1
|
Castelein J, Duus AS, Bække PS, Sack I, Anders MS, Kettless K, Hansen AE, Dierckx RAJO, De Backer O, Vejlstrup NG, Lund MAV, Borra RJH. Reproducibility of Cardiac Multifrequency MR Elastography in Assessing Left Ventricular Stiffness and Viscosity. J Magn Reson Imaging 2024. [PMID: 39449547 DOI: 10.1002/jmri.29640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Cardiac magnetic resonance elastography (MRE) shows promise in assessing the mechanofunctional properties of the heart but faces clinical challenges, mainly synchronization with cardiac cycle, breathing, and external harmonic stimulation. PURPOSE To determine the reproducibility of in vivo cardiac multifrequency MRE (MMRE) for assessing diastolic left ventricular (LV) stiffness and viscosity. STUDY TYPE Prospective. SUBJECTS This single-center study included a total of 28 participants (mean age, 56.6 ± 23.0 years; 16 male) consisting of randomly selected healthy participants (mean age, 44.6 ± 20.1 years; 9 male) and patients with aortic stenosis (mean age, 78.3 ± 3.8 years; 7 male). FIELD STRENGTH/SEQUENCE 3 T, 3D multifrequency MRE with a single-shot spin-echo planar imaging sequence. ASSESSMENT Each participant underwent two cardiac MMRE examinations on the same day. Full 3D wave fields were acquired in diastole at frequencies of 80, 90, and 100 Hz during a total of three breath-holds. Shear wave speed (SWS) and penetration rate (PR) were reconstructed as a surrogate for tissue stiffness and inverse viscous loss. Epicardial and endocardial ROIs were manually drawn by two independent readers to segment the LV myocardium. STATISTICAL TESTS Shapiro-Wilk test, Bland-Altman analysis and intraclass correlation coefficient (ICC). P-value <0.05 were considered statistically significant. RESULTS Bland-Altman analyses and intraclass correlation coefficients (ICC = 0.96 for myocardial stiffness and ICC = 0.93 for viscosity) indicated near-perfect test-retest repeatability among examinations on the same day. The mean SWS for scan and re-scan diastolic LV myocardium were 2.42 ± 0.24 m/s and 2.39 ± 0.23 m/s; the mean PR were 1.24 ± 0.17 m/s and 1.22 ± 0.14 m/s. Inter-reader variability showed good to excellent agreement for myocardial stiffness (ICC = 0.92) and viscosity (ICC = 0.85). DATA CONCLUSION Cardiac MMRE is a promising and reproducible method for noninvasive assessment of diastolic LV stiffness and viscosity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Johannes Castelein
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amanda S Duus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille S Bække
- The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ingolf Sack
- Department of Radiology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias S Anders
- Department of Radiology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Kettless
- Deparment of Research and Collaboration, Siemens Healthcare A/S, Ballerup, Denmark
| | - Adam E Hansen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ole De Backer
- The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels G Vejlstrup
- The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten A V Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Zoppini G, Bergamini C, Trombetta M, Mantovani A, Targher G, Toffalini A, Bittante C, Bonora E. Echocardiographic parameters according to insulin dose in young patients affected by type 1 diabetes. PLoS One 2020; 15:e0244483. [PMID: 33370380 PMCID: PMC7769446 DOI: 10.1371/journal.pone.0244483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Insulin dose has been found to associate to several cardiometabolic risk factors in type 1 diabetes. Changes over time in body weight and composition may partly explain this association. However, no data are available on the relationship between insulin dose and echocardiographic parameters of both systolic and diastolic function in type 1 diabetes. Therefore, the aim of the present study was to examine systolic and diastolic echocardiographic parameters in relation to insulin dose in young patients with type 1 diabetes. The study was carried out on 93 consecutive outpatients with type 1 diabetes with a mean age of 32.8 ± 9.8 years. All patients were examined with a transthoracic echocardiography. Clinical and laboratory data were collected. The median value of daily insulin dose was used to categorized patients in two groups: high and low insulin dose group. Patients belonging to the high insulin dose group showed higher levels of cardiometabolic risk factors such as BMI, triglycerides and TG/HDL cholesterol ratio. Indexes of both systolic and diastolic function were similar in both groups except isovolumetric relaxation time (IVRT), that was significantly prolonged in patients of the high insulin group (94.4 ± 15.0 vs 86.7 ± 13.1 ms, p = 0.008). In the multivariate regression analysis, insulin dose was positively and significantly associated with IVRT. In this study we report an association between insulin dose and impaired active diastolic myocardial relaxation. Future studies are needed to further explore this observation.
