1
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
2
|
Chuong HQ, Xinh PT, Tram DB, Ha NTT, Nguyen TM, Anh PNL, Van ND, Anh NHM, Dung PC, Nghia H, Vu HA. Spectrum of WAS gene mutations in Vietnamese patients with Wiskott-Aldrich syndrome. Pediatr Int 2024; 66:e15770. [PMID: 38641933 DOI: 10.1111/ped.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 04/21/2024]
Abstract
BACKGROUND WAS gene mutational analysis is crucial to establish a definite diagnosis of Wiskott-Aldrich syndrome (WAS). Data on the genetic background of WAS in Vietnamese patients have not been reported. METHODS We recruited 97 male, unrelated patients with WAS and analyzed WAS gene mutation using Sanger sequencing technology. RESULTS We identified 36 distinct hemizygous pathogenic mutations, with 17 novel variants, from 38 patients in the entire cohort (39.2%). The mutational spectrum included 14 missense, 12 indel, five nonsense, four splicing, and one non-stop mutations. Most mutations appear only once, with the exception of c.37C>T (p.R13X) and c.374G>A (p.G125E) each of which occurs twice in unrelated patients. CONCLUSION Our data enrich the mutational spectrum of the WAS gene and are crucial for understanding the genetic background of WAS and for supporting genetic counseling.
Collapse
Affiliation(s)
- Ho Quoc Chuong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phan Thi Xinh
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Duong Bich Tram
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Ha
- Department of Molecular Biology, Dai Phuoc Clinic, Ho Chi Minh City, Vietnam
| | - Tuan Minh Nguyen
- Department of Hematology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | | | - Nguyen Dinh Van
- Department of Oncology and Hematology, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | | | - Phu Chi Dung
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Huynh Nghia
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Vaché C, Cubedo N, Mansard L, Sarniguet J, Baux D, Faugère V, Baudoin C, Moclyn M, Touraine R, Lina-Granade G, Cossée M, Bergougnoux A, Kalatzis V, Rossel M, Roux AF. Identification and in vivo functional investigation of a HOMER2 nonstop variant causing hearing loss. Eur J Hum Genet 2023; 31:834-840. [PMID: 37173411 PMCID: PMC10326047 DOI: 10.1038/s41431-023-01374-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.
Collapse
Affiliation(s)
- Christel Vaché
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France.
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Luke Mansard
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - David Baux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Valérie Faugère
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Corinne Baudoin
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Melody Moclyn
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Renaud Touraine
- Department of Genetics, CHU Hopital Nord, Saint-Etienne, France
| | - Geneviève Lina-Granade
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon University Hospital, Lyon, France
| | - Mireille Cossée
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Anne Bergougnoux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | | | - Anne-Françoise Roux
- Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| |
Collapse
|
4
|
Bauer AH, Basta DW, Hornick JL, Dong F. Loss of function SMAD4 nonstop mutations in human cancer. Histopathology 2023; 82:1098-1104. [PMID: 36740808 DOI: 10.1111/his.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND SMAD4 is a tumour suppressor gene that is mutated in a variety of cancers. SMAD4 nonstop mutations, which convert stop codons to sense codons that extend transcription, have been identified in genomic databases but have not been characterised in human pathology samples. The frequency of SMAD4 nonstop mutations and the consequences of nonstop mutations on SMAD4 protein expression are unknown. METHODS We retrospectively analysed our cancer sequencing database of 38,002 tumour specimens and evaluated the spectrum of SMAD4 mutations. SMAD4 protein expression was evaluated by immunohistochemistry in tumours with SMAD4 nonstop mutations. RESULTS In total, 1956 SMAD4 mutations were identified in 1822 tumours. SMAD4 mutations were most common in tumours of the gastrointestinal tract and included nonsense variants (n = 344), frameshift indels (n = 258), splice site variants (n = 104), and missense variants at codon R361 (n = 245). In a subset of cases with immunohistochemistry, SMAD4 expression was lost in 23 of 25 tumours (92%) with protein truncating variants and in 7 of 27 tumours (26%) with missense variants. Four cases harboured SMAD4 nonstop mutations. SMAD4 nonstop mutations were identified in two pancreatic adenocarcinomas, one colonic adenocarcinoma, and one non-small cell lung carcinoma. Immunohistochemistry demonstrated loss of SMAD4 protein expression in each of the four tumours with SMAD4 nonstop mutations. CONCLUSION SMAD4 nonstop mutations are associated with loss of SMAD4 protein expression in multiple tumour types. SMAD4 nonstop mutations should be clinically interpreted as pathogenic loss of function alterations when identified in cancer sequencing panels.
