1
|
Kerstens TP, van Everdingen WM, Habets J, van Dijk APJ, Helbing WA, Thijssen DHJ, Udink Ten Cate FEA. Left ventricular deformation and myocardial fibrosis in pediatric patients with Duchenne muscular dystrophy. Int J Cardiol 2023; 388:131162. [PMID: 37433407 DOI: 10.1016/j.ijcard.2023.131162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Left ventricular (LV) strain and rotation are emerging functional markers for early detection of LV dysfunction and have been associated with the burden of myocardial fibrosis in several disease states. This study examined the association between LV deformation (i.e., LV strain and rotation) and extent and location of LV myocardial fibrosis in pediatric patients with Duchenne muscular dystrophy (DMD). METHODS AND RESULTS 34 pediatric patients with DMD underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) to assess LV myocardial fibrosis. Offline CMR feature-tracking analysis was used to assess global and segmental longitudinal and circumferential LV strain, and LV rotation. Patients with fibrosis (n = 18, 52.9%) were older than those without fibrosis (14 ± 3 years (yrs) vs 11 ± 2 yrs., p = 0.01). There was no significant difference in LV ejection fraction (LVEF) between subjects with and without fibrosis (54 ± 6% vs 56 ± 4%, p = 0.18). However, lower endocardial global circumferential strain (GCS), but not LV rotation, was associated with presence of fibrosis (adjusted Odds Ratio 1.25 [95% CI 1.01-1.56], p = 0.04). Both GCS and global longitudinal strain correlated with the extent of fibrosis (r = .52, p = 0.03 and r = .75, p < 0.01, respectively). Importantly, segmental strain did not seem to correspond to location of fibrosis. CONCLUSION A lower global, but not segmental, strain is associated with presence and extent of LV myocardial fibrosis in pediatric DMD patients. Therefore, strain parameters might detect structural myocardial alterations, however currently more research is needed to evaluate its value (e.g., prognostic) in clinical practice.
Collapse
Affiliation(s)
- Thijs P Kerstens
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Wouter M van Everdingen
- Department of Radiology, Nuclear Medicine, and Anatomy, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Jesse Habets
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, Lijnbaan 32, The Hague 2512 VA, the Netherlands
| | - Arie P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Willem A Helbing
- Department of Pediatrics, Division of Cardiology, Erasmus MC-Sophia Children's Hospital, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Dick H J Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX, United Kingdom
| | - Floris E A Udink Ten Cate
- Academic Center for Congenital Heart Disease (ACAHA), Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Brown NK, Berhane H, Gambetta K, Markl M, Rigsby CK, Robinson JD, Husain N. Right Ventricular Remodeling Assessed by MRI in Duchenne Muscular Dystrophy. J Magn Reson Imaging 2023; 58:486-495. [PMID: 36354274 PMCID: PMC10169546 DOI: 10.1002/jmri.28521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In Duchenne muscular dystrophy (DMD), the right ventricle (RV) tends to be relatively well preserved, but characterization remains difficult due to its complex architecture. Tissue phase mapping (TPM) is a phase contrast cine MRI technique that allows for multidirectional assessment of myocardial velocities. PURPOSE To use TPM to elucidate relationships between myocardial structure, function, and clinical variables in DMD. STUDY TYPE Retrospective. SUBJECTS A total of 20 patients with muscular dystrophy (median age: 16 years); 18 age-matched normal controls (median age: 15 years). FIELD STRENGTH/SEQUENCE Three-directional velocity encoded cine gradient echo sequence (TPM) at 1.5 T, balanced steady-state free procession (bSSFP), T1 mapping with extracellular volume (ECV), and late gadolinium enhancement (LGE). ASSESSMENT TPM in basal, mid, and apical short-axis planes was performed as part of a standard MRI study with collection of clinical data. Radial, circumferential, and longitudinal velocities (Vr, Vφ, and Vz, respectively) and corresponding time to peak (TTP) velocities were quantified from TPM and used to calculate RV twist as well as intraventricular and interventricular dyssynchrony. The correlations between TPM velocities, myocardial structure/function, and clinical variables were assessed. STATISTICAL TEST Unpaired t-test, Wilcoxon rank-sum test, Bland-Altman analyses were used for comparisons between DMD patients and controls and between DMD subgroups. Pearson's test was used for correlations (r). Significance level: P < 0.05. RESULTS Compared to controls, DMD patients had preserved RV ejection fraction (RVEF 53% ± 8%) but significantly increased interventricular dyssynchrony (Vφ: 0.49 ± 0.21 vs. 0.72 ± 0.17). Within the DMD cohort, RV dyssynchrony significantly increased with lower LV ejection fraction (intraventricular Vr and Vz: r = -0.49; interventricular Vz: r = 0.48). In addition, RV intraventricular dyssynchrony significantly increased with older age (Vz: r = 0.67). DATA CONCLUSION RV remodeling in DMD occurs in the context of preserved RVEF. Within DMD, this abnormal RV deformation is associated with older age and decreased LVEF. EVIDENCE LEVEL 4. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Nicholas K Brown
- Division of Cardiology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katheryn Gambetta
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Cynthia K Rigsby
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Radiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Joshua D Robinson
