that stimulate and activate hepatic stellate cells. Hepatic stellate cells are key in the fibrotic process. They initiate the overproduction of extracellular matrix components in an active state that progresses from fibrosis to liver cirrhosis. It has also been shown that they can be directly activated by norepinephrine. Alpha and beta adrenoblockers, such as carvedilol, prazosin, and doxazosin, have recently been used to reverse CCl4-induced liver cirrhosis in rodent and murine models.KEY MESSAGESNeurotransmitters from the sympathetic nervous system activate and increase the proliferation of hepatic stellate cells.Hepatic fibrosis and cirrhosis treatment might depend on neurotransmitter and hepatic nervous system regulation.Strategies to reduce hepatic stellate cell activation and fibrosis are based on experimentation with α-adrenoblockers.
Collapse
Affiliation(s)
| | | | | | - Odila Saucedo Cárdenas
- Histology Department, Faculty of Medicine, Autonomous University of Nuevo León, Monterrey, México
| | - Javier Ventura Juárez
- Department of Morphology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | |
Collapse
|
6
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
7
|
Chen Y, Zhou J, Xu S, Nie J. Role of Interleukin-6 Family Cytokines in Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:239-253. [PMID: 37900004 PMCID: PMC10601952 DOI: 10.1159/000530288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 10/31/2023]
Abstract
Background Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Zhou
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihui Xu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells 2023; 15:400-420. [PMID: 37342218 PMCID: PMC10277962 DOI: 10.4252/wjsc.v15.i5.400] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| |
Collapse
|
9
|
Wu HW, Chen HD, Chen YH, Mao XL, Feng YY, Li SW, Zhou XB. The Effects of Programmed Cell Death of Mesenchymal Stem Cells on the Development of Liver Fibrosis. Stem Cells Int 2023; 2023:4586398. [PMID: 37214784 PMCID: PMC10195177 DOI: 10.1155/2023/4586398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stem cells have shown noticeable potential for unlimited self-renewal. They can differentiate into specific somatic cells, integrate into target tissues via cell-cell contact, paracrine effects, exosomes, and other processes and then regulate the target cells and tissues. Studies have demonstrated that transplantation of MSCs could decrease the expression and concentration of collagen in the liver, thereby reducing liver fibrosis. A growing body of evidence indicates that apoptotic MSCs could inhibit harmful immune responses and reduce inflammatory responses more effectively than viable MSCs. Accumulating evidence suggests that mitochondrial transfer from MSCs is a novel strategy for the regeneration of various damaged cells via the rescue of their respiratory activities. This study is aimed at reviewing the functions of MSCs and the related roles of the programmed cell death of MSCs, including autophagy, apoptosis, pyroptosis, and ferroptosis, as well as the regulatory pathogenic mechanisms of MSCs in liver fibrosis. Research has demonstrated that the miR-200B-3p gene is differentially expressed gene between LF and normal liver samples, and that the miR-200B-3p gene expression is positively correlated with the degree of liver fibrosis, suggesting that MSCs could inhibit liver fibrosis through pyroptosis. It was confirmed that circulating monocytes could deliver MSC-derived immunomodulatory molecules to different sites by phagocytosis of apoptotic MSCs, thereby achieving systemic immunosuppression. Accordingly, it was suggested that characterization of the programmed cell death-mediated immunomodulatory signaling pathways in MSCs should be a focus of research.
Collapse
Affiliation(s)
- Hong-wei Wu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - He-dan Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-yi Feng
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
10
|
Zhang B, Zhang B, Lai RC, Sim WK, Lam KP, Lim SK. MSC-sEV Treatment Polarizes Pro-Fibrotic M2 Macrophages without Exacerbating Liver Fibrosis in NASH. Int J Mol Sci 2023; 24:ijms24098092. [PMID: 37175803 PMCID: PMC10179074 DOI: 10.3390/ijms24098092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC-sEV use is an important consideration. One concern is that MSC-sEVs have been shown to induce M2 macrophage polarization, which is known to be pro-fibrotic, potentially indicating contraindication in fibrotic diseases such as liver fibrosis. Despite this concern, previous studies have shown that MSC-sEVs alleviate high-fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH). To assess whether the pro-fibrotic M2 macrophage polarization induced by MSC-sEVs could worsen liver fibrosis, we first verified that our MSC-sEV preparations could promote M2 polarization in vitro prior to their administration in a mouse model of NASH. Our results showed that treatment with MSC-sEVs reduced or had comparable NAFLD Activity Scores and liver fibrosis compared to vehicle- and Telmisartan-treated animals, respectively. Although CD163+ M2 macrophages were increased in the liver, and serum IL-6 levels were reduced in MSC-sEV treated animals, our data suggests that MSC-sEV treatment was efficacious in reducing liver fibrosis in a mouse model of NASH despite an increase in pro-fibrotic M2 macrophage polarization.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Biyan Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kong Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Surgery, YLL School of Medicine, NUS, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
11
|
Iqbal M, Shams S, Rafiq H, Khan M, Khan S, Sadique Khattak U, Afridi SG, Bibi F, Abdulkareem AA, Naseer MI. Combinatorial Therapeutic Potential of Stem Cells and Benzimidazol Derivatives for the Reduction of Liver Fibrosis. Pharmaceuticals (Basel) 2023; 16:306. [PMID: 37259449 PMCID: PMC9965641 DOI: 10.3390/ph16020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 12/31/2023] Open
Abstract
(1) Background: Liver fibrosis is currently one of the top ten causes of death worldwide. Stem cells transplantation using mesenchymal stem cells (MSCs) is an alternative therapy which is used in the place of organ transplant, due to the incapacity of stem cells to endure oxidative stress in the damage site, thus affecting the healing process. The present study aimed to enhance the therapeutic potential of MSCs using combined therapy, along with the novel synthetic compounds of benzimidazol derivatives. (2) Methods: Eighteen compound series (benzimidazol derivatives) were screened against liver fibrosis using an in vitro CCl4-induced injury model on cultured hepatocytes. IC50 values were calculated on the bases of LDH assay and cell viability assay. (3) Results: Among the eighteen compounds, compounds (10), (14) and (18) were selected on the basis of IC50 value, and compound (10) was the most potent and had the lowest IC50 value in the LDH assay (8.399 ± 0.23 uM) and cell viability assay (4.73 ± 0.37 uM). Next, these compounds were combined with MSCs using an in vitro hepatocytes injury culture and in vivo rat fibrotic model. The effect of the MSCs + compounds treatment on injured hepatocytes was evaluated using LDH assay, cell viability assay, GSH assay and real-time PCR analysis and immuno-staining for caspase-3. Significant reductions in LDH level, caspase-3 and apoptotic marker genes were noted in MSCs + compounds-treated injured hepatocytes. In vivo data also showed the increased homing of the MSCs, along with compounds after transplantation. Real-time PCR analysis and TUNEL assay results also support our study. (4) Conclusions: It was concluded that compounds (10), (14) and (18) can be used in combination with MSCs to reduce liver fibrosis.