Collapse
Affiliation(s)
- Anna H Bauer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,University of Missouri School of Medicine, Columbia, MO, USA
| | - David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Che F, Tie X, Lei H, Zhang X, Duan M, Zhang L, Yang Y. Identification of two novel variants of the BCL11B gene in two Chinese pedigrees associated with neurodevelopmental disorders. Front Mol Neurosci 2022; 15:927357. [PMID: 36176959 PMCID: PMC9513357 DOI: 10.3389/fnmol.2022.927357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAccording to a recent report, the mutation of transcription factor gene BCL11B is associated with the development of neurodevelopmental disorders and immune deficiency. By analyzing both clinical features and genetic variations, this study aims to reveal the genetic etiology of four patients with neurodevelopmental disorders from two unrelated Chinese pedigrees.MethodsFrom the 4 cases, the clinical data were collected. The potential pathogenic gene variations were analyzed by means of based-trio whole exome sequencing (Trio-WES) and then validated through Sanger sequencing in their respective pedigrees. Furthermore, both the in vitro minigene assay and the NMD assay were performed to evaluate the impact of splicing and frameshift variants.ResultsThe 4 patients displayed mild-to-severe intellectual developmental disorder, which was accompanied by speech delay, dysmorphic facies, and serious caries. In addition, the extended phenotype of developmental regression was observed in the proband from Family 1, which has been unreported previously. Molecular analysis was conducted to identify two novel heterozygous variants in the BCL11B gene: a maternal splicing variant c.427 + 1G > A in Family 1 and a de novo frameshift variant c.2461_2462insGAGCCACACCGGCG (p.Glu821Glyfs*28) in Family 2. As revealed by the in vitro minigene assay, the c.427 + 1G > A variant activated a new cryptic splice site. As confirmed by an overexpression assay, there was no significant difference in the level of mRNA and protein expression between the mutate-BCL11B (p.Glu821Glyfs*28) and the wild type. It confirms that p.Glu821Glyfs*28 variant could be an NMD escaping variant.ConclusionThe extended phenotype of BCL11B-related disorders is reported in this study to reveal the clinical and genetic heterogeneity of the disease. The study starts by identifying a splicing variant and a novel frameshift variant of the BCL11B gene, thus confirming its aberrant translation. The findings of this study expand the mutation spectrum of the genetic BCL11B gene, which not only improves the understanding of the associated neurodevelopmental disorders from a clinical perspective but also provides guidance on diagnosis and genetic counseling for patients.
Collapse
Affiliation(s)
- Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi’an Children’s Hospital, Xi’an, China
| | - Hong Lei
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xi Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Mingyue Duan
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang,
| |
Collapse
|
6
|
Kumar TV, Bhat M, Narayanachar SG, Narayan V, Srikanth AK, Anikar S, Shetty S. Molecular and clinical profiling in a large cohort of Asian Indians with glycogen storage disorders. PLoS One 2022; 17:e0270373. [PMID: 35834487 PMCID: PMC9282608 DOI: 10.1371/journal.pone.0270373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen storage disorders occur due to enzyme deficiencies in the glycogenolysis and gluconeogenesis pathway, encoded by 26 genes. GSD’s present with overlapping phenotypes with variable severity. In this series, 57 individuals were molecularly confirmed for 7 GSD subtypes and their demographic data, clinical profiles and genotype-phenotype co-relations are studied. Genomic DNA from venous blood samples was isolated from clinically affected individuals. Targeted gene panel sequencing covering 23 genes and Sanger sequencing were employed. Various bioinformatic tools were used to predict pathogenicity for new variations. Close parental consanguinity was seen in 76%. Forty-nine pathogenic variations were detected of which 27 were novel. Variations were spread across GSDIa, Ib, III, VI, IXa, b and c. The largest subgroup was GSDIII in 28 individuals with 24 variations (12 novel) in AGL. The 1620+1G>C intronic variation was observed in 5 with GSDVI (PYGL). A total of eleven GSDIX are described with the first Indian report of type IXb. This is the largest study of GSDs from India. High levels of consanguinity in the local population and employment of targeted sequencing panels accounted for the range of GSDs reported here.
Collapse
Affiliation(s)
| | - Meenakshi Bhat
- Clinical Genetics, Centre for Human Genetics, Bengaluru, India
- Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | - Vinu Narayan
- Clinical Genetics, Centre for Human Genetics, Bengaluru, India
| | | | - Swathi Anikar
- Molecular Genetics, Centre for Human Genetics, Bengaluru, India
| | - Swathi Shetty
- Molecular Genetics, Centre for Human Genetics, Bengaluru, India
- * E-mail:
| |
Collapse
|
7
|
Identification of a Novel Stop Loss Mutation in P2RX2 Gene in an Iranian Family with Autosomal Nonsyndromic Hearing Loss. IRANIAN BIOMEDICAL JOURNAL 2021; 25:368-73. [PMID: 34425661 PMCID: PMC8487680 DOI: 10.52547/ibj.25.5.368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Hearing loss, a congenital genetic disorder in human, is difficult to diagnose. WES is a powerful approach for ethiological disgnosis of such disorders. Methods: One Iranian family with two patients were attented in the study. Sequencing of known NSHL genes was carried out to recognize the genetic causes of HL. Results: Molecular analyses identified a novel stop loss mutation, c.1048T>G (p.Term350Glu), whitin the P2RX2 gene, causing a termination-site modification.This event would lead to continued translation into the 3' UTR of the gene, which in turn may result in a longer protein product. The mutation was segregating with the disease phenotype and predicted to be pathogenic by bioinformatic tools. Conclusion: This study is the first Iranian case report of a diagnosis of ADNSHL caused by P2RX2 mutation. The recognition of other causative mutations in P2RX2 gene more supports the probable function of this gene in causing ADNSHL.