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nazia Husain
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Bourke J, Turner C, Bradlow W, Chikermane A, Coats C, Fenton M, Ilina M, Johnson A, Kapetanakis S, Kuhwald L, Morley-Davies A, Quinlivan R, Savvatis K, Schiava M, Yousef Z, Guglieri M. Cardiac care of children with dystrophinopathy and females carrying DMD-gene variations. Open Heart 2022; 9:e001977. [PMID: 36252992 PMCID: PMC9577913 DOI: 10.1136/openhrt-2022-001977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/26/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We provide succinct, evidence-based and/or consensus-based best practice guidance for the cardiac care of children living with Duchenne muscular dystrophy (DMD) as well as recommendations for screening and management of female carriers of mutations in the DMD-gene. METHODS Initiated by an expert working group of UK-based cardiologists, neuromuscular clinicians and DMD-patient representatives, draft guidelines were created based on published evidence, current practice and expert opinion. After wider consultation with UK-cardiologists, consensus was reached on these best-practice recommendations for cardiac care in DMD. RESULTS The resulting recommendations are presented in the form of a succinct care pathway flow chart with brief justification. The guidance signposts evidence on which they are based and acknowledges where there have been differences in opinion. Guidelines for cardiac care of patients with more advanced cardiac dystrophinopathy at any age have also been considered, based on the previous published work of Quinlivan et al and are presented here in a similar format. The recommendations have been endorsed by the British Cardiovascular Society. CONCLUSION These guidelines provide succinct, reasoned recommendations for all those managing paediatric patients with early or advanced stages of cardiomyopathy as well as females with cardiac dystrophinopathy. The hope is that this will result in more uniform delivery of high standards of care for children with cardiac dystrophinopathy, so improving heart health into adulthood through timely earlier interventions across the UK.
Collapse
Affiliation(s)
- John Bourke
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Cathy Turner
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - William Bradlow
- Department of Paediatric Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ashish Chikermane
- Department of Cardiology, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Caroline Coats
- Department of Cardiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Matthew Fenton
- Department of Paediatric Cardiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Maria Ilina
- Scottish Paediatric Cardiac Services, Royal Hospital for Children, Glasgow, UK
| | | | - Stam Kapetanakis
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Adrian Morley-Davies
- Department of Cardiology, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Ros Quinlivan
- Department of Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
- Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Konstantinos Savvatis
- Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
- Barts Heart Centre, Saint Bartholomew's Hospital Barts Heart Centre, London, UK
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Zaheer Yousef
- Department of Cardiology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of cardiovascular magnetic resonance in pediatric congenital and acquired heart disease : Endorsed by The American Heart Association. J Cardiovasc Magn Reson 2022; 24:37. [PMID: 35725473 PMCID: PMC9210755 DOI: 10.1186/s12968-022-00843-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of CMR in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of CMR in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA
| |
Collapse
|
5
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. Circ Cardiovasc Imaging 2022; 15:e014415. [PMID: 35727874 PMCID: PMC9213089 DOI: 10.1161/circimaging.122.014415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2022] [Indexed: 01/15/2023]
Abstract
Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A. Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, (M.A.F.)
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA, (M.A.F.)
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA, (S.A.)
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA, (C.B.)
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA, (L.B.)
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA, (T.C.)
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA, (T.J.)
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK, (V.M.)
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA, (M.T.)
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA (C.W.)
| |
Collapse
|
6
|
Panovský R, Pešl M, Máchal J, Holeček T, Feitová V, Juříková L, Masárová L, Pešlová E, Opatřil L, Mojica-Pisciotti ML, Kincl V. Quantitative assessment of left ventricular longitudinal function and myocardial deformation in Duchenne muscular dystrophy patients. Orphanet J Rare Dis 2021; 16:57. [PMID: 33516230 PMCID: PMC7847593 DOI: 10.1186/s13023-021-01704-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) manifests in males mainly by skeletal muscle impairment, but also by cardiac dysfunction. The assessment of the early phases of cardiac involvement using echocardiography is often very difficult to perform in these patients. The aim of the study was to use cardiac magnetic resonance (CMR) strain analysis and mitral annular plane systolic excursion (MAPSE) in the detection of early left ventricular (LV) dysfunction in DMD patients.