Collapse
Affiliation(s)
- Maryam Iqbal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Huma Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Umer Sadique Khattak
- College of Veterinary Sciences, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
13
|
Hepatoprotective Efficacy of Cycloastragenol Alleviated the Progression of Liver Fibrosis in Carbon-Tetrachloride-Treated Mice. Biomedicines 2023; 11:biomedicines11010231. [PMID: 36672739 PMCID: PMC9855659 DOI: 10.3390/biomedicines11010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The continuous death of hepatocytes induced by various etiologies leads to an aberrant tissue healing process and promotes the progression of liver fibrosis and ultimately chronic liver diseases. To date, effective treatments to delay this harmful process remain an unmet clinical need. Cycloastragenol is an active phytochemical substance isolated from Astragalus membranaceus, a plant used in traditional Chinese medicine to protect the liver. Therefore, our study aimed to elucidate the efficacy of cycloastragenol on carbon-tetrachloride (CCl4)-induced liver fibrosis in mice. We found that cycloastragenol at 200 mg/kg dosage exhibited anti-fibrotic efficacy as demonstrated by a decrease in collagen deposition, downregulation of mRNA expression of collagen type 1, and a reduction in the content of total collagens. In addition, cycloastragenol further augmented the levels of anti-fibrotic matrix metalloproteinases (Mmps), that is, Mmp8, proMmp9, and Mmp12, which play a pivotal role in fibrosis resolution. According to histological analysis and serum markers of hepatotoxicity, cycloastragenol protected the livers from damage and mitigated the increment of serum alanine aminotransferase and bilirubin implicating hepatoprotective efficacy against CCl4. Moreover, cycloastragenol upregulated the mRNA expression of interleukin 6, a pleiotropic cytokine plays a vital role in the promotion of hepatocyte regeneration. In conclusion, cycloastragenol alleviated the progression of liver fibrosis in CCl4-treated mice and its anti-fibrotic efficacy was mainly due to the hepatoprotective efficacy.
Collapse
|
14
|
Focak M, Suljevic D. Ameliorative Effects of Propolis and Royal Jelly against CCl 4 -Induced Hepatotoxicity and Nephrotoxicity in Wistar Rats. Chem Biodivers 2023; 20:e202200948. [PMID: 36416002 DOI: 10.1002/cbdv.202200948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Carbon tetrachloride (CCl4 ) is known to have hepatotoxic and nephrotoxic effects. During the two-month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato-renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4 -induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti-inflammatory effects. PE and RJ have a beneficial effect against hepato-renal injury, anemia and anti-inflammatory conditions caused by CCl4 .
Collapse
Affiliation(s)
- Muhamed Focak
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| | - Damir Suljevic
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| |
Collapse
|
15
|
Hernandez JC, Yeh DW, Marh J, Choi HY, Kim J, Chopra S, Ding L, Thornton M, Grubbs B, Makowka L, Sher L, Machida K. Activated and nonactivated MSCs increase survival in humanized mice after acute liver injury through alcohol binging. Hepatol Commun 2022; 6:1549-1560. [PMID: 35246968 PMCID: PMC9234635 DOI: 10.1002/hep4.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
The ability of the liver to regenerate after injury makes it an ideal organ to study for potential therapeutic interventions. Mesenchymal stem cells (MSCs) possess self-renewal and differentiation properties, as well as anti-inflammatory properties that make them an ideal candidate for therapy of acute liver injury. The primary aim of this study is to evaluate the potential for reversal of hepatic injury using human umbilical cord-derived MSCs. Secondary aims include comparison of various methods of administration as well as comparison of activated versus nonactivated human umbilical cord stem cells. To induce liver injury, humanized mice were fed high-cholesterol high-fat liquid diet with alcohol binge drinking. Mice were then treated with either umbilical cord MSCs, activated umbilical cord MSCs, or a placebo and followed for survival. Blood samples were obtained at the end of the binge drinking and at the time of death to measure alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Histology of all mouse livers was reported at time of death. Activated MSCs that were injected intravenously, intraperitoneally, or both routes had superior survival compared with nonactivated MSCs and with placebo-treated mice. AST and ALT levels were elevated in all mice before treatment and improved in the mice treated with stem cells. Conclusion: Activated stem cells resulted in marked improvement in survival and in recovery of hepatic chemistries. Activated umbilical cord MSCs should be considered an important area of investigation in acute liver injury.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Da-Wei Yeh
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joel Marh
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Hye Yeon Choi
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julia Kim
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Shefali Chopra
- Department of PathologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Li Ding
- Department of Population and PublicHealth Sciences University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Matthew Thornton
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Brendan Grubbs
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | | | - Linda Sher
- PrimeGenUS Inc.Santa AnaCaliforniaUSA.,Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Southern California Research Center for ALPD and CirrhosisLos AngelesCaliforniaUSA
| |
Collapse
|
16
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Rafiq H, Ayaz M, Khan HA, Iqbal M, Quraish S, Afridi SG, Khan A, Khan B, Sher A, Siraj F, Shams S. Therapeutic potential of stem cell and melatonin on the reduction of CCl4-induced liver fibrosis in experimental mice model. BRAZ J BIOL 2022; 84:e253061. [PMID: 35293541 DOI: 10.1590/1519-6984.253061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Liver fibrosis is initial stage of any chronic liver disease and its end stage is develops into cirrhosis. Chronic liver diseases are a crucial global health issue and the cause of approximately 2 million deaths per year worldwide. Cirrhosis is currently the 11th most common cause of death globally. Mesenchymal stem cell (MSCs) treatment is the best way to treat acute and chronic liver disease. The aim of this study is to improve the therapeutic potential of MSCs combined with melatonin (MLT) to overcome CCl4-induced liver fibrosis and also investigate the individual impact of melatonin and MSCs against CCl4-induced liver impairment in animal model. Female BALB/c mice were used as CCL4-induced liver fibrotic animal model. Five groups of animal model were made; negative control, Positive control, CCl4+MSCs treated group, CCl4+MLT treated group and CCl4+MSCs+MLT treated group. Cultured MSCs from mice bone marrow were transplanted to CCl4-induced liver injured mice model, individually as well as together with melatonin. Two weeks after MSCs and MLT administration, all groups of mice were sacrificed for examination. Morphological and Histopathological results showed that combined therapy of MSCs+MLT showed substantial beneficial impact on CCl4-induced liver injured model, compared with MSCs and MLT individually. Biochemically, considerable reduction was observed in serum bilirubin and ALT levels of MLT+MSC treated mice, compared to other groups. PCR results shown down-regulation of Bax and up-regulation of Bcl-xl and Albumin, confirm a significant therapeutic effect of MSCs+MLT on CCI4-induced liver fibrosis. From the results, it is concluded that combined therapy of MSCs and MLT show strong therapeutic effect on CCL4-induced liver fibrosis, compared with MSCs and MLT individually.