Collapse
|
8
|
Ittiwut C, Poonmaksatit S, Boonsimma P, Desudchit T, Suphapeetiporn K, Ittiwut R, Shotelersuk V. Novel de novo mutation substantiates ATP6V0C as a gene causing epilepsy with intellectual disability. Brain Dev 2021; 43:490-494. [PMID: 33190975 DOI: 10.1016/j.braindev.2020.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND In approximately half of patients with epilepsy and intellectual disability (ID), the cause is unidentified and could be a mutation in a new disease gene. PATIENT DESCRIPTION To determine the discovery of disease-causing mutation in a female patient with epilepsy and ID, we performed trio whole-exome sequencing, reverse transcription polymerase chain reaction (RT-PCR) followed by Sanger sequencing. RESULTS Trio whole-exome sequencing was performed and revealed a novel de novo heterozygous stop-loss c.467A > T (p.*156Leuext*35) mutation in the ATP6V0C gene. Using RNA from leukocytes, RT-PCR followed by Sanger sequencing showed the existence of the mutant RNA, and real-time PCR demonstrated that the patient's ATP6V0C RNA level was approximately half of that in her parents, suggesting haploinsufficiency as a pathomechanism. CONCLUSION These findings, along with previous reports of individuals with similar phenotypes and variants in the same gene, substantiate ATP6V0C as a gene causing epilepsy with ID.
Collapse
Affiliation(s)
- Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sathida Poonmaksatit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Tayard Desudchit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res 2020; 48:10441-10455. [PMID: 32941651 PMCID: PMC7544200 DOI: 10.1093/nar/gkaa728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.
Collapse
Affiliation(s)
- Risa Nobuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Misaki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhito Toriumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shizuka Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daiki Suto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Marlin R, Créoff M, Merle S, Jean-Marie-Flore M, Rose M, Malsa S, Promeyrat X, Martin F, Comlan G, Rabia N, Taouil T, Issoufaly I, Escarmant P, Vinh-Hung V, Béra O. Mutation HOXB13 c.853delT in Martinican prostate cancer patients. Prostate 2020; 80:463-470. [PMID: 32040869 DOI: 10.1002/pros.23960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND In Martinique, prostate cancer (Pca) incidence rates are nowadays among the highest worldwide with a high incidence of early-onset and familial forms. Despite the demonstration of a strong familial component, identification of the genetic basis for hereditary Pca is challenging. The HOXB13 germline variant G84E (rs138213197) was described in men of European descent with Pca risk. METHODS To investigate the potential involvement of HOXB13 mutations in Martinique, we performed sequencing of the HOXB13 coding regions of 46 index cases with early-onset Pca (before the age of 51). Additional breast cancers and controls were performed. All cancer cases analyzed in this study have been observed in the context of genetic counseling. RESULTS We identified a rare heterozygous germline variant c.853delT (p.Ter285Lysfs) rs77179853, reported only among patients of African ancestry with a minor allele frequency of 3.2%. This variant is a stop loss reported only among patients of African ancestry with a frequency of 0.2%. CONCLUSION In conclusion, we think that this study provides supplementary arguments that HOXB13 variants are involved in Pca.
Collapse
Affiliation(s)
- Régine Marlin
- Department of Molecular Cancer Genetic, University Hospital of Martinique, Fort de France, France
| | - Morgane Créoff
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Sylvie Merle
- Department of Methodology, Methodology and Biostatistics Unit (DRCI), University Hospital of Martinique, Fort de France, France
| | - Magalie Jean-Marie-Flore
- Department of Molecular Cancer Genetic, University Hospital of Martinique, Fort de France, France
| | - Mickaelle Rose
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Sarah Malsa
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Xavier Promeyrat
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - François Martin
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Georges Comlan
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Nicolas Rabia
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Taoufiq Taouil
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Irfane Issoufaly
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Patrick Escarmant
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Vincent Vinh-Hung
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| | - Odile Béra
- Department of Molecular Cancer Genetic, University Hospital of Martinique, Fort de France, France
- Department of Oncology, Hematology, Urology, University Hospital of Martinique, Fort de France, France
| |
Collapse
|
11
|
Jahic A, Günther S, Muschol N, Fossøy Stadheim B, Braaten Ø, Kjensli Hyldebrandt H, Kuiper GA, Tylee K, Wijburg FA, Beetz C. "Missing mutations" in MPS I: Identification of two novel copy number variations by an IDUA-specific in house MLPA assay. Mol Genet Genomic Med 2019; 7:e00615. [PMID: 31319022 PMCID: PMC6732313 DOI: 10.1002/mgg3.615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mucopolysaccharidosis type I (MPS I) is a rare, recessively inherited lysosomal storage disorder, characterized by progressive multi‐systemic disease. It is caused by a reduced or absent alpha‐l iduronidase (IDUA) enzyme activity secondary to biallelic loss‐of‐function variants in the IDUA. Over 200 causative variants in IDUA have been identified. Nevertheless, there is a fraction of MPS I patients with only a single mutated IDUA allele detectable. Methods As genetic testing of MPS I is usually based on sequencing methods, copy number variations (CNVs) in IDUA can be missed and therefore presumably remain underdiagnosed. The aim of this study was the detection of CNVs using an IDUA‐specific in house multiplex ligation‐dependent probe amplification (MLPA) assay. Results A total of five unrelated MPS I patient samples were re‐analyzed after only a single heterozygous IDUA mutation c.979G>C (p.A327P), c.1469T>C (p.L490P), c.1598C>G (p.P533R), c.1205G>A (p.W402X), c.973‐7C>G (p.?) could be identified. We detected a novel splice site variant c.973‐7C>G (p.?), as well as two novel CNVs, a large deletion of IDUA exon 14 and 3’UTR c.(1828 + 1_1829‐1)_(*1963_?)del, and a large duplication extending from IDUA exon 2 to intron 12 c.(157 + 1_158‐1)_(1727 + 1_1728‐1)dup. Conclusion Together with the CNVs we previously identified, a total of four pathogenic IDUACNVs have now been reported.