Methods and results In total, 51 male DMD patients and 18 matched controls were examined by CMR. MAPSE measurement and functional analysis using feature tracking (FT) were performed. Three groups of patients were evaluated: A/ patients with LGE and LV EF < 50% (n = 8), B/ patients with LGE and LVEF ≥ 50% (n = 13), and C/ patients without LGE and LVEF ≥ 50% (n = 30). MAPSE and global LV strains of the 3 DMD groups were compared to controls (n = 18).
Groups A and B had significantly reduced values of MAPSE, global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) in comparison to controls (p < 0.05). The values of MAPSE (11.6 ± 1.9 v 13.7 ± 2.7 mm) and GCS (− 26.2 ± 4.2 v − 30.0 ± 5.1%) were significantly reduced in group C compared to the controls (p < 0.05). Conclusion DMD patients had decreased LV systolic function measured by MAPSE and global LV strain even in the case of normal LV EF and the absence of LGE. FT and MAPSE measurement provide sensitive assessment of early cardiac involvement in DMD patients.
Collapse
Affiliation(s)
- Roman Panovský
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic. .,1St Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
| | - Martin Pešl
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,1St Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Máchal
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tomáš Holeček
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,Department of Medical Imaging, St. Anne's Faculty Hospital, Brno, Brno, Czech Republic
| | - Věra Feitová
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,Department of Medical Imaging, St. Anne's Faculty Hospital, Brno, Brno, Czech Republic
| | - Lenka Juříková
- Department of Pediatric Neurology, University Hospital Brno, Brno, Czech Republic
| | - Lucia Masárová
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,1St Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Eva Pešlová
- First Department of Neurology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Lukáš Opatřil
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,1St Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | | | - Vladimír Kincl
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic.,1St Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| |
Collapse
|
7
|
PALLADINO ALBERTO, PAPA ANDREAA, MORRA SALVATORE, RUSSO VINCENZO, ERGOLI MANUELA, RAGO ANNA, ORSINI CHIARA, NIGRO GERARDO, POLITANO LUISA. Are there real benefits to implanting cardiac devices in patients with end-stage dilated dystrophinopathic cardiomyopathy? Review of literature and personal results. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2019; 38:1-7. [PMID: 31309174 PMCID: PMC6598406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cardiomyopathy associated with dystrophinopathies - Duchenne muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy (XL-CM) and cardiomyopathy of Duchenne/Becker (DMD/BMD carriers - is an almost constant manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Dystrophinopathic cardiomyopathy is the result of the dystrophin protein deficiency at the myocardium level, parallel to that occurring at the skeletal muscle level. Typically, cardiomyopathy begins as a "presymptomatic" stage in the first decade of life and evolves in a stepwise manner toward an end-stage dilated cardiomyopathy. Nearly complete replacement of the myocardium by fibrous and fatty connective tissue results in an irreversible cardiac failure, characterized by a further reduction of ejection fraction (EF < 30%) and frequent episodes of acute heart failure (HF). The picture of a severe dilated cardiomyopathy with intractable heart failure is typical of dystrophinopathies. Despite an appropriate pharmacological treatment, this condition is irreversible because of the extensive loss of myocites. Heart transplantation is the only curative therapy for patients with end-stage heart failure, who remain symptomatic despite an optimal medical therapy. However there is a reluctance to perform heart transplantation (HT) in these patients due to the scarcity of donors and the concerns that the accompanying myopathy will limit the benefits obtained through this therapeutic option. Therefore the only possibility to ameliorate clinical symptoms, prevent fatal arrhythmias and cardiac death in dystrophinopathic patients could be the implantation of intracardiac device (ICD) or resynchronizing devices with defibrillator (CRT-D). This overview reports the personal series of patients affected by DMD and BMD and DMD carriers who received ICD or CRT-D system, describe the clinical outcomes so far published and discuss pro and cons in the use of such devices.