Collapse
Affiliation(s)
- H Rafiq
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - M Ayaz
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - H A Khan
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - M Iqbal
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - S Quraish
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - S G Afridi
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - A Khan
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - B Khan
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| | - A Sher
- Bacha Khan University Charsadda, Department of Agriculture, Khyber Pakhtunkhwa, Pakistan
| | - F Siraj
- Isamia College University Peshawar, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - S Shams
- Abdul Wali Khan University Mardan, Department of Biochemistry, Stem Cell Regenerative Medicine Lab, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, Cerruti M, Schwertani A, Cecere R. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med 2021; 16:110-127. [PMID: 34726328 DOI: 10.1002/term.3262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C. Cell viability assay presented active and proliferating AMSCs in the C/HA. The ASMCs + C/HA injected composite significantly increased left ventricular ejection fraction, fractional shortening, and neovessel formation. The encapsulated AMSCs were abundantly detected in the infarcted myocardium 6 weeks post-administration and co-expressed cardiac proteins and notably proliferative markers. Proteomic profiling revealed that extracellular vesicles released from hypoxia preconditioned ASMCs contained proteins involved in cytoprotection, angiogenesis, cardiac differentiation and non-canonical Wnt-signaling. Independent activation of non-canonical Wnt-signaling pathways in ASMCs induced cardiogenesis. Despite a low injected cellular density at baseline, the encapsulated AMSCs were abundantly retained and increased cardiac function. Furthermore, the C/HA hydrogel provided an active milieu for the AMSCs to proliferate, co-express cardiac proteins, and induce new vessel formation. Hence, this novel composite of AMSCs + C/HA scaffold is a conceivable candidate that could restore cardiac function and reduce remodeling.
Collapse
Affiliation(s)
- Kashif Khan
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bin Yu
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ida Derish
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marta Cerruti
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.,The Royal Victoria Hospital Montreal, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Gu C, Du W, Chai M, Jin Z, Zhou Y, Guo P, Zhou Y, Tan WS. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J 2021; 17:e2100096. [PMID: 34378873 DOI: 10.1002/biot.202100096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bioartificial livers (BALs) are emerging as a potential supportive therapy for liver diseases. However, the maintenance of hepatocyte function and viability is a major challenge. Mesenchymal stem cells (MSCs) have attracted extensive attention for providing trophic support to hepatocytes, but only few studies have explored the interaction between human MSCs and human hepatocytes, and very little is known about the underlying molecular mechanisms whereby MSCs affect hepatocyte function, especially in serum-free medium (SFM). CONCLUSION The SFM co-culture strategy showed major advantages in maintaining hiHep function and viability, which is of great significance for the clinical application of hiHeps in BALs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenjing Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pan Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
20
|
Baig MT, Ghufran H, Mehmood A, Azam M, Humayun S, Riazuddin S. Vitamin E pretreated Wharton's jelly-derived mesenchymal stem cells attenuate CCl 4-induced hepatocyte injury in vitro and liver fibrosis in vivo. Biochem Pharmacol 2021; 186:114480. [PMID: 33617844 DOI: 10.1016/j.bcp.2021.114480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Oxidative microenvironment in fibrotic liver alleviates the efficacious outcome of mesenchymal stem cells (MSCs)-based cell therapy. Recent evidence suggests that pharmacological pretreatment is a rational approach to harness the MSCs with higher therapeutic potential. Here, we investigated whether Vitamin E pretreatment can boost the antifibrotic effects of Wharton's jelly-derived MSCs (WJMSCs). We used rat liver-derived hepatocytes injured by CCl4 treatment in co-culture system with Vitamin E pretreated-WJMSCs (Vit E-WJMSCs) to evaluate the hepatoprotective effect of Vit E-WJMSCs. After 24 h of co-culturing, we found that Vit E-WJMSCs rescued injured hepatocytes as hepatocyte injury-associated medium (AST, ALT, and ALP) and mRNA (Cyp2e1, Hif1-α, and Il-1β) markers reduced to normal levels. Subsequently, CCl4-induced liver fibrosis rat models were employed to examine the antifibrotic potential of Vit E-WJMSCs. After 1 month of cell transplantation, it was revealed that Vit E-WJMSCs transplantation ceased fibrotic progression, as evident by improved hepatic architecture and functions, more significantly in comparison to naïve WJMSCs. In addition, Vit E-WJMSCs transplantation decreased the expressions of fibrosis-associated gene (Tgf-β1, α-Sma, and Col1α1) markers in the liver parenchyma. Intriguingly, the results of tracing experiments discovered that more WJMSCs engrafted in the Vit E-WJMSCs treated rat livers compared to naïve WJMSCs treated livers. These findings implicate that pretreatment of WJMSCs with Vitamin E improves their tolerance to hostile niche of fibrotic liver; thereby further enhancing their efficacy for hepatic fibrosis.
Collapse
Affiliation(s)
- Maria Tayyab Baig
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Shamsa Humayun
- Fatima Jinnah Medical University, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan; Allama Iqbal Medical Research Centre, Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
21
|
Aithal AP, Bairy LK, Seetharam RN, Kumar N. Hepatoprotective effect of bone marrow-derived mesenchymal stromal cells in CCl 4-induced liver cirrhosis. 3 Biotech 2021; 11:107. [PMID: 33564610 PMCID: PMC7847925 DOI: 10.1007/s13205-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent stem cells which are ideal candidates for use in regenerative medicine. The objectives of this study were to evaluate the hepatoprotective effect of BM-MSC and its combination treatment with silymarin in carbon tetrachloride (CCl4)-induced liver cirrhosis animal model and to investigate whether tail vein or portal vein infusion was the ideal route for BM-MSC transplantation. 36 female Wistar rats were randomly divided into six groups (n = 6): Group 1 (normal control), Group 2 (received only CCl4, disease model), Group 3 (CCl4 + BM-MSCs through tail vein), Group 4 (CCl4 + BM-MSCs through portal vein), Group 5 (CCl4 + silymarin), Group 6 (CCl4 + BM-MSCs + silymarin). On the 21st day after treatment, blood samples were collected for biochemical estimations. After the experiment, the rats were sacrificed. Liver was dissected out and processed for histopathology and scanning electron microscopy studies. Liver enzyme and marker analysis, histopathological studies indicated that the combination of BM-MSCs and silymarin was effective in treating liver cirrhosis. Transplanted BM-MSCs in combination with silymarin ameliorated the liver tissue damage through their immunoregulatory activities. Among the two routes, the intravenous administration of cells through the tail vein was found to be more effective and safe.