Collapse
Affiliation(s)
- Amir Jahic
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Günther
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Øivind Braaten
- Department of Clinical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Gé-Ann Kuiper
- Pediatric Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | - Karen Tylee
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Frits A Wijburg
- Pediatric Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | - Christian Beetz
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany.,Centogene AG, Rostock, Germany
| |
Collapse
|
12
|
Hashimoto S, Nobuta R, Izawa T, Inada T. Translation arrest as a protein quality control system for aberrant translation of the 3'-UTR in mammalian cells. FEBS Lett 2019; 593:777-787. [PMID: 30883710 DOI: 10.1002/1873-3468.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
Read-through or mutations of a stop codon resulting in translation of the 3'-UTR produce potentially toxic C-terminally extended proteins. However, quality control mechanisms for such proteins are poorly understood in mammalian cells. Here, a comprehensive analysis of the 3'-UTRs of genes associated with hereditary diseases identified novel arrest-inducing sequences in the 3'-UTRs of 23 genes that can repress the levels of their protein products. In silico analysis revealed that the hydrophobicity of the polypeptides encoded in the 3'-UTRs is correlated with arrest efficiency. These results provide new insight into quality control mechanisms mediated by 3'-UTRs to prevent the production of C-terminally extended cytotoxic proteins.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Malekpour N, Vakili R, Hamzehloie T. Mutational analysis of ARSB gene in mucopolysaccharidosis type VI: identification of three novel mutations in Iranian patients. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:950-956. [PMID: 30524696 PMCID: PMC6272068 DOI: 10.22038/ijbms.2018.27742.6760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s): Mucopolysaccharidosis VI (MPS VI) or Maroteaux-Lamy syndrome is a rare metabolic disorder, resulting from the deficient activity of the lysosomal enzyme arylsulfatase B (ARSB). The enzymatic defect of ARSB leads to progressive lysosomal storage disorder and accumulation of glycosaminoglycan (GAG) dermatan sulfate (DS), which causes harmful effects on various organs and tissues and short stature. To date, more than 160 different mutations have been reported in the ARSB gene. Materials and Methods: Here, we analyzed 4 Iranian and 2 Afghan patients, with dysmorphism indicating MPS VI from North-east Iran. To validate the patients’ type of MPS VI, urine mucopolysaccharide and leukocyte ARSB activity were determined. Meanwhile, genomic DNA was amplified for all 8 exons and flanking intron sequences of the ARSB gene to analyze the spectrum of mutations responsible for the disorder in all patients. Results: Abnormal excretion of DS and low leukocyte ARSB activity were observed in the urine samples of all 6 studied patients. In direct DNA sequencing, we detected four different homozygous mutations in different exons, three of which seem not to have been reported previously: p.H178N, p.H242R, and p.*534W. All three novel substitutions were found in patients with Iranian breed. We further detected the IVS5+2T>C mutation in Afghan siblings and four different homozygous polymorphisms, which have all been observed in other populations. Conclusion: results indicated that missense mutations were the most common mutations in the ARSB gene, most of them being distributed throughout the ARSB gene and restricted to individual families, reflecting consanguineous marriages.
Collapse
Affiliation(s)
- Nasrin Malekpour
- Department of Human Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Vakili
- Division of Endocrinology and Metabolism, Department of Pediatrics, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloie
- Department of Human Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen KLI, Hempel M, Haack TB, Baresic A, Genetti CA, Funari MFA, Lessel I, Kuhlmann L, Simon R, Liu P, Denecke J, Kuechler A, de Kruijff I, Shoukier M, Lek M, Mullen T, Lüdecke HJ, Lerario AM, Kobbe R, Krieger T, Demeer B, Lebrun M, Keren B, Nava C, Buratti J, Afenjar A, Shinawi M, Guillen Sacoto MJ, Gauthier J, Hamdan FF, Laberge AM, Campeau PM, Louie RJ, Cathey SS, Prinz I, Jorge AAL, Terhal PA, Lenhard B, Wieczorek D, Strom TM, Agrawal PB, Britsch S, Tolosa E, Kubisch C. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 2018; 141:2299-2311. [PMID: 29985992 PMCID: PMC6061686 DOI: 10.1093/brain/awy173] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Gehbauer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Lyon Neuroscience Research Center, Inserm U1028 - CNRS UMR5292 - UCBLyon1, GENDEV Team, Bron, France
| | | | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anja Baresic
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, London, UK
| | - Casie A Genetti
- Divisions of Genetics and Genomics and Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Kuhlmann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ineke de Kruijff
- Department of Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Thomas Mullen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institute of Human Genetics, University Clinic, Heinrich-Heine University, Düsseldorf, Germany
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, USA
| | - Robin Kobbe
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Thorsten Krieger
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedicte Demeer
- Unité de Génétique Clinique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Marine Lebrun
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Nava
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julien Buratti
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Afenjar
- Département de génétique médicale, Sorbonne Université, GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Centre de Référence déficiences intellectuelles de causes rares, Hôpital Armand Trousseau, F-75012 Paris, France
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicin, St. Louis, MO, USA
| | | | - Julie Gauthier
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada
| | - Fadi F Hamdan
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada
| | - Anne-Marie Laberge
- Division of Medical Genetics and Research Center, CHU Sainte-Justine and Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | | | - Sara S Cathey
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institute of Human Genetics, University Clinic, Heinrich-Heine University, Düsseldorf, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Pankaj B Agrawal