Collapse
Affiliation(s)
- Giacomo Zoppini
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Corinna Bergamini
- Section of Cardiology, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Anna Toffalini
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cristina Bittante
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Enzo Bonora
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
3
|
Zhu J, He X, Chen Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. APPLIED SPECTROSCOPY REVIEWS 2019; 54:457-481. [PMID: 31749516 PMCID: PMC6867804 DOI: 10.1080/05704928.2018.1467436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biomechanical properties of soft tissues are important indicators of tissue functions which can be used for clinical diagnosis and disease monitoring. Elastography, incorporating the principles of elasticity measurements into imaging modalities, provides quantitative assessment of elastic properties of biological tissues. Benefiting from high-resolution, noninvasive and three-dimensional optical coherence tomography (OCT), optical coherence elastography (OCE) is an emerging optical imaging modality to characterize and map biomechanical properties of soft tissues. Recently, acoustic radiation force (ARF) OCE has been developed for elasticity measurements of ocular tissues, detection of vascular lesions and monitoring of blood coagulation based on remote and noninvasive ARF excitation to both internal and superficial tissues. Here, we describe the advantages of the ARF-OCE technique, the measurement methods in ARF-OCE, the applications in biomedical detection, current challenges and advances. ARF-OCE technology has the potential to become a powerful tool for in vivo elasticity assessment of biological samples in a non-contact, non-invasive and high-resolution nature.
Collapse
Affiliation(s)
- Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | - Xingdao He
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
4
|
Nenadic IZ, Urban MW, Pislaru C, Escobar D, Vasconcelos L, Greenleaf JF. In Vivo Open- and Closed-chest Measurements of Left-Ventricular Myocardial Viscoelasticity using Lamb wave Dispersion Ultrasound Vibrometry (LDUV): A Feasibility Study. Biomed Phys Eng Express 2018; 4. [PMID: 30455983 DOI: 10.1088/2057-1976/aabe41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diastolic dysfunction causes close to half of congestive heart failures and is associated with increased stiffness in left-ventricular myocardium. A clinical tool capable of measuring viscoelasticity of the myocardium could be beneficial in clinical settings. We used Lamb wave Dispersion Ultrasound Vibrometry (LDUV) for assessing the feasibility of making in vivo non-invasive measurements of myocardial elasticity and viscosity in pigs. In vivo open-chest measurements of myocardial elasticity and viscosity obtained using a Fourier space based analysis of Lamb wave dispersion are reported. The approach was used to perform ECG-gated transthoracic in vivo measurements of group velocity, elasticity and viscosity throughout a single heart cycle. Group velocity, elasticity and viscosity in the frequency range 50-500 Hz increased from diastole to systole, consistent with contraction and relaxation of the myocardium. Systolic group velocity, elasticity and viscosity were 5.0 m/s, 19.1 kPa, 6.8 Pa·s, respectively. In diastole, the measured group velocity, elasticity and viscosity were 1.5 m/s, 5.1 kPa and 3.2 Pa·s, respectively.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA.,Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Cristina Pislaru
- Division of Cardiovascular Diseases, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Daniel Escobar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Luiz Vasconcelos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Miller R, Kolipaka A, Nash MP, Young AA. Relative identifiability of anisotropic properties from magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3848. [PMID: 29106765 PMCID: PMC5936684 DOI: 10.1002/nbm.3848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 05/24/2023]
Abstract
Although magnetic resonance elastography (MRE) has been used to estimate isotropic stiffness in the heart, myocardium is known to have anisotropic properties. This study investigated the determinability of global transversely isotropic material parameters using MRE and finite-element modeling (FEM). A FEM-based material parameter identification method, using a displacement-matching objective function, was evaluated in a gel phantom and simulations of a left ventricular (LV) geometry with a histology-derived fiber field. Material parameter estimation was performed in the presence of Gaussian noise. Parameter sweeps were analyzed and characteristics of the Hessian matrix at the optimal solution were used to evaluate the determinability of each constitutive parameter. Four out of five material stiffness parameters (Young's modulii E1 and E3 , shear modulus G13 and damping coefficient s), which describe a transversely isotropic linear elastic material, were well determined from the MRE displacement field using an iterative FEM inversion method. However, the remaining parameter, Poisson's ratio, was less identifiable. In conclusion, Young's modulii, shear modulii and damping can theoretically be well determined from MRE data, but Poisson's ratio is not as well determined and could be set to a reasonable value for biological tissue (close to 0.5).