Collapse
Affiliation(s)
- ALBERTO PALLADINO
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - ANDREA A. PAPA
- Arrhythmology Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - SALVATORE MORRA
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - VINCENZO RUSSO
- Arrhythmology Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - MANUELA ERGOLI
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - ANNA RAGO
- Arrhythmology Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - CHIARA ORSINI
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - GERARDO NIGRO
- Arrhythmology Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - LUISA POLITANO
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Marty B, Gilles R, Toussaint M, Béhin A, Stojkovic T, Eymard B, Carlier PG, Wahbi K. Comprehensive evaluation of structural and functional myocardial impairments in Becker muscular dystrophy using quantitative cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2018; 20:906-915. [DOI: 10.1093/ehjci/jey209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Abstract
Aims
Becker muscular dystrophy (BMD) is a genetic neuromuscular disease characterized by an alteration of the dystrophin protein. Myocardial involvement is frequent, eventually progressing to a dilated cardiomyopathy, and represents the most common cause of death for this pathology. We performed a comprehensive evaluation of myocardial functional and structural alterations encountered in a large cohort of BMD patients using quantitative cardiac magnetic resonance (CMR) imaging.
Methods and results
Eighty-eight BMD patients and 26 age-matched volunteers underwent standard cine and tag imaging to assess myocardial function and dyssynchrony, while native T1, T2, and extracellular volume fraction (ECV) were measured for tissue characterization. The left ventricular ejection fraction (LV-EF) was significantly reduced in 26% of the BMD patients. Patients exhibited higher dyssynchrony index than controls (6.94 ± 3.17 vs. 5.09 ± 1.25, P = 0.005). Diastolic dyssynchrony also exists in patients where systolic function was normal. BMD subjects, compared with controls, had significantly higher native T1, T2, and ECV (1183 ± 60 ms vs. 1164 ± 22 ms, 47.5 ± 4.5 ms vs. 45.6 ± 3.4 ms, 0.282 ± 0.050 vs. 0.231 ± 0.027, respectively, P < 0.05). Native T1, T2, and ECV correlated with LV-EF (R = −0.79, −0.70, and −0.71, respectively, P < 0.001) and N-terminal-pro brain natriuretic peptide (R = 0.51, 0.58, and 0.44, respectively, P < 0.001).
Conclusion
Quantitative CMR represents a powerful tool to evaluate structural and functional impairments in the myocardium of BMD subjects. Native T1, T2, and ECV provided quantitative biomarkers related to inflammation and fibrosis, and could stratify disease severity.
Collapse
Affiliation(s)
- Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Raymond Gilles
- Cardiology Department, CHWAPI, Site Union, 51 rue des Sports, 7500 Tournai, Belgium
| | - Marcel Toussaint
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Anthony Béhin
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Tanya Stojkovic
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Bruno Eymard
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Karim Wahbi
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| |
Collapse
|
9
|
Bourke JP, Bueser T, Quinlivan R. Interventions for preventing and treating cardiac complications in Duchenne and Becker muscular dystrophy and X-linked dilated cardiomyopathy. Cochrane Database Syst Rev 2018; 10:CD009068. [PMID: 30326162 PMCID: PMC6517009 DOI: 10.1002/14651858.cd009068.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The dystrophinopathies include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XLDCM). In recent years, co-ordinated multidisciplinary management for these diseases has improved the quality of care, with early corticosteroid use prolonging independent ambulation, and the routine use of non-invasive ventilation signficantly increasing survival. The next target to improve outcomes is optimising treatments to delay the onset or slow the progression of cardiac involvement and so prolong survival further. OBJECTIVES To assess the effects of interventions for preventing or treating cardiac involvement in DMD, BMD, and XLDCM, using measures of change in cardiac function over six months. SEARCH METHODS On 16 October 2017 we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE and Embase, and on 12 December 2017, we searched two clinical trials registries. We also searched conference proceedings and bibliographies. SELECTION CRITERIA We considered only randomised controlled trials (RCTs), quasi-RCTs and randomised cross-over trials for inclusion. In the Discussion, we reviewed open studies, longitudinal observational studies and individual case reports but only discussed studies that adequately described the diagnosis, intervention, pretreatment, and post-treatment states and in which follow-up lasted for at least six months. DATA COLLECTION AND ANALYSIS Two authors independently reviewed the