- Divisions of Genetics and Genomics and Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Vodo D, Sarig O, Jeddah D, Malchin N, Eskin-Schwarz M, Mohamad J, Rabinowitz T, Goldberg I, Shomron N, Khamaysi Z, Bergman R, Sprecher E. Punctate palmoplantar keratoderma: an unusual mutation causing an unusual phenotype. Br J Dermatol 2018; 178:1455-1457. [PMID: 29494755 DOI: 10.1111/bjd.16502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - O Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - D Jeddah
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - N Malchin
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - M Eskin-Schwarz
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - J Mohamad
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - T Rabinowitz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Goldberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - N Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Variantyx Ltd, Framingham, MA, U.S.A
| | - Z Khamaysi
- Department of Dermatology, Rambam Medical Center, Haifa, Israel
| | - R Bergman
- Department of Dermatology, Rambam Medical Center, Haifa, Israel
| | - E Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Hengst M, Naehrlich L, Mahavadi P, Grosse-Onnebrink J, Terheggen-Lagro S, Skanke LH, Schuch LA, Brasch F, Guenther A, Reu S, Ley-Zaporozhan J, Griese M. Hermansky-Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood. Orphanet J Rare Dis 2018; 13:42. [PMID: 29580292 PMCID: PMC5870397 DOI: 10.1186/s13023-018-0780-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Hermansky-Pudlak syndrome (HPS), a hereditary multisystem disorder with oculocutaneous albinism, may be caused by mutations in one of at least 10 separate genes. The HPS-2 subtype is distinguished by the presence of neutropenia and knowledge of its pulmonary phenotype in children is scarce. Methods Six children with genetically proven HPS-2 presented to the chILD-EU register between 2009 and 2017; the data were collected systematically and imaging studies were scored blinded. Results Pulmonary symptoms including dyspnea, coughing, need for oxygen, and clubbing started 3.3 years before the diagnosis was made at the mean age of 8.83 years (range 2-15). All children had recurrent pulmonary infections, 3 had a spontaneous pneumothorax, and 4 developed scoliosis. The frequency of pulmonary complaints increased over time. The leading radiographic pattern was ground-glass opacities with a rapid increase in reticular pattern and traction bronchiectasis between initial and follow-up Computer tomography (CT) in all subjects. Honeycombing and cysts were newly detectable in 3 patients. Half of the patients received a lung biopsy for diagnosis; histological patterns were cellular non-specific interstitial pneumonia, usual interstitial pneumonia-like, and desquamative interstitial pneumonia. Conclusions HPS-2 is characterized by a rapidly fibrosing lung disease during early childhood. Effective treatments are required. Electronic supplementary material The online version of this article (10.1186/s13023-018-0780-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meike Hengst
- Ludwig-Maximilians University, Dr von Haunersches Kinderspital, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337, Munich, Germany
| | - Lutz Naehrlich
- University Hospital Gießen and Marburg, German Center for Lung Research, Feulgenstr. 12, 35385, Gießen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University, German Center for Lung Research, Klinikstrasse 36, 35392, Giessen, Germany
| | | | - Suzanne Terheggen-Lagro
- Erasmuc MC, University Medical Center Rotterdam, S'Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | | | - Luise A Schuch
- Ludwig-Maximilians University, Dr von Haunersches Kinderspital, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337, Munich, Germany
| | - Frank Brasch
- Klinikum Bielefeld Mitte, Institut für Pathologie, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University, German Center for Lung Research, Klinikstrasse 36, 35392, Giessen, Germany.,Member of the European IPF Network, Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Simone Reu
- Ludwig-Maximilians University, Institute of Pathology, Thalkirchnerstr. 36, 80337, Munich, Germany
| | - Julia Ley-Zaporozhan
- Department of Radiology, Ludwig-Maximilians University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Matthias Griese
- Ludwig-Maximilians University, Dr von Haunersches Kinderspital, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
17
|
Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C. A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3'UTR-encoded, aggregation-inducing motif. Hum Mutat 2017; 39:193-196. [PMID: 29124833 DOI: 10.1002/humu.23369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Single-nucleotide variants that abolish the stop codon ("nonstop" alterations) are a unique type of substitution in genomic DNA. Whether they confer instability of the mutant mRNA or result in expression of a C-terminally extended protein depends on the absence or presence of a downstream in-frame stop codon, respectively. Of the predicted protein extensions, only few have been functionally characterized. In a family with autosomal dominant Charcot-Marie-Tooth disease type 2, that is, an axonopathy affecting sensory neurons as well as lower motor neurons, we identified a heterozygous nonstop variant in REEP1. Mutations in this gene have classically been associated with the upper motor neuron disorder hereditary spastic paraplegia (HSP). We show that the C-terminal extension resulting from the nonstop variant triggers self-aggregation of REEP1 and of several reporters. Our findings support the recently proposed concept of 3'UTR-encoded "cryptic amyloidogenic elements." Together with a previous report on an aggregation-prone REEP1 deletion variant in distal hereditary motor neuropathy, they also suggest that toxic gain of REEP1 function, rather than loss-of-function as relevant for HSP, specifically affects lower motor neurons. A search for similar correlations between genotype, phenotype, and effect of mutant protein may help to explain the wide clinical spectra also in other genetically determined disorders.
Collapse
Affiliation(s)
- Andrea S Bock
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Julia Mohr
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Lisa V Goldberg
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Neelamraju Y, Gonzalez-Perez A, Bhat-Nakshatri P, Nakshatri H, Janga SC. Mutational landscape of RNA-binding proteins in human cancers. RNA Biol 2017; 15:115-129. [PMID: 29023197 PMCID: PMC5786023 DOI: 10.1080/15476286.2017.1391436] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is limited. Here, we delineate the mutational landscape of ∼1300 RBPs in ∼6000 cancer genomes. Our analysis revealed that RBPs have an average of ∼3 mutations per Mb across 26 cancer types. We identified 281 RBPs to be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome groups with and without deleterious mutations were compared. Functional interaction network of the driver RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional regulatory networks in different cancer types.