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science, University of Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
6
|
Miller R, Kolipaka A, Nash MP, Young AA. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34. [PMID: 29528568 PMCID: PMC5993646 DOI: 10.1002/cnm.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martyn P. Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Vejdani-Jahromi M, Freedman J, Kim YJ, Trahey GE, Wolf PD. Assessment of Diastolic Function Using Ultrasound Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:551-561. [PMID: 29331356 PMCID: PMC5873966 DOI: 10.1016/j.ultrasmedbio.2017.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Shear wave elasticity imaging (SWEI) is a novel ultrasound elastography technique for assessing tissue stiffness. In this study, we investigate the potential of SWEI for providing diastolic functional assessment. In 11 isolated rabbit hearts, pressure-volume (PV) measurements were recorded simultaneously with SWEI recordings from the left ventricle free wall before and after induction of global ischemia. PV-based end diastolic stiffness increased by 100% after ischemia (p <0.05), and SWEI stiffness showed an increase of 103% (p <0.05). The relaxation time constant (τ) before and after ischemia derived from pressure and SWEI curves showed increases of 79% and 76%, respectively (p <0.05). A linear regression between pressure-derived and SWEI-based (τ) showed a slope of 1.164 with R2 = 0.80, indicating the near equivalence of the two assessments. SWEI can be used to derive (τ) values and myocardial end diastolic stiffness. In global conditions, these measurements are consistent with PV measurements of diastolic function.
Collapse
Affiliation(s)
| | - Jenna Freedman
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Young-Joong Kim
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Gregg E Trahey
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Patrick D Wolf
- Biomedical Engineering Department, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 2017; 46:1361-1367. [PMID: 28236336 PMCID: PMC5572539 DOI: 10.1002/jmri.25678] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high‐frequency cardiac MRE technique capable of making noninvasive stiffness measurements. Materials and Methods In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head‐first in the supine position in a 1.5T closed‐bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short‐axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal‐to‐noise ratio (OSS‐SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. Results Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS‐SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). Conclusion This study demonstrates the feasibility of 3D high‐frequency cardiac MRE as a contrast‐agent‐free diagnostic imaging technique for cardiac amyloidosis. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361–1367.
Collapse
Affiliation(s)
- Arvin Arani
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ian C Y Chang
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - Martha Grogan
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Medicine: Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
9
|
Vejdani-Jahromi M, Nagle M, Jiang Y, Trahey GE, Wolf PD. A Comparison of Acoustic Radiation Force-Derived Indices of Cardiac Function in the Langendorff Perfused Rabbit Heart. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1288-95. [PMID: 27008665 PMCID: PMC5068575 DOI: 10.1109/tuffc.2016.2543026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the past decade, there has been an increased interest in characterizing cardiac tissue mechanics utilizing newly developed ultrasound-based elastography techniques. These methods excite the tissue mechanically and track the response. Two frequently used methods, acoustic radiation force impulse (ARFI) and shear-wave elasticity imaging (SWEI), have been considered qualitative and quantitative techniques providing relative and absolute measures of tissue stiffness, respectively. Depending on imaging conditions, it is desirable to identify indices of cardiac function that could be measured by ARFI and SWEI and to characterize the relationship between the measures. In this study, we have compared two indices (i.e., relaxation time constant used for diastolic dysfunction assessment and systolic/diastolic stiffness ratio) measured nearly simultaneously by M-mode ARFI and SWEI techniques. We additionally correlated ARFI-measured inverse displacements with SWEI-measured values of the shear modulus of stiffness. For the eight animals studied, the average relaxation time constant ( τ) measured by ARFI and SWEI were ([Formula: see text]) and ([Formula: see text]), respectively ([Formula: see text]). Average systolic/diastolic stiffness ratios for ARFI and SWEI measurements were 6.01±1.37 and 7.12±3.24, respectively ([Formula: see text]). Shear modulus of stiffness (SWEI) was linearly related to inverse displacement values (ARFI) with a 95% CI for the slope of 0.010-0.011 [Formula: see text] ( R(2)=0.73). In conclusion, the relaxation time constant and the systolic/diastolic stiffness ratio were calculated with good agreement between the ARFI- and SWEI-derived measurements. ARFI relative and SWEI absolute stiffness measurements were linearly related with varying slopes based on imaging conditions and subject tissue properties.