Collapse
Affiliation(s)
- Ashwini P. Aithal
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Laxminarayana K. Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - Naveen Kumar
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
22
|
Chiabotto G, Pasquino C, Camussi G, Bruno S. Molecular Pathways Modulated by Mesenchymal Stromal Cells and Their Extracellular Vesicles in Experimental Models of Liver Fibrosis. Front Cell Dev Biol 2020; 8:594794. [PMID: 33425900 PMCID: PMC7794013 DOI: 10.3389/fcell.2020.594794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
End-stage liver fibrosis is common to all chronic liver diseases. Since liver transplantation has several limitations, including lack of donors, immunological rejection, and high medical costs, therapeutic alternatives are needed. The administration of mesenchymal stromal cells (MSCs) has been proven effective in tissue regeneration after damage. However, the risk of uncontrolled side effects, such as cellular rejection and tumorigenesis, should be taken into consideration. A safer alternative to MSC transplantation is represented by the MSC secretome, which retains the same beneficial effect of the cell of origin, without showing any considerable side effect. The paracrine effect of MSCs is mainly carried out by secreted particles in the nanometer range, known as extracellular vesicles (EVs) that play a fundamental role in intercellular communication. In this review, we discuss the current literature on MSCs and MSC-EVs, focusing on their potential therapeutic action in liver fibrosis and on their molecular content (proteins and RNA), which contributes in reverting fibrosis and prompting tissue regeneration.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
23
|
In vitro differentiation effect of CCL 4-induced liver injured mice serum on bone marrow-derived mesenchymal stem cells toward hepatocytes like cells. Cell Tissue Bank 2020; 22:297-303. [PMID: 33169293 DOI: 10.1007/s10561-020-09878-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Liver dysfunction is a major health problem worldwide. Stem cells therapy has opened up new avenues for researches to treat liver diseases due to their multi lineage differentiation. As mesenchymal stem cells (MSCs) can be differentiated into hepatic lineages in the presence of different exogenous factors, the current study aimed to investigate the impact of carbon tetrachloride (CCl4) induced liver injured mice serum on MSCs differentiation toward hepatocytes in vitro. Male Balb/c mice were treated for liver injury with CCl4 as determined through biochemical tests spectrophotometrically and different growth factors (EGF, HGF) quantification through Sandwich ELISA in both normal and CCl4-induced liver injured mice serum. Mice bone marrow derived-MSCs at second passage were treated with normal and CCl4-induced liver injured mice serum. After 7 days, serum treated MSCs were investigated for hepatocytes like characteristics through RT-PCR. Serum biochemical tests (Bilirubin, ALT and ALP) and sandwich ELISA results of EGF and HGF showed marked increase in CCl4 treated mice serum as compared to normal mice serum. Periodic acid Schiff's staining and urea assay kit confirmed high level of glycogen storage and urea production in cells treated with CCl4-induced liver injured mice serum. RT-PCR results of CCl4-induced liver injured mice serum treated cells also showed expression of hepatic markers (Albumin, Cyto-8, Cyto-18, and Cyto-19). This study confirmed that CCl4-induced liver injured serum treatment can differentiate MSCs into hepatocyte-like cells in vitro.
Collapse
|
24
|
Badyra B, Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9:1174-1189. [PMID: 32573961 PMCID: PMC7519763 DOI: 10.1002/sctm.19-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. This review presents modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.
Collapse
Affiliation(s)
- Bogna Badyra
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Maciej Sułkowski
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Olga Milczarek
- Department of Children NeurosurgeryJagiellonian University Medical CollegeCracowPoland
| | - Marcin Majka
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
25
|
Chen HC, Awale S, Wu CP, Lee HH, Wu HT. Co-cultured bone marrow mesenchymal stem cells repair thioacetamide-induced hepatocyte damage. Cell Biol Int 2020; 44:2459-2472. [PMID: 32827326 DOI: 10.1002/cbin.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Adult stem cells, such as bone marrow mesenchymal stem cells (BMSCs), are postdevelopmental cells found in many bone tissues. They are capable of multipotent differentiation and have low immune-rejection characteristics. Hepatocytes may become inflamed and produce a large number of free radicals when affected by drugs, poisoning, or a viral infection. The excessive accumulation of free radicals in the extracellular matrix (ECM) eventually leads to liver fibrosis. This study aims to investigate the restorative effects of mouse bone marrow mesenchymal stem cells (mBMSCs) on thioacetamide (TAA)-induced damage in hepatocytes. An in vitro transwell co-culture system of HepG2 cells were co-cultured with mBMSCs. The effects of damage done to TAA-treated HepG2 cells were reflected in the overall cell survival, the expression of antioxidants (SOD1, GPX1, and CAT), the ECM (COL1A1 and MMP9), antiapoptosis characteristics (BCL2), and inflammation (TNF) genes. The majority of the damage done to HepG2 by TAA was significantly reduced when cells were co-cultured with mBMSCs. The signal transducer and activator of transcription 3 (STAT3) and its phosphorylated STAT3 (p-STAT3), as related to cell growth and survival, were detected in this study. The results show that STAT3 was significantly decreased in the TAA-treated HepG2 cells, but the STAT3 and p-STAT3 of HepG2 cells were significantly activated when the TAA-treated HepG2 co-cultured with mBMSCs. Strong expression of interleukin (Il6) messenger RNA in co-cultured mBMSCs/HepG2 indicated mBMSCs secret the cytokines IL-6, which promotes cell survival through downstream STAT3 activation and aid in the recovery of HepG2 cells damaged by TAA.
Collapse
Affiliation(s)
- Hung-Chiuan Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Suresh Awale
- Department of Translational Research, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Hu-Hui Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
26
|
Rossi F, Noren H, Sarria L, Schiller PC, Nathanson L, Beljanski V. Combination therapies enhance immunoregulatory properties of MIAMI cells. Stem Cell Res Ther 2019; 10:395. [PMID: 31852519 PMCID: PMC6921447 DOI: 10.1186/s13287-019-1515-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs), adult stromal cells most commonly isolated from bone marrow (BM), are being increasingly utilized in various therapeutic applications including tissue repair via immunomodulation, which is recognized as one of their most relevant mechanism of action. The promise of MSC-based therapies is somewhat hindered by their apparent modest clinical benefits, highlighting the need for approaches that would increase the efficacy of such therapies. Manipulation of cellular stress-response mechanism(s) such as autophagy, a catabolic stress-response mechanism, with small molecules prior to or during MSC injection could improve MSCs’ therapeutic efficacy. Unfortunately, limited information exists on how manipulation of autophagy affects MSCs’ response to inflammation and subsequent immunoregulatory properties. Methods In this study, we exposed BM-MSC precursor cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, to autophagy modulators tamoxifen (TX) or chloroquine (CQ), together with IFN-γ. Exposed cells then underwent RNA sequencing (RNAseq) to determine the effects of TX or CQ co-treatments on cellular response to IFN-γ at a molecular level. Furthermore, we evaluated their immunoregulatory capacity using activated CD4+ T cells by analyzing T cell activation marker CD25 and the percentage of proliferating T cells after co-culturing the cells with MIAMI cells treated or not with TX or CQ. Results RNAseq data indicate that the co-treatments alter both mRNA and protein levels of key genes responsible for MSCs’ immune-regulatory properties. Interestingly, TX and CQ also altered some of the microRNAs targeting such key genes. In addition, while IFN-γ treatment alone increased the surface expression of PD-L1 and secretion of IDO, this increase was further enhanced with TX. An improvement in MIAMI cells’ ability to decrease the activation and proliferation of T cells was also observed with TX, and to a lesser extent, CQ co-treatments. Conclusion Altogether, this work suggests that both TX and CQ have a potential to enhance MIAMI cells’ immunoregulatory properties. However, this enhancement is more pronounced with TX co-treatment.