Collapse
Affiliation(s)
- Yaseswini Neelamraju
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA
| | - Abel Gonzalez-Perez
- b Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| | - Poornima Bhat-Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA
| | - Harikrishna Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA.,d Department of Biochemistry & Molecular Biology , Indiana University School of Medicine , Indianapolis , Indiana , USA.,e VA Roudebush Medical Center , Indianapolis , Indiana , USA
| | - Sarath Chandra Janga
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA.,f Centre for Computational Biology and Bioinformatics , Indiana University School of Medicine , 5021 Health Information and Translational Sciences (HITS), Indianapolis , Indiana , USA.,g Department of Medical and Molecular Genetics , Indiana University School of Medicine , Medical Research and Library Building, Indianapolis , Indiana , USA
| |
Collapse
|
19
|
Okutman O, Muller J, Skory V, Garnier JM, Gaucherot A, Baert Y, Lamour V, Serdarogullari M, Gultomruk M, Röpke A, Kliesch S, Herbepin V, Aknin I, Benkhalifa M, Teletin M, Bakircioglu E, Goossens E, Charlet-Berguerand N, Bahceci M, Tüttelmann F, Viville ST. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J Assist Reprod Genet 2017; 34:683-694. [PMID: 28401488 DOI: 10.1007/s10815-017-0900-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this study was to identify mutations that cause non-syndromic male infertility using whole exome sequencing of family cases. METHODS We recruited a consanguineous Turkish family comprising nine siblings with male triplets; two of the triplets were infertile as well as one younger infertile brother. Whole exome sequencing (WES) performed on two azoospermic brothers identified a mutation in the melanoma antigen family B4 (MAGEB4) gene which was confirmed via Sanger sequencing and then screened for on control groups and unrelated infertile subjects. The effect of the mutation on messenger RNA (mRNA) and protein levels was tested after in vitro cell transfection. Structural features of MAGEB4 were predicted throughout the conserved MAGE domain. RESULTS The novel single-base substitution (c.1041A>T) in the X-linked MAGEB4 gene was identified as a no-stop mutation. The mutation is predicted to add 24 amino acids to the C-terminus of MAGEB4. Our functional studies were unable to detect any effect either on mRNA stability, intracellular localization of the protein, or the ability to homodimerize/heterodimerize with other MAGE proteins. We thus hypothesize that these additional amino acids may affect the proper protein interactions with MAGEB4 partners. CONCLUSION The whole exome analysis of a consanguineous Turkish family revealed MAGEB4 as a possible new X-linked cause of inherited male infertility. This study provides the first clue to the physiological function of a MAGE protein.
Collapse
Affiliation(s)
- Ozlem Okutman
- Département Génomique Fonctionnelle et Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg, France
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Valerie Skory
- Département Génomique Fonctionnelle et Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | - Jean Marie Garnier
- Biologie du développement et cellules souches, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | - Angeline Gaucherot
- Médecine translationnelle et neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | - Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Valérie Lamour
- Département Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | | | | | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | | | - Isabelle Aknin
- Reproductive Biology Unit, CHU-Hôpital Nord, Saint-Etienne, France
| | - Moncef Benkhalifa
- Médecine de la Reproduction et Cytogénétique Médicale CHU et Faculté de Médecine, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Marius Teletin
- Département Génomique Fonctionnelle et Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | | | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Nicolas Charlet-Berguerand
- Médecine translationnelle et neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France
| | | | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - STéphane Viville
- Département Génomique Fonctionnelle et Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404, Illkirch, France.
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, 67000, Strasbourg, France.
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
- Laboratoire de diagnostic génétique, UF3472-génétique de l'infertilité, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, 67091, Strasbourg cedex, France.
| |
Collapse
|
20
|
Sun J, Hao Z, Luo H, He C, Mei L, Liu Y, Wang X, Niu Z, Chen H, Li JD, Feng Y. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2. J Hum Genet 2017; 62:703-709. [PMID: 28356565 PMCID: PMC5489919 DOI: 10.1038/jhg.2017.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.