Collapse
|
10
|
Arani A, Glaser KL, Arunachalam SP, Rossman PJ, Lake DS, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers. Magn Reson Med 2016; 77:351-360. [PMID: 26778442 DOI: 10.1002/mrm.26101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. METHODS The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). RESULTS The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. CONCLUSION This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin L Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - David S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Time-Resolved Analysis of Left Ventricular Shear Wave Amplitudes in Cardiac Elastography for the Diagnosis of Diastolic Dysfunction. Invest Radiol 2016; 51:1-6. [DOI: 10.1097/rli.0000000000000198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Wassenaar PA, Eleswarpu CN, Schroeder SA, Mo X, Raterman BD, White RD, Kolipaka A. Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: A reproducibility study. Magn Reson Med 2015; 75:1586-93. [PMID: 26010456 DOI: 10.1002/mrm.25760] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using MR elastography (MRE) and to determine its correlation with age. METHODS Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. RESULTS Concordance correlation coefficient revealed good interscan agreement with rc of 0.77, with P-value < 0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared with end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. CONCLUSION CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared with ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two.
Collapse
Affiliation(s)
- Peter A Wassenaar
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chethanya N Eleswarpu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Samuel A Schroeder
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Brian D Raterman
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
13
|
Zhu J, Qu Y, Ma T, Li R, Du Y, Huang S, Shung KK, Zhou Q, Chen Z. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method. OPTICS LETTERS 2015; 40:2099-102. [PMID: 25927794 PMCID: PMC4537318 DOI: 10.1364/ol.40.002099] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Collapse
Affiliation(s)
- Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Yueqiao Qu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| | - Teng Ma
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - Rui Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Yongzhao Du
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Shenghai Huang
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
- Corresponding author:
| |
Collapse
|
14
|
Pislaru C, Urban MW, Pislaru SV, Kinnick RR, Greenleaf JF. Viscoelastic properties of normal and infarcted myocardium measured by a multifrequency shear wave method: comparison with pressure-segment length method. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1785-95. [PMID: 24814645 PMCID: PMC4118646 DOI: 10.1016/j.ultrasmedbio.2014.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/19/2014] [Accepted: 03/01/2014] [Indexed: 05/02/2023]
Abstract
Our aims were (i) to compare in vivo measurements of myocardial elasticity by shear wave dispersion ultrasound vibrometry (SDUV) with those by the conventional pressure-segment length method, and (ii) to quantify changes in myocardial viscoelasticity during systole and diastole after reperfused acute myocardial infarction. The shear elastic modulus (μ1) and viscous coefficient (μ2) of left ventricular myocardium were measured by SDUV in 10 pigs. Young's elastic modulus was independently measured by the pressure-segment length method. Measurements made with the SDUV and pressure-segment length methods were strongly correlated. At reperfusion, μ1 and μ2 in end-diastole were increased. Less consistent changes were found during systole. In all animals, μ1 increased linearly with left ventricular pressure developed during systole. Preliminary results suggest that μ1 is preload dependent. This is the first study to validate in vivo measurements of myocardial elasticity by a shear wave method. In this animal model, the alterations in myocardial viscoelasticity after a myocardial infarction were most consistently detected during diastole.