titles and abstracts identified from the search and performed data extraction. All three authors assessed risk of bias independently, compared results, and decided which trials met the inclusion criteria. They assessed the certainty of evidence using GRADE criteria. MAIN RESULTS We included five studies (N = 205) in the review; four studies included participants with DMD only, and one study included participants with DMD or BMD. All studied different interventions, and meta-analysis was not possible. We found no studies for XLDCM. None of the trials reported cardiac function as improved or stable cardiac versus deteriorated.The randomised first part of a two-part study of perindopril (N = 28) versus placebo (N = 27) in boys with DMD with normal heart function at baseline showed no difference in the number of participants with a left ventricular ejection fraction (LVEF%) of less than 45% after three years of therapy (n = 1 in each group; risk ratio (RR) 1.04, 95% confidence interval (CI) 0.07 to 15.77). This result is uncertain because of study limitations, indirectness and imprecision. In a non-randomised follow-up study, after 10 years, more participants who had received placebo from the beginning had reduced LVEF% (less than 45%). Adverse event rates were similar between the placebo and treatment groups (low-certainty evidence).A study comparing treatment with lisinopril versus losartan in 23 boys newly diagnosed with Duchenne cardiomyopathy showed that after 12 months, both were equally effective in preserving or improving LVEF% (lisinopril 54.6% (standard deviation (SD) 5.19), losartan 55.2% (SD 7.19); mean difference (MD) -0.60% CI -6.67 to 5.47: N = 16). The certainty of evidence was very low because of very serious imprecision and study limitations (risk of bias). Two participants in the losartan group were withdrawn due to adverse events: one participant developed an allergic reaction, and a second exceeded the safety standard with a fall in ejection fraction greater than 10%. Authors reported no other adverse events related to the medication (N = 22; very low-certainty evidence).A study comparing idebenone versus placebo in 21 boys with DMD showed little or no difference in mean change in cardiac function between the two groups from baseline to 12 months; for fractional shortening the mean change was 1.4% (SD 4.1) in the idebenone group and 1.6% (SD 2.6) in the placebo group (MD -0.20%, 95% CI -3.07 to 2.67, N = 21), and for ejection fraction the mean change was -1.9% (SD 9.8) in the idebenone group and 0.4% (SD 5.5) in the placebo group (MD -2.30%, 95% CI -9.18 to 4.58, N = 21). The certainty of evidence was very low because of study limitations and very serious imprecision. Reported adverse events were similar between the treatment and placebo groups (low-certainty evidence).A multicentre controlled study added eplerenone or placebo to 42 patients with DMD with early cardiomyopathy but preserved left ventricular function already established on ACEI or ARB therapy. Results showed that eplerenone slowed the rate of decline of magnetic resonance (MR)-assessed left ventricular circumferential strain at 12 months (eplerenone group median 1.0%, interquartile range (IQR) 0.3 to -2.2; placebo group median 2.2%, IQR 1.3 to -3.1%; P = 0.020). The median decline in LVEF over the same period was also less in the eplerenone group (-1.8%, IQR -2.9 to 6.0) than in the placebo group (-3.7%, IQR -10.8 to 1.0; P = 0.032). We downgraded the certainty of evidence to very low for study limitations and serious imprecision. Serious adverse events were reported in two patients given placebo but none in the treatment group (very low-certainty evidence).A randomised placebo-controlled study of subcutaneous growth hormone in 16 participants with DMD or BMD showed an increase in left ventricular mass after three months' treatment but no significant improvement in cardiac function. The evidence was of very low certainty due to imprecision, indirectness, and study limitations. There were no clinically significant adverse events (very low-certainty evidence).Some studies were at risk of bias, and all were small. Therefore, although there is some evidence from non-randomised data to support the prophylactic use of perindopril for cardioprotection ahead of detectable cardiomyopathy, and for lisinopril or losartan plus eplerenone once cardiomyopathy is detectable, this must be considered of very low certainty. Findings from non-randomised studies, some of which have been long term, have led to the use of these drugs in daily clinical practice. AUTHORS' CONCLUSIONS Based on the available evidence from RCTs, early treatment with ACE inhibitors or ARBs may be comparably beneficial for people with a dystrophinopathy; however, the certainty of evidence is very low. Very low-certainty evidence indicates that adding eplerenone might give additional benefit when early cardiomyopathy is detected. No clinically meaningful effect was seen for growth hormone or idebenone, although the certainty of the evidence is also very low.