Collapse
Affiliation(s)
- Jie Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,Department of Otolaryngology, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, People's Republic of China.,Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central south University, Hunan, People's Republic of China
| | - Ziqi Hao
- Department of Center Laboratory, Taiyuan Central Hospital, Shanxi, People's Republic of China
| | - Hunjin Luo
- State Key Laboratory of Medical Genetics, Central South University, Hunan, People's Republic of China
| | - Chufeng He
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central south University, Hunan, People's Republic of China
| | - Lingyun Mei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central south University, Hunan, People's Republic of China
| | - Yalan Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central south University, Hunan, People's Republic of China
| | - Xueping Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhijie Niu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Hongsheng Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Jia-Da Li
- State Key Laboratory of Medical Genetics, Central South University, Hunan, People's Republic of China
| | - Yong Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China.,Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central south University, Hunan, People's Republic of China.,Department of Center Laboratory, Taiyuan Central Hospital, Shanxi, People's Republic of China.,State Key Laboratory of Medical Genetics, Central South University, Hunan, People's Republic of China
| |
Collapse
|
21
|
Just S, Raphel L, Berger IM, Bühler A, Keßler M, Rottbauer W. Tbx20 Is an Essential Regulator of Embryonic Heart Growth in Zebrafish. PLoS One 2016; 11:e0167306. [PMID: 27907103 PMCID: PMC5132222 DOI: 10.1371/journal.pone.0167306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that regulate cardiomyocyte proliferation during embryonic heart growth are not completely deciphered yet. In a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified the recessive embryonic-lethal zebrafish mutant line weiches herz (whz). Homozygous mutant whz embryos display impaired heart growth due to diminished embryonic cardiomyocyte proliferation resulting in cardiac hypoplasia and weak cardiac contraction. By positional cloning, we found in whz mutant zebrafish a missense mutation within the T-box 20 (Tbx20) transcription factor gene leading to destabilization of Tbx20 protein. Morpholino-mediated knock-down of Tbx20 in wild-type zebrafish embryos phenocopies whz, indicating that the whz phenotype is due to loss of Tbx20 function, thereby leading to significantly reduced cardiomyocyte numbers by impaired proliferation of heart muscle cells. Ectopic overexpression of wild-type Tbx20 in whz mutant embryos restored cardiomyocyte proliferation and heart growth. Interestingly, ectopic overexpression of Tbx20 in wild-type zebrafish embryos resulted, similar to the situation in the embryonic mouse heart, in significantly reduced proliferation rates of ventricular cardiomyocytes, suggesting that Tbx20 activity needs to be tightly fine-tuned to guarantee regular cardiomyocyte proliferation and embryonic heart growth in vivo.
Collapse
Affiliation(s)
- Steffen Just
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| | - Linda Raphel
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Ina M. Berger
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Anja Bühler
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Mirjam Keßler
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Wolfgang Rottbauer
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| |
Collapse
|
22
|
Arribere JA, Cenik ES, Jain N, Hess GT, Lee CH, Bassik MC, Fire AZ. Translation readthrough mitigation. Nature 2016; 534:719-23. [PMID: 27281202 PMCID: PMC5054982 DOI: 10.1038/nature18308] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors.
Collapse
|
23
|
Rebelo AP, Abrams AJ, Cottenie E, Horga A, Gonzalez M, Bis DM, Sanchez-Mejias A, Pinto M, Buglo E, Markel K, Prince J, Laura M, Houlden H, Blake J, Woodward C, Sweeney MG, Holton JL, Hanna M, Dallman JE, Auer-Grumbach M, Reilly MM, Zuchner S. Cryptic Amyloidogenic Elements in the 3' UTRs of Neurofilament Genes Trigger Axonal Neuropathy. Am J Hum Genet 2016; 98:597-614. [PMID: 27040688 PMCID: PMC4833435 DOI: 10.1016/j.ajhg.2016.02.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alexander J Abrams
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ellen Cottenie
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael Gonzalez
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dana M Bis
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Avencia Sanchez-Mejias
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Milena Pinto
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Elena Buglo
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kasey Markel
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | - Jeffrey Prince
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julian Blake
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Cathy Woodward
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mary G Sweeney
- Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julia E Dallman
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | | | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
24
|
Yap HYY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis. PLoS One 2015; 10:e0143549. [PMID: 26606395 PMCID: PMC4659598 DOI: 10.1371/journal.pone.0143549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/05/2015] [Indexed: 12/05/2022] Open
Abstract
Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
Collapse
Affiliation(s)
- Hui-Yeng Y. Yap
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Yit-Heng Chooi
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Szu-Ting Ng
- Ligno Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Nget-Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Wong TY, Schwartzbach SD. Protein Mis-Termination Initiates Genetic Diseases, Cancers, and Restricts Bacterial Genome Expansion. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:255-285. [PMID: 26087060 DOI: 10.1080/10590501.2015.1053461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein termination is an important cellular process. Protein termination relies on the stop-codons in the mRNA interacting properly with the releasing factors on the ribosome. One third of inherited diseases, including cancers, are associated with the mutation of the stop-codons. Many pathogens and viruses are able to manipulate their stop-codons to express their virulence. The influence of stop-codons is not limited to the primary reading frame of the genes. Stop-codons in the second and third reading frames are referred as premature stop signals (PSC). Stop-codons and PSCs together are collectively referred as stop-signals. The ratios of the stop-signals (referred as translation stop-signals ratio or TSSR) of genetically related bacteria, despite their great differences in gene contents, are much alike. This nearly identical Genomic-TSSR value of genetically related bacteria may suggest that bacterial genome expansion is limited by their unique stop-signals bias. We review the protein termination process and the different types of stop-codon mutation in plants, animals, microbes, and viruses, with special emphasis on the role of PSCs in directing bacterial evolution in their natural environments. Knowing the limit of genomic boundary could facilitate the formulation of new strategies in controlling the spread of diseases and combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Tit-Yee Wong