Collapse
Affiliation(s)
- Cristina Pislaru
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sorin V Pislaru
- Cardiovascular Division, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Randall R Kinnick
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Elgeti T, Knebel F, Hättasch R, Hamm B, Braun J, Sack I. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology 2014; 271:681-7. [PMID: 24475861 DOI: 10.1148/radiol.13131605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To test whether shear-wave amplitudes (SWAs) in the myocardium measured with cardiac magnetic resonance (MR) elastography enable diagnosis of myocardial relaxation abnormalities in patients with diastolic dysfunction. MATERIALS AND METHODS Each subject gave written informed consent to participate in this institutional review board-approved prospective study. Electrocardiographically triggered SWA-based cardiac MR elastography with 24.13-Hz external vibration frequency was performed in 50 subjects grouped into asymptomatic young (n = 10, 18-39 years) and asymptomatic old (n = 10, 40-68 years) subjects and patients with echocardiographically proved mild, moderate, or severe diastolic dysfunction (n = 30, 44-73 years). SWA images were analyzed in the left ventricular (LV) region and were normalized against reference SWA of the thoracic wall. Analysis of variance with Bonferroni-corrected pairwise comparison and Pearson correlation were used for statistical evaluation. RESULTS Young and old control subjects had normalized mean LV SWA of 0.67 ± 0.04 (standard error of the mean) and 0.56 ± 0.04 (P = .18, F test), respectively. Compared with the control groups, patients with mild, moderate, and severe diastolic dysfunction displayed significantly reduced normalized mean LV SWA of 0.37 ± 0.04, 0.34 ± 0.04, and 0.29 ± 0.04 (P < .001, F test), respectively, which was inversely correlated to the severity of diastolic dysfunction (R = -0.61, P < .001). The best cutoff value to differentiate between asymptomatic volunteers and patients was 0.43, yielding an area under the receiver operating characteristic curve of 0.92, with 90% sensitivity and 89.7% specificity. CONCLUSION LV SWA measured with cardiac MR elastography provides image contrast sensitive to myocardial relaxation abnormalities and shows significantly lower values in patients with diastolic dysfunction.
Collapse
Affiliation(s)
- Thomas Elgeti
- From the Department of Radiology (T.E., B.H., I.S.), Department of Cardiology, Angiology and Pulmonology (F.K., R.H.), and Institute of Medical Informatics (J.B.), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Tzschätzsch H, Hättasch R, Knebel F, Klaua R, Schultz M, Jenderka KV, Braun J, Sack I. Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2272-2278. [PMID: 24035628 DOI: 10.1016/j.ultrasmedbio.2013.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Time harmonic elastography (THE) has recently been introduced for measurement of the periodic alteration in myocardial shear modulus based on externally induced low-frequency acoustic vibrations produced by a loudspeaker. In this study, we propose further developments of cardiac THE toward a clinical modality including integration of the vibration source into the patient bed and automated parameter extraction from harmonic shear wave amplitudes, wall motion profiles and synchronized electrocardiographic records. This method has enabled us to evaluate the delay between wall motion and wave amplitude alteration for the measurement of isovolumetric times of elasticity alteration during contraction (τ(C)) and relaxation (τ(R)) in a group of 32 healthy volunteers. On average, the wave amplitudes changed between systole and diastole by a factor of 1.7 ± 0.3, with a τ(C) of 137 ± 61 ms and a τ(R) of 68 ± 73 ms, which agrees with results obtained with the more time-consuming and expensive cardiac magnetic resonance elastography. Furthermore, because of the high sampling rate, elasto-morphometric parameters such as transition times and the area of wave amplitude-cardiac motion cycles can be processed in an automated way for the future clinical detection of myocardial relaxation abnormalities.
Collapse
Affiliation(s)
- Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Urban MW, Pislaru C, Nenadic IZ, Kinnick RR, Greenleaf JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:247-61. [PMID: 23060325 PMCID: PMC3562367 DOI: 10.1109/tmi.2012.2222656] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ(1), and viscosity, μ(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle.
Collapse
Affiliation(s)
- Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
19
|
Pennell DJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2011. J Cardiovasc Magn Reson 2012; 14:78. [PMID: 23158097 PMCID: PMC3519784 DOI: 10.1186/1532-429x-14-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022] Open
Abstract
There were 83 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2011, which is an 11% increase in the number of articles since 2010. The quality of the submissions continues to increase. The editors had been delighted with the 2010 JCMR Impact Factor of 4.33, although this fell modestly to 3.72 for 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, we remain very pleased with the progress of the journal's impact over the last 5 years. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors feel it is useful to summarize the papers for the readership into broad areas of interest or theme, which we feel would be useful, so that areas of interest from the previous year can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - John Paul Carpenter
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
20
|
Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36:757-74. [PMID: 22987755 PMCID: PMC3462370 DOI: 10.1002/jmri.23597] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications.