Collapse
Affiliation(s)
- Fiorella Rossi
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA
| | - Leonor Sarria
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Paul C Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA.,Prime Cell Biomedical Inc., Miami, FL, USA
| | - Lubov Nathanson
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, Davie, FL, 33328, USA.
| |
Collapse
|
27
|
Zhang L, Zhou D, Li J, Yan X, Zhu J, Xiao P, Chen T, Xie X. Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Hypoxia and the Transforming Growth Factor beta 1 (TGFβ-1) and SMADs Pathway in a Mouse Model of Cirrhosis. Med Sci Monit 2019; 25:7182-7190. [PMID: 31550244 PMCID: PMC6775794 DOI: 10.12659/msm.916428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The role of bone marrow-derived mesenchymal stem cells (BM-MSCs) in liver fibrosis remains poorly understood. This study aimed to use a mouse model of carbon tetrachloride (CCL4)-induced liver fibrosis to investigate the effects of BM-MSCs during liver hypoxia and the involvement of the transforming growth factor beta 1 (TGF-β1) and SMADs pathway. Material/Methods Thirty C57BL/6 mice were randomly divided into the control group (n=10), the model group (n=10), and the BM-MSC-treated model group (n=10). In the model group, liver fibrosis was induced by intraperitoneal injection of CCl4. BM-MSCs were transplanted after 12 weeks of CCl4 treatment. The serum biochemical parameters and histological changes in the liver, using histochemical stains, were investigated. The expression of collagen type I (collagen I), alpha-smooth muscle actin (α-SMA), TGF-β1, SMAD3, SMAD7, hypoxia-inducible factor 1 alpha (HIF-1α), and vascular endothelial grow factor (VEGF) were assessed by immunohistochemistry and quantitative real-time polymerase chain (RT-qPCR) reaction. Results Treatment with BM-MSCs reduced the expression of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the model group, and reduced liver fibrosis determined histologically using hematoxylin and eosin (H&E) and Masson’s trichrome staining compared with the model group. The area of liver fibrosis decreased after BM-MSCs treatment (p<0.05). Protein expression of HIF-1α and VEGF were decreased after BM-MSCs treatment (p<0.05). Transplantation of BM-MSCs reduced the mRNA expression of TGF-β1, collagen I, α-SMA, and SMAD3 (p<0.05). Conclusions BM-MSC transplantation reduced CCl4-induced murine liver fibrosis, indicating that in a hypoxic microenvironment, BM-MSCs may inhibit the TGFβ-1/SMADs pathway.
Collapse
Affiliation(s)
- Liting Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland).,Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Dan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Junfeng Li
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Xiaoming Yan
- The 4th People's Hospital of Qinghai Province, Xining, Qinghai, China (mainland)
| | - Jun Zhu
- Department of Pathology of Donggang Branch, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Ping Xiao
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland)
| | - Xiaodong Xie
- Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
28
|
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23:1657-1670. [PMID: 30635966 PMCID: PMC6378173 DOI: 10.1111/jcmm.14115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jinfeng Duan
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
29
|
Kamdem SD, Moyou-Somo R, Brombacher F, Nono JK. Host Regulators of Liver Fibrosis During Human Schistosomiasis. Front Immunol 2018; 9:2781. [PMID: 30546364 PMCID: PMC6279936 DOI: 10.3389/fimmu.2018.02781] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a wound-healing process purposely aimed at restoring organ integrity after severe injury caused by autoimmune reactions, mechanical stress or infections. The uncontrolled solicitation of this process is pathogenic and a pathognomonic feature of diseases like hepatosplenic schistosomiasis where exacerbated liver fibrosis is centrally positioned among the drivers of the disease morbidity and mortality. Intriguingly, however, liver fibrosis occurs and progresses dissimilarly in schistosomiasis-diseased individuals with the same egg burden and biosocial features including age, duration of residence in the endemic site and gender. This suggests that parasite-independent and currently poorly defined host intrinsic factors might play a defining role in the regulation of liver fibrosis, the hallmark of morbidity, during schistosomiasis. In this review, we therefore provide a comprehensive overview of all known host candidate regulators of liver fibrosis reported in the context of human schistosomiasis.
Collapse
Affiliation(s)
- Severin Donald Kamdem
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
| | - Roger Moyou-Somo
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Justin Komguep Nono
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| |
Collapse
|
30
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
31
|
Chen ZY, Hu YY, Hu XF, Cheng LX. The conditioned medium of human mesenchymal stromal cells reduces irradiation-induced damage in cardiac fibroblast cells. JOURNAL OF RADIATION RESEARCH 2018; 59:555-564. [PMID: 30010837 PMCID: PMC6151644 DOI: 10.1093/jrr/rry048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 05/04/2023]
Abstract
Recently, multipotent mesenchymal stromal cell (MSC) treatment has attracted special attention as a new alternative strategy for stimulating regeneration. Irradiation myocardial fibrosis (IMF) is a major complication associated with total body irradiation for hematopoietic stem cell transplantation, nuclear accidents, and thoracic radiotherapy for lung cancer, esophageal cancer, proximal gastric cancer, breast cancer, thymoma, and lymphoma. The aim of the present study was to assess the therapeutic paracrine effects of human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in the cell model of IMF. For this purpose, primary human cardiac fibroblasts (HCF) cells were irradiated and cultured with the conditioned medium of UC-MSCs (MSCCM). MSCCM promoted cell viability, reduced collagen deposition as measured by Sircol assay and qPCR (Col1A1 and Col1A2), prevented oxidative stress and increased antioxidant status (as measured by malondialdehyde content and the activities and mRNA levels of antioxidant enzymes), and reduced pro-fibrotic TGF-β1, IL-6 and IL-8 levels (as examined by ELISA kit and qPCR). Pretreatment with inhibitor of NF-κB led to a decrease in the levels of TGF-β1 in cell lysate of HCF cells by ELISA kit. Furthermore, we also found that MSCCM prevented NF-κB signaling pathway activation for its proinflammatory actions induced by irradiation. Taken together, our data suggest that MSCCM could reduce irradiation-induced TGF-β1 production through inhibition of the NF-κB signaling pathway. These data provide new insights into the functional actions of MSCCM on irradiation myocardial fibrosis.
Collapse
Affiliation(s)
- Zhu-Yue Chen
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
| | - Ying-Ying Hu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
| | - Xiao-Fan Hu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
| | - Long-Xian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
- Corresponding author. Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical Collegeof Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, 430022, China. Tel: +86-27-85726462; Fax: +86-27-85726423;
| |
Collapse
|
32
|
Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68:1272-1285. [PMID: 29425678 DOI: 10.1016/j.jhep.2018.01.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) in the treatment of liver fibrosis is predominantly based on their immunosuppressive properties, and their ability to secrete various trophic factors. This potential has been investigated in clinical and preclinical studies. Although the therapeutic mechanisms of MSC transplantation are still not fully characterised, accumulating evidence has revealed that various trophic factors secreted by MSCs play key therapeutic roles in regeneration by alleviating inflammation, apoptosis, and fibrosis as well as stimulating angiogenesis and tissue regeneration in damaged liver. In this review, we summarise the safety, efficacy, potential transplantation routes and therapeutic effects of MSCs in patients with liver fibrosis. We also discuss some of the key strategies to enhance the functionality of MSCs, which include sorting and/or priming with factors such as cytokines, as well as genetic engineering.