Collapse
Affiliation(s)
- John P Bourke
- Freeman HospitalDepartment of CardiologyFreeman RoadNewcastle Upon TyneUKNE7 DN
| | - Teofila Bueser
- King's College LondonFlorence Nightingale Faculty of Nursing & MidwiferyLondonUKSE1 8WA
| | - Rosaline Quinlivan
- UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond StreetMRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular CentrePO Box 114LondonUKWC1B 3BN
| | | |
Collapse
|
10
|
Balasubramanian S, Harrild DM, Kerur B, Marcus E, del Nido P, Geva T, Powell AJ. Impact of surgical pulmonary valve replacement on ventricular strain and synchrony in patients with repaired tetralogy of Fallot: a cardiovascular magnetic resonance feature tracking study. J Cardiovasc Magn Reson 2018; 20:37. [PMID: 29909772 PMCID: PMC6004693 DOI: 10.1186/s12968-018-0460-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In patients with repaired tetralogy of Fallot (TOF), a better understanding of the impact of surgical pulmonary valve replacement (PVR) on ventricular mechanics may lead to improved indications and outcomes. Therefore, we used cardiovascular magnetic resonance (CMR) feature tracking analysis to quantify ventricular strain and synchrony in repaired TOF patients before and after PVR. METHODS Thirty-six repaired TOF patients (median age 22.4 years) prospectively underwent CMR a mean of 4.5 ± 3.8 months before PVR surgery and 7.3 ± 2.1 months after PVR surgery. Feature tracking analysis on cine steady-state free precession images was used to measure right ventricular (RV) and left ventricular (LV) circumferential strain from short-axis views at basal, mid-ventricular, and apical levels; and longitudinal strain from 4-chamber views. Intraventricular synchrony was quantified using the maximum difference in time-to-peak strain, the standard deviation of the time-to-peak, and cross correlation delay (CCD) metrics; interventricular synchrony was assessed using the CCD metric. RESULTS Following PVR, RV end-diastolic volume, end-systolic volume, and ejection fraction declined, and LV end-diastolic volume and end-systolic volume both increased with no significant change in the LV ejection fraction. LV global basal and apical circumferential strains, and basal synchrony improved. RV global circumferential and longitudinal strains were unchanged, and there was a varied impact on synchrony across the locations. Interventricular synchrony worsened at the midventricular level but was unchanged at the base and apex, and on 4-chamber views. CONCLUSIONS Surgical PVR in repaired TOF patients led to improved LV global strain and no change in RV global strain. LV and RV synchrony parameters improved or were unchanged, and interventricular synchrony worsened at the midventricular level.
Collapse
MESH Headings
- Adolescent
- Adult
- Cardiac Surgical Procedures/adverse effects
- Child
- Databases, Factual
- Female
- Heart Valve Prosthesis Implantation/adverse effects
- Humans
- Magnetic Resonance Imaging, Cine
- Male
- Middle Aged
- Myocardial Contraction
- Observer Variation
- Predictive Value of Tests
- Pulmonary Valve/diagnostic imaging
- Pulmonary Valve/physiopathology
- Pulmonary Valve/surgery
- Pulmonary Valve Insufficiency/diagnostic imaging
- Pulmonary Valve Insufficiency/etiology
- Pulmonary Valve Insufficiency/physiopathology
- Pulmonary Valve Insufficiency/surgery
- Randomized Controlled Trials as Topic
- Recovery of Function
- Reproducibility of Results
- Stroke Volume
- Tetralogy of Fallot/complications
- Tetralogy of Fallot/diagnostic imaging
- Tetralogy of Fallot/physiopathology
- Tetralogy of Fallot/surgery
- Time Factors
- Treatment Outcome
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Left
- Ventricular Function, Right
- Young Adult
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - David M. Harrild
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Basavaraj Kerur
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
| | - Edward Marcus
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Pedro del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, USA
- Department of Surgery, Boston Children’s Hospital, Boston, USA
| | - Tal Geva
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Andrew J. Powell
- Department of Cardiology, Boston Children’s Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Kalaitzidis P, Orwat S, Kempny A, Robert R, Peters B, Sarikouch S, Beerbaum P, Baumgartner H, Diller GP. Biventricular dyssynchrony on cardiac magnetic resonance imaging and its correlation with myocardial deformation, ventricular function and objective exercise capacity in patients with repaired tetralogy of Fallot. Int J Cardiol 2018; 264:53-57. [PMID: 29673853 DOI: 10.1016/j.ijcard.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Electrical dyssynchrony and prolonged QRS duration are common in patients with repaired tetralogy of Fallot (ToF). It has been linked to increased risk of sudden cardiac death and right ventricular (RV) dysfunction. We investigated myocardial dyssynchrony using cardiac magnetic resonance imaging (CMR) and feature tracking analysis (FT) in this setting and compared it to myocardial deformation, conventional parameters of ventricular dysfunction and clinical parameters. METHODS AND RESULTS Patients underwent standardized CMR investigations as part of a nationwide study. We prospectively assessed myocardial deformation and analysed regional wall motion abnormalities of the RV and the left ventricle (LV) using CMR-FT. The main measure of dyssynchrony was the maximal time difference (wall motion delay) of the regional strain as a parameter of mechanical biventricular dyssynchrony. In addition, clinical parameters and measures of cardiopulmonary exercise capacity were available. Overall 345 patients were included. Parameters of biventricular wall motion delay correlated significantly with global FT-strain parameters (p < 0.0001 for all imaging planes assessed). Furthermore, we found a significant correlation between circumferential RV motion delay and QRS duration (p = 0.006). Higher LV and RV wall motion delay parameters were also associated with lower peak oxygen consumption (p < 0.05) and a worse LV and RV ejection fraction (p < 0.02). CONCLUSIONS Assessment of mechanical dyssynchrony is feasible using CMR-FT in ToF patients. Parameters of mechanical dyssynchrony correlate with electrical dyssynchrony, biventricular function and objective exercise capacity in this setting. Due to the weak degree of correlation, however, the clinical significance of these findings remains to be clarified by further studies.