Collapse
Affiliation(s)
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
21
|
Kolipaka A, Aggarwal SR, McGee KP, Anavekar N, Manduca A, Ehman RL, Araoz PA. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging 2012; 36:120-7. [PMID: 22334349 PMCID: PMC3355216 DOI: 10.1002/jmri.23616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine whether increasing epinephrine infusion in an in vivo pig model is associated with an increase in end-systolic magnetic resonance elastography (MRE)-derived effective stiffness. MATERIALS AND METHODS Finite element modeling (FEM) was performed to determine the range of myocardial wall thicknesses that could be used for analysis. Then MRE was performed on five pigs to measure the end-systolic effective stiffness with epinephrine infusion. Epinephrine was continuously infused intravenously in each pig to increase the heart rate in increments of 20%. For each such increase end-systolic effective stiffness was measured using MRE. In each pig, Student's t-test was used to compare effective end-systolic stiffness at baseline and at initial infusion of epinephrine. Least-square linear regression was performed to determine the correlation between normalized end-systolic effective stiffness and increase in heart rate with epinephrine infusion. RESULTS FEM showed that phase gradient inversion could be performed on wall thickness ≈≥1.5 cm. In pigs, effective end-systolic stiffness significantly increased from baseline to the first infusion in all pigs (P = 0.047). A linear correlation was found between normalized effective end-systolic stiffness and percent increase in heart rate by epinephrine infusion with R(2) ranging from 0.86-0.99 in four pigs. In one of the pigs the R(2) value was 0.1. A linear correlation with R(2) = 0.58 was found between normalized effective end-systolic stiffness and percent increase in heart rate when pooling data points from all pigs. CONCLUSION Noninvasive MRE-derived end-systolic effective myocardial stiffness may be a surrogate for myocardial contractility.
Collapse
Affiliation(s)
| | | | | | - Nandan Anavekar
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | | | | | | |
Collapse
|
22
|
Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J 2012; 23:459-66. [PMID: 22072417 PMCID: PMC3306492 DOI: 10.1007/s00192-011-1592-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/17/2011] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Vaginal tactile imaging (VTI) is based on principles similar to those of manual palpation. The objective of this study is to assess the clinical suitability of new approach for imaging and tissue elasticity quantification under normal and prolapse conditions. METHODS The study subjects included 31 women with normal and prolapse conditions. The tissue elasticity (Young's modulus) was calculated from spatial gradients in the resulting 3-D tactile images. RESULTS Average values for tissue elasticity for the anterior and posterior compartments for normal conditions were 7.4 ± 4.3 kPa and 6.2 ± 3.1 kPa respectively. For Stage III prolapse the average values for tissue elasticity for anterior and posterior compartments were 1.8 ± 0.7 kPa and 1.8 ± 0.5 kPa respectively. CONCLUSIONS VTI may serve as a means for 3-D imaging of the vagina and a quantitative assessment of vaginal tissue elasticity, providing important information for furthering our understanding of pelvic organ prolapse and surgical treatment.
Collapse
|
23
|
Tzschätzsch H, Elgeti T, Rettig K, Kargel C, Klaua R, Schultz M, Braun J, Sack I. In Vivo time harmonic elastography of the human heart. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:214-222. [PMID: 22178163 DOI: 10.1016/j.ultrasmedbio.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 05/31/2023]
Abstract
Time harmonic elastography is introduced as a modality for assessing myocardial elasticity changes during the cardiac cycle. It is based on external stimulation and real-time analysis of 30-Hz harmonic shear waves in axial direction of a parasternal line of sight through the lateral heart wall. In 20 healthy volunteers, the externally induced waves showed smaller amplitudes during systole (76.0 ± 30.8 μm) and higher amplitudes during diastole (126.7 ± 52.1 μm). This periodic wave amplitude alteration preceded ventricular contraction and dilation by about 100 ms. The amplitude ratio of 1.75 ± 0.49 indicates a relative change in myocardial shear elasticity on the order of 14 ± 11. These results well agree with observations made by cardiac magnetic resonance elastography for a similar displacement component and region of the heart. The proposed method provides reproducible elastodynamic information on the heart in real-time and may help in diagnosing myocardial relaxation abnormalities in the future.
Collapse
Affiliation(s)
- Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Elgeti T, Tzschätzsch H, Hirsch S, Krefting D, Klatt D, Niendorf T, Braun J, Sack I. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes. Magn Reson Med 2012; 67:919-24. [DOI: 10.1002/mrm.24185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/18/2011] [Accepted: 01/05/2012] [Indexed: 12/27/2022]
|
25
|
Pennell DJ, Firmin DN, Kilner PJ, Manning WJ, Mohiaddin RH, Prasad SK. Review of journal of cardiovascular magnetic resonance 2010. J Cardiovasc Magn Reson 2011; 13:48. [PMID: 21914185 PMCID: PMC3182946 DOI: 10.1186/1532-429x-13-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles 1. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|