Collapse
Affiliation(s)
- Mohammed Alfaifi
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Philip N Newsome
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, UK; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
33
|
Dimethylthiourea ameliorates carbon tetrachloride-induced acute liver injury in ovariectomized mice. Biomed Pharmacother 2018; 104:427-436. [PMID: 29787990 DOI: 10.1016/j.biopha.2018.05.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS In order to clarify hepato-protective actions of estrogen, we examined the progress of carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in sham and ovariectomized (ovx) mice and the effects of dimethylthiourea (DMTU), a hydroxyl radical scavenger, and meloxicam (Melo), a selective cox-2 inhibitor, on the development of CCl4-induced ALI. MAIN METHODS Female C57BL/6 J mice weighing 15-20 g were performed sham or ovx operation at 8 weeks of age. Blood and liver samples were collected 15 and 24 h after CCl4 administration. Sham and ovx mice were given DMTU, Melo or saline intraperitoneally 30 min before CCl4 or corn oil administration. KEY FINDINGS ALT levels in ovx mice were significantly increased compared to those in sham mice. DMTU reduced ALT levels in ovx mice to the same levels as those in sham mice after CCl4 injection. CCl4 upregulated TNF-α, IL-6, cox-2 and iNOS expression in ovx mice compared to the levels in sham mice. DMTU significantly reduced cox-2 and iNOS expression levels upregulated by CCl4 in ovx mice. However, pretreatment with Melo had no effects on ALT levels and the gene expression levels of TNF-α, IL-6 and HO-1 in either sham or ovx mice, indicating that cox-2 may not participate in increase of CCl4-induced ALI caused by estrogen deficiency. SIGNIFICANCE Ovariectomy accelerated the development of CCl4-induced acute liver injury, and DMTU reduced liver injury. These results suggest that estrogen may act as an antioxidant in the development CCl4-induced acute liver injury.
Collapse
|
34
|
Zare H, Jamshidi S, Dehghan MM, Saheli M, Piryaei A. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure. J Cell Biochem 2018; 119:5834-5842. [PMID: 29575235 DOI: 10.1002/jcb.26772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Acute liver failure (ALF) is a lethal disease with limited life-saving therapy. Because lack of whole organ donors for liver transplantation, a substitute treatment strategy is needed for these patients. Preclinical and clinical findings have proved that treatment with mesenchymal stem cells (MSCs) is beneficial for recovery from ALF. In this approach, however, the appropriate sources of these cells are unclear. In the present study, we investigated and compared the therapeutic potentials of bone marrow-mesenchymal stem cells (BM-MSC) with those of adipose tissue (AT-MSC) in carbon tetrachloride (CCL4)-induced acute liver failure in mice. Murine BM- and AT-MSCs obtained from normal mice were cultured and labelled. The cells were transplanted to CCL4-induced ALF mice models intravenously. After cell transplantation, blood samples and liver tissues were collected daily for 72 h to analyze liver enzymes and liver histopathology, respectively. We found that survival rate of AT-MSC transplanted (AT-TR) mice was significantly higher than that of control (ALF) group. Liver histopathology was superior in the AT-TR mice, but not significantly, compared to that in BM-MSC transplanted (BM-TR) ones. Furthermore, in the AT-TR mice the level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), in some time points were significantly less than those of BM-TR. Taken together, these data suggest that in comparison to BM-MSC, AT-MSCs is an appropriate choice for cell therapy in the case of acute liver failure.
Collapse
Affiliation(s)
- Hossein Zare
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad M Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mona Saheli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Mutengo MM, Mduluza T, Kelly P, Mwansa JCL, Kwenda G, Musonda P, Chipeta J. Low IL-6, IL-10, and TNF- α and High IL-13 Cytokine Levels Are Associated with Severe Hepatic Fibrosis in Schistosoma mansoni Chronically Exposed Individuals. J Parasitol Res 2018; 2018:9754060. [PMID: 29610679 PMCID: PMC5828471 DOI: 10.1155/2018/9754060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/21/2017] [Indexed: 01/29/2023] Open
Abstract
Several studies have attributed the etiopathogenesis of chronic Schistosoma mansoni related hepatic fibrosis to unregulated immune responses against trapped parasite ova in the host. However, there is limited data on immune profiles associated with varying degrees of the disease in a population under chronic exposure to the parasite. We therefore investigated the role of selected T-helper (Th)1, Th2, and Th17 cytokines in relation to hepatic fibrosis severity among individuals resident in a hyper-Schistosoma mansoni endemic region of Western Zambia. Two hundred and forty-four S. mansoni infected individuals with and without fibrosis were analysed for cytokine profiles. Based on hepatic fibrosis stage as determined by ultrasound, participants were categorized into Group 0, Group I, Group II, and Group III. Cytokines were measured in S. mansoni egg stimulated whole blood culture supernatants using the BD Cytometric Bead Array kits. Compared to the nonfibrotic group, participants in the severe hepatic fibrotic group produced less interleukin- (IL-) 6, IL-10, and tumour necrosis factor-alpha (TNF-α). On the other hand, IL-13 was significantly elevated in this group compared to the nonfibrotic group (p < 0.001). Our results suggest that low IL-6, IL-10, and TNF-α and high IL-13 levels may influence S. mansoni disease progression.
Collapse
Affiliation(s)
- Mable M. Mutengo
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Paul Kelly
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - James C. L. Mwansa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Patrick Musonda
- Department of Epidemiology and Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - James Chipeta
- Department of Pediatrics and Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
36
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
37
|
Xu S, Dai W, Li J, Li Y. Synergistic effect of estradiol and testosterone protects against IL-6-inducedcardiomyocyte apoptosismediated by TGF-β1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:10-26. [PMID: 31938083 PMCID: PMC6957934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Basic studies have verified that estradiol or androgen is influential on cardioprotection, howeversynergistic effects of estradiol and testosterone on heart failure (HF) are still unknown. This study aimed to evaluate the association among sex hormones and heart failure risk factors. METHODS 142 controls and 196 patients with HF were selected for this study. Serum levels of estradiol, testosterone, Brain natriuretic peptide precursor, transforming growth factor-β1, β2 and β3, lipid-lipoprotein profile, glucose, high-sensitivity C-reactive protein, serum creatinine, microglobulin, uric acid, alanine aminotransferase, aspartate aminotransferase were determined. H9c2 cardiac myocytes were used to investigate the effect of estradiol and testosterone on cardiomyocytes apoptotic involved in TGF-β1. Signaling pathway of caspase 3, Bax, Bcl-2, caspase 8 and TGF-β was determined during the IL-6 induced apoptotic. RESULTS First, our results showed that compared with the control, the E2/T ratio decreased from 6.32±9.89 to 3.43±3.16 (P <0.001) in female, from 4.00±8.14 to 7.80±11.35 (P<0.001) in male with heart failure, and the level of TGF-β1 increased. What's more, these changes were favorably associated with the cardiac function classification. Univariate and multivariate logistic regression analysis showed that serum E2/T ratio, TGF-β1 and NT-proBNP were independent risk factor in heart failure patients. Second, we found that TGF-β1 was upregulated in rat H9c2 cardiomyocyte induced by IL-6, and TGF-β1 regulates the apoptosis of rat H9c2 cardiomyocyte. Furthermore, we verified the beneficial effects of the defined appropriate E2/T ratio on cardiomyocyte apoptotic mediated by TGF-β1. CONCLUSION The balance of the serum E2/T ratio was broken in patients with heart failure, and an imbalanced E2/T ratio showed a strong association with heart failure risk factors, and E2 combined with T play a synergistic effect on anti-apoptosis involved in TGF-β1.