Collapse
Affiliation(s)
- Pantelis Kalaitzidis
- Division of Adult Congenital and Valvular Heart Disease, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Stefan Orwat
- Division of Adult Congenital and Valvular Heart Disease, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Aleksander Kempny
- Adult Congenital Heart Centre and Centre for Pulmonary Hypertension, Royal Brompton Hospital, London, UK
| | - Radke Robert
- Division of Adult Congenital and Valvular Heart Disease, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Brigitte Peters
- Institute for Biometry and Medical Informatics, University of Magdeburg, Germany
| | - Samir Sarikouch
- Department of Heart-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Germany
| | - Philipp Beerbaum
- Department of Pediatric Cardiology and Pediatric Intensive Care, Hannover Medical School, Germany
| | - Helmut Baumgartner
- Division of Adult Congenital and Valvular Heart Disease, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Gerhard-Paul Diller
- Division of Adult Congenital and Valvular Heart Disease, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany.
| | | |
Collapse
|
12
|
Taylor MD. Editorial commentary: Preserving myocardium in muscular dystrophy patients using ACE inhibition. Trends Cardiovasc Med 2018; 28:338-339. [PMID: 29574046 DOI: 10.1016/j.tcm.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Michael D Taylor
- The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue Cincinnati, OH 45229.
| |
Collapse
|
13
|
Mavrogeni S, Papavasiliou A, Giannakopoulou K, Markousis-Mavrogenis G, Pons MR, Karanasios E, Nikas I, Papadopoulos G, Kolovou G, Chrousos GP. Oedema-fibrosis in Duchenne Muscular Dystrophy: Role of cardiovascular magnetic resonance imaging. Eur J Clin Invest 2017; 47. [PMID: 29027210 DOI: 10.1111/eci.12843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive, irreversible loss of cardiac and skeletal muscular function. Muscular enlargement in DMD is attributed to oedema, due to the increased cytoplasmic Na+ concentration. The aim of this review was to present the current experience and emphasize the role of cardiovascular magnetic resonance (CMR) in the diagnosis of this condition. DMD patients' survival depends on ventilatory assistance, as respiratory muscle dysfunction was the most common cause of death in the past. Currently, due to improved ventilatory assistance, cardiomyopathy has become the main cause of death, even though clinically overt heart failure may be absent. CMR is the technique of choice to assess the pathophysiologic phenomena taking place in DMD, such as myocardial oedema and subepicardial fibrosis. The classic index to assess oedema is the T2-weighted short-tau inversion recovery (T2w-STIR), as it suppresses the signal from flowing blood and resident fat and enhances sensitivity to tissue fluid. Furthermore, CMR is the most reliable technique to detect and quantify fibrosis in DMD. Recently, the new indices T2, T1 mapping (native and postcontrast) and the extracellular volume (ECV) allow a more accurate approach of myocardial oedema and fibrosis. To conclude, the assessment of cardiac oedema and subepicardial fibrosis in the inferolateral wall of the left heart ventricle are the most important early finding in DMD with preserved ventricular function, and CMR, using both the classic and the new indices, is the best technique to detect and monitor these lesions.
Collapse
Affiliation(s)
| | | | - Katerina Giannakopoulou
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Maria Roser Pons
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Evangelos Karanasios
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Ioannis Nikas
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Papadopoulos
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - George P Chrousos
- First Dept of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Åström Aneq M, Maret E, Brudin L, Svensson A, Engvall J. Right ventricular systolic function and mechanical dispersion identify patients with arrhythmogenic right ventricular cardiomyopathy. Clin Physiol Funct Imaging 2017; 38:779-787. [PMID: 29105955 DOI: 10.1111/cpf.12479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023]
Abstract
PURPOSE To assess right ventricular (RV) regional and global systolic function using feature tracking (FT) in patients with a definite diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC) and to investigate if changes in strain amplitude and mechanical dispersion indicate a propensity for arrhythmia. MATERIALS AND METHODS Twenty-seven patients fulfilling Task Force Criteria for ARVC and 24 healthy volunteers underwent MR at 1·5 Tesla. Steady-state free precession cine of long-axis slices and a short-axis stack of the RV was acquired. Segmental longitudinal systolic strain amplitude and time-to-peak (TTP) strain were measured in the four- and two-chamber views of the RV. RESULTS Compared to controls, patients with ARVC had lower RV ejection fraction (RVEF), (53% vs 57%, P = 0·012) and lower longitudinal strain amplitude in the RV free wall (-20·6 vs -26·3%, P = 0·014) and in the basal part of the RV (-22·8 vs -31·7%, P<0·001). Mechanical dispersion, defined as the standard deviation (SD) of TTP of RV segments, was larger in patients with ARVC (48 ms [21-74] vs 35 ms [13-66 ms], P = 0·02). Patients with ventricular tachycardia (VT) or non-sustained VT had lower RVEF (46% vs 55%, P = 0·008), but did not have significantly lower RV strain amplitude (-19·5% vs 21·0%, P = 0·073) and no signs of mechanical dispersion (49 ms vs 48 ms, P = 0·861) compared to patients without arrhythmia. CONCLUSION ARVC patients had lower longitudinal absolute strain amplitude in basal RV segments and increased mechanical dispersion compared to healthy volunteers, but the presence of mechanical dispersion was not predictive of ventricular arrhythmia.
Collapse
Affiliation(s)
- Meriam Åström Aneq
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköpings Universitet, Linköping, Sweden
| | - Eva Maret
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Lars Brudin
- Department of Clinical Physiology, Kalmar County Hospital, Kalmar, Sweden
| | - Anneli Svensson
- Department of Cardiology and Department of Medical and Health Sciences, Linköpings Universitet, Linköping, Sweden
| | - Jan Engvall
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköpings Universitet, Linköping, Sweden
| |
Collapse
|
15
|
Anwar S, Harris MA, Whitehead KK, Keller MS, Goldmuntz E, Fogel MA, Mercer-Rosa L. The Impact of the Right Ventricular Outflow Tract Patch on Right Ventricular Strain in Tetralogy of Fallot: A Comparison with Valvar Pulmonary Stenosis Utilizing Cardiac Magnetic Resonance. Pediatr Cardiol 2017; 38:617-623. [PMID: 28144689 DOI: 10.1007/s00246-016-1558-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
A non-contractile transannular patch (TAP) in the right ventricular outflow tract (RVOT) contributes to ventricular dysfunction after tetralogy of Fallot (TOF) repair. We compared regional right ventricular (RV) strain in repaired TOF with valvar pulmonary stenosis (VPS) after balloon valvuloplasty to investigate the effects of TAP. Retrospective review of 26 cardiac magnetic resonance studies of TOF (n = 13) and VPS (n = 13) subjects matched by degree and duration of pulmonary regurgitation (PR). Feature tracking strain analysis was performed. Student's t tests, Pearson correlation, and linear regression were applied. RV ejection fraction (EF) was normal and similar between TOF and VPS (60 and 65%, respectively, p = 0.8). RV 4-chamber Lagrangian longitudinal strain (RV 4ch LS) was worse in both groups compared to normals but comparable to each other: -18.2 (95% CI -3.6 to -33) for TOF and -20.2 (95% CI -12.4 to -28) for VPS, p = 0.5. RVOT LS was worse than RV 4ch LS in TOF, p = 0.05, but not in VPS, p = 0.19. There were no significant differences in RVOT strain between groups, p = 0.18. RVOT strain and RV 4ch LS correlated positively with RV EF in VPS (r = 0.72, p = 0.003 and r = 0.55, p = 0.04). PR degree correlated negatively with RVOT LS for TOF and VPS. Longitudinal strain is diminished in VPS and TOF subjects with preserved RV EF. TAP could explain worse RVOT strain in TOF. Longitudinal studies are needed to ascertain if