- a Department of Biological Sciences , University of Memphis , Memphis , Tennessee , USA
| | | |
Collapse
|
26
|
Wong SW, Liu HC, Han D, Chang HG, Zhao HS, Wang YX, Feng HL. A novel non-stop mutation in MSX1 causing autosomal dominant non-syndromic oligodontia. Mutagenesis 2014; 29:319-23. [PMID: 24914010 DOI: 10.1093/mutage/geu019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oligodontia, which is the congenital absence of six or more permanent teeth, excluding the third molars, may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. Msh homeobox 1 (MSX1) was the first gene identified as causing non-syndromic oligodontia. In this study, we identified a novel heterozygous non-stop mutation (c.910_911dupTA, p.*304Tyrext*48) in MSX1 in a Chinese family with autosomal dominant non-syndromic oligodontia. This novel mutation substitutes the stop codon with a tyrosine residue, potentially adding 48 amino acids to the C-terminus of MSX1. Further in vitro study found that mutant MSX1 could be expressed but had lost its ability to enter the nucleus. This is the first report indicating that a non-stop mutation in MSX1 is responsible for oligodontia. This study broadens the mutation spectrum for MSX1 and provides a new way to clarify the mechanism of MSX1 in tooth agenesis.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Hao-Chen Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Dong Han
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Huai-Guang Chang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Hong-Shan Zhao
- Department of Medical Genetics and Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing 100191, China and
| | - Yi-Xiang Wang
- Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | - Hai-Lan Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China,
| |
Collapse
|
27
|
Goldstein O, Jordan JA, Aguirre GD, Acland GM. A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs. Mol Vis 2013; 19:1871-84. [PMID: 24019744 PMCID: PMC3762564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify the causative mutation of canine progressive retinal atrophy (PRA) segregating as an adult onset autosomal recessive disorder in the Basenji breed of dog. METHODS Basenji dogs were ascertained for the PRA phenotype by clinical ophthalmoscopic examination. Blood samples from six affected cases and three nonaffected controls were collected, and DNA extraction was used for a genome-wide association study using the canine HD Illumina single nucleotide polymorphism (SNP) array and PLINK. Positional candidate genes identified within the peak association signal region were evaluated. RESULTS The highest -Log10(P) value of 4.65 was obtained for 12 single nucleotide polymorphisms on three chromosomes. Homozygosity and linkage disequilibrium analyses favored one chromosome, CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T>C), which would result in the addition of 25 amino acids (p.*405Rext*25). CONCLUSIONS Identification of this non-stop SAG mutation in dogs affected with retinal degeneration establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis pigmentosa in humans, and offers opportunities for genetic therapeutic intervention.
Collapse
Affiliation(s)
- Orly Goldstein
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Julie Ann Jordan
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Gustavo D. Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory M. Acland
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
| |
Collapse
|
28
|
Zhang T, Huang Y, Chamberlain S, Romeo T, Zhu-Shimoni J, Hewitt D, Zhu M, Katta V, Mauger B, Kao YH. Identification of a single base-pair mutation of TAA (Stop codon) → GAA (Glu) that causes light chain extension in a CHO cell derived IgG1. MAbs 2012; 4:694-700. [PMID: 23018810 PMCID: PMC3502236 DOI: 10.4161/mabs.22232] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We describe here the identification of a stop codon TAA (Stop) → GAA (Glu) = Stop221E mutation on the light chain of a recombinant IgG1 antibody expressed in a Chinese hamster ovary (CHO) cell line. The extended light chain variants, which were caused by translation beyond the mutated stop codon to the next alternative in-frame stop codon, were observed by mass spectra analysis. The abnormal peptide peaks present in tryptic and chymotryptic LC–MS peptide mapping were confirmed by N-terminal sequencing as C-terminal light chain extension peptides. Furthermore, LC-MS/MS of Glu-C peptide mapping confirmed the stop221E mutation, which is consistent with a single base-pair mutation in TAA (stop codon) to GAA (Glu). The light chain variants were approximately 13.6% of wild type light chain as estimated by RP-HPLC analysis. DNA sequencing techniques determined a single base pair stop codon mutation, instead of a stop codon read-through, as the cause of this light chain extension. To our knowledge, the stop codon mutation has not been reported for IgGs expressed in CHO cells. These results demonstrate orthogonal techniques should be implemented to characterize recombinant proteins and select appropriate cell lines for production of therapeutic proteins because modifications could occur at unexpected locations.
Collapse
Affiliation(s)
- Taylor Zhang
- Protein Analytical Chemistry, Genentech, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:649-60. [PMID: 22740367 DOI: 10.1002/wrna.1124] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonstop decay is the mechanism of identifying and disposing aberrant transcripts that lack in-frame stop codons. It is hypothesized that these transcripts are identified during translation when the ribosome arrives at the 3' end of the mRNA and stalls. Presumably, the ribosome stalling recruits additional cofactors, Ski7 and the exosome complex. The exosome degrades the transcript using either one of its ribonucleolytic activities, and the ribosome and the peptide are both released. Additional precautionary measures by the nonstop decay pathway may include translational repression of the nonstop transcript after translation, and proteolysis of the released peptide by the proteasome. This surveillance mechanism protects the cells from potentially harmful truncated proteins, but it may also be involved in mediating critical cellular functions of transcripts that are prone to stop codon read-through. Important advances have been made in the past decade as we learn that nonstop decay may have implications in human disease.
Collapse
Affiliation(s)
- A Alejandra Klauer
- Microbiology and Molecular Genetics, University of Texas Health Science University-Houston, Houston, TX, USA
| | | |
Collapse
|
30
|
Audrézet MP, Cornec-Le Gall E, Chen JM, Redon S, Quéré I, Creff J, Bénech C, Maestri S, Le Meur Y, Férec C. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 2012; 33:1239-50. [PMID: 22508176 DOI: 10.1002/humu.22103] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/02/2012] [Indexed: 11/06/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.
Collapse
|
31
|
Wolf A, Caliebe A, Thomas NS, Ball EV, Mort M, Stenson PD, Krawczak M, Cooper DN. Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Hum Mutat 2011; 32:1137-43. [DOI: 10.1002/humu.21547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 11/05/2022]
|