Collapse
Affiliation(s)
- Shuwen Xu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Wen Dai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Jiqiang Li
- Department of Neurosurgery, The First Hospital of WuhanWuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan UniversityWuhan, China
| |
Collapse
|
38
|
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods Mol Biol 2017; 1416:123-46. [PMID: 27236669 DOI: 10.1007/978-1-4939-3584-0_7] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue regeneration from transplanted mesenchymal stromal cells (MSC) either through transdifferentiation or cell fusion was originally proposed as the principal mechanism underlying their therapeutic action. However, several studies have now shown that both these mechanisms are very inefficient. The low MSC engraftment rate documented in injured areas also refutes the hypothesis that MSC repair tissue damage by replacing cell loss with newly differentiated cells. Indeed, despite evidence of preferential homing of MSC to the site of myocardial ischemia, exogenously administered MSC show poor survival and do not persist in the infarcted area. Therefore, it has been proposed that the functional benefits observed after MSC transplantation in experimental models of tissue injury might be related to the secretion of soluble factors acting in a paracrine fashion. This hypothesis is supported by pre-clinical studies demonstrating equal or even improved organ function upon infusion of MSC-derived conditioned medium (MSC-CM) compared with MSC transplantation. Identifying key MSC-secreted factors and their functional role seems a reasonable approach for a rational design of nextgeneration MSC-based therapeutics. Here, we summarize the major findings regarding both different MSC-mediated paracrine actions and the identification of paracrine mediators.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy. .,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Patrizia Danieli
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Malpasso
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Chiara Ciuffreda
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
39
|
Liu D, Liu L, Wang L, Duan S, Song Y, Qu M, Gao N, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Therapeutic effects of mesenchymal stem cells combined with short hairpin RNA on liver injury induced by hepatitis B virus infection. Mol Med Rep 2017; 17:1731-1741. [PMID: 29257255 PMCID: PMC5780118 DOI: 10.3892/mmr.2017.8096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023] Open
Abstract
The clinical symptoms of chronic hepatitis B virus (HBV) infection include severe liver damage, which is associated with the elimination of the HBV-infected cells by the immune system. It has been suggested that suppression of HBV replication is not sufficient for patients with hepatitis B and the damaged liver function requires restoration. In the present study, mesenchymal stem cells (MSCs) were combined with short hairpin (sh)RNA to treat liver injury and suppress HBV replication in a mouse model. Lx-shRNA157-1694 (an shRNA expression plasmid containing two shRNA expression cassettes) and mouse immortal (mi)MSCs stably expressing shRNA (miMSC-shRNA) were constructed and their suppressive effects on HBV expression were investigated using reverse transcription-polymerase chain reaction (RT-PCR), ELISA and immunofluorescence. Hepatogenic differentiation of miMSC-shRNA was induced in vitro and confirmed by morphology, reverse transcription-semi-quantitative and -quantitative PCR, urea production and Periodic acid-Schiff staining analyses. miMSCs and the shRNA expression plasmid alone or combined with miMSCs stably expressing shRNA were injected into mice. The former therapeutic regimen successfully suppressed HBV expression in sera and liver tissue, whereas the latter only suppressed HBV expression in liver tissue. Analyses of serum alanine aminotransferase levels, aspartate aminotransferase levels, liver weight/body weight ratio percentage and sirius red staining demonstrated marked amelioration of liver injury in mice treated with both therapeutic regimens. The results of the present study suggest that miMSCs combined with shRNA treatment may alleviate liver injury and suppress HBV expression, thus providing a novel potential therapeutic strategy for the treatment of liver injury induced by HBV infection.
Collapse
Affiliation(s)
- Di Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lin Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
40
|
Baig MT, Ali G, Awan SJ, Shehzad U, Mehmood A, Mohsin S, Khan SN, Riazuddin S. Serum from CCl 4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis. Growth Factors 2017; 35:144-160. [PMID: 29110545 DOI: 10.1080/08977194.2017.1392945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl4-induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.
Collapse
Affiliation(s)
- Maria Tayyab Baig
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Gibran Ali
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sana Javaid Awan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Umara Shehzad
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Azra Mehmood
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sadia Mohsin
- b Cardiovascular Research Centre, Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Shaheen N Khan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sheikh Riazuddin
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
- c Allama Iqbal Medical College , Lahore , Pakistan
- d Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU) , Islamabad , Pakistan
| |
Collapse
|
41
|
Ben-Harosh Y, Anosov M, Salem H, Yatchenko Y, Birk R. Pancreatic stellate cell activation is regulated by fatty acids and ER stress. Exp Cell Res 2017; 359:76-85. [DOI: 10.1016/j.yexcr.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023]
|
42
|
Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M, Volarevic V. Mesenchymal Stem Cell-Dependent Modulation of Liver Diseases. Int J Biol Sci 2017; 13:1109-1117. [PMID: 29104502 PMCID: PMC5666326 DOI: 10.7150/ijbs.20240] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure and cirrhosis display sequential and overlapping severe pathogenic processes that include inflammation, hepatocyte necrosis, and fibrosis, carrying a high mortality rate. Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells with immunonodulatory characteristics. MSCs are considered to act through multiple mechanisms to coordinate a dynamic, integrated response to liver inflammation and fibrosis, which prevents the progressive distortion of hepatic architecture. Accordingly, MSCs as well as their products have been investigated as a novel therapeutic approach for the treatment of inflammatory and fibrotic liver diseases. In this review, we highlight the current findings on the MSC-based modulation of liver inflammation and fibrosis, and the possible use of MSCs in the therapy of immune-mediated liver pathology. We briefly describe the cellular and molecular mechanisms involved in MSC-dependent modulation of cytokine production, phenotype and function of liver infiltrated inflammatory cells and compare effects of engrafted MSCs versus MSC-generated conditioned medium (MSC-CM) in the therapy of acute liver injury. In order to elucidate therapeutic potential of MSCs and their products in modulation of chronic liver inflammation and fibrosis, we present the current findings regarding pathogenic role of immune cells in liver fibrosis and describe mechanisms involved in MSC-dependent modulation of chronic liver inflammation with the brief overview of on-going and already published clinical trials that used MSCs for the treatment of immune mediated chronic liver diseases. The accumulating evidence shows that MSCs had a significant beneficial effect in the treatment of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Marina Gazdic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics
| | - Aleksandar Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Bojana Simovic Markovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ana Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ivanka Dimova
- Department of medical genetics, Medical University Sofia, Sofia, Bulgaria
| | | | - Nebojsa Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Miodrag Stojkovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics.,Spebo Medical, Leskovac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| |
Collapse
|
43
|
Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF-β1/Smad signaling pathway and interleukins in CCl4-induced liver fibrosis. Fundam Clin Pharmacol 2017; 31:534-545. [PMID: 28544244 DOI: 10.1111/fcp.12297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Naglaa F. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| | - Eman G. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| |
Collapse
|
44
|
Ou X, Mao S, Cao J, Ma Y, Ma G, Cheng A, Wang M, Zhu D, Chen S, Jia R, Liu M, Sun K, Yang Q, Wu Y, Chen X. The neglected avian hepatotropic virus induces acute and chronic hepatitis in ducks: an alternative model for hepatology. Oncotarget 2017; 8:81838-81851. [PMID: 29137226 PMCID: PMC5669852 DOI: 10.18632/oncotarget.19003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Duck Hepatitis A Virus (DHAV) belongs to the Avihepatovirus, which is also classified into Picornaviridae with Hepatovirus, Hepatitis A Virus (HAV). In humans, the pathogenesis of HAV is not well understood because of limited work with animal models. Here, we investigated the progress of duck viral hepatitis caused by DHAV and their potential for dissecting the pathogenesis of HAV. During the course of infection, the duck model had undergone hepatocellular lesions (vacuolation, acidophilic degeneration and steatosis), lymphocytes recruitment (neutrophil granulocytes, heterophilic granulocytes and T cells or plasm cells) and repair (activation of hepatic stellate cells, fibrosis and regeneration). Coincident with liver injury, the serum biomarkers, aspartate aminotransferase and alanine transaminase were significantly increased. Moreover, comparatively lower CD4+ and CD8+ T-cells were recruited to the liver, which might lead to a persistent infection (40 wk). Because DHAV and HAV have similar genomic structure, biological phenotypes and can easily replicate in liver. And half of fibrosis-related genes had high homology between humans and ducks. Considering these similarity in pathological and virological phenotypes, we proposed that the ducks might be an alternatively small animal model that would provide insight into the pathogenesis of viral hepatitis, fibrosis and liver regeneration.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Jingyu Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Yunchao Ma
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Guangpeng Ma
- China Rural Technology Development Center, Beijing, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
45
|
Naguib E, Kamel A, Fekry O, Abdelfattah G. Comparative study on the effect of low intensity laser and growth factors on stem cells used in experimentally-induced liver fibrosis in mice. Arab J Gastroenterol 2017. [PMID: 28625529 DOI: 10.1016/j.ajg.2017.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS The therapeutic effects of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) exposed to diode laser and/or hepatocyte growth factor (HGF) were compared in mice with experimental liver fibrosis induced by carbon tetra chloride (CCl4). MATERIAL AND METHODS Animal model of liver cirrhosis was induced by intraperitoneal injection of CCl4 in a dose of 0.4ml/kg, twice a week for 6weeks. UC-MSCs were obtained from normal full term placentas and were exposed to diode laser and/or HGF. Before treatment, UC-MSCs were labelled with red fluorescent PKH26. Fifty four male mice weighing 25-35g were randomly divided into four groups control, stem cells, CCl4, and treated groups. After the experimental period, body and liver weights were recorded, and the liver specimens were processed for histological examination using haematoxylin and eosin, Periodic Acid-Schiff (PAS), and Masson's Trichrome staining (MT). RESULTS Results showed that administration of UC-MSCs stimulated by diode laser and/or HGF improved body and liver weights, reduced vascular dilatation and congestion, reduced mononuclear cellular infiltration, reduced hepatocyte vacuolation, eosinophilia, and pyknosis. Furthermore, periportal fibrosis was minimized and PAS reaction was increased. These effects were maximum when UC-MSCs were exposed to both diode laser and HGF. CONCLUSION UC-MSCs stimulated by both diode laser and HGF proved to be an effective therapeutic option in experimental liver fibrosis induced by CCl4 in mice.
Collapse
Affiliation(s)
- Eman Naguib
- Department of Laser Sciences and Interactions, National Institute of Laser and Enhanced Sciences, Cairo University, Cairo, Egypt.
| | - Ashraf Kamel
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Osama Fekry
- Department of Medical Laser Applications, National Institute of Laser and Enhanced Sciences, Cairo University, Cairo, Egypt
| | - Gamal Abdelfattah
- Department of Laser Sciences and Interactions, National Institute of Laser and Enhanced Sciences, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Najimi M, Berardis S, El-Kehdy H, Rosseels V, Evraerts J, Lombard C, El Taghdouini A, Henriet P, van Grunsven L, Sokal EM. Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res Ther 2017; 8:131. [PMID: 28583205 PMCID: PMC5460523 DOI: 10.1186/s13287-017-0575-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Progressive liver fibrosis leads to cirrhosis and end-stage liver disease. This disease is a consequence of strong interactions between matrix-producing hepatic stellate cells (HSCs) and resident and infiltrating immune cell populations. Accumulated experimental evidence supports the involvement of adult-derived human liver mesenchymal stem/progenitor cells (ADHLSCs) in liver regeneration. The aim of the present study was to evaluate the influence of ADHLSCs on HSCs, both in vitro and in vivo. Methods Activated human HSCs were co-cultured with ADHLSCs or ADHLSC-conditioned culture medium. The characteristics of the activated human HSCs were assessed by microscopy and biochemical assays, whereas proliferation was analyzed using flow cytometry and immunocytochemistry. The secretion profile of activated HSCs was evaluated by ELISA and Luminex. ADHLSCs were transplanted into a juvenile rat model of fibrosis established after co-administration of phenobarbital and CCl4. Results When co-cultured with ADHLSCs or conditioned medium, the proliferation of HSCs was inhibited, beginning at 24 h and for up to 7 days. The HSCs were blocked in G0/G1 phase, and showed decreased Ki-67 positivity. Pro-collagen I production was reduced, while secretion of HGF, IL-6, MMP1, and MMP2 was enhanced. Neutralization of HGF partially blocked the inhibitory effect of ADHLSCs on the proliferation and secretion profile of HSCs. Repeated intrahepatic transplantation of cryopreserved/thawed ADHLSCs without immunosuppression inhibited the expression of markers of liver fibrosis in 6 out of 11 rats, as compared to their expression in the vehicle-transplanted group. Conclusions These data provide evidence for a direct inhibitory effect of ADHLSCs on activated HSCs, which supports their development for the treatment of liver fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0575-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mustapha Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium.
| | - Silvia Berardis
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Hoda El-Kehdy
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Valérie Rosseels
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Jonathan Evraerts
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Catherine Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Adil El Taghdouini
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Leo van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Etienne Marc Sokal
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Avenue Mounier, 52, 1200, Brussels, Belgium
| |
Collapse
|
47
|
El Baz H, Demerdash Z, Kamel M, Atta S, Salah F, Hassan S, Hammam O, Khalil H, Meshaal S, Raafat I. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study. EXP CLIN TRANSPLANT 2017; 16:81-89. [PMID: 28585911 DOI: 10.6002/ect.2016.0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. MATERIALS AND METHODS Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. RESULTS Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. CONCLUSIONS Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.
Collapse
Affiliation(s)
- Hanan El Baz
- From the Immunology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
49
|
Korobko ES, Suprunenko EA, Vasil’ev AV. Efficiency of cell transplantation in repair of mouse liver damage. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Xuan J, Feng W, An ZT, Yang J, Xu HB, Li J, Zhao ZF, Wen W. Anti-TGFβ-1 receptor inhibitor mediates the efficacy of the human umbilical cord mesenchymal stem cells against liver fibrosis through TGFβ-1/Smad pathway. Mol Cell Biochem 2017; 429:113-122. [DOI: 10.1007/s11010-017-2940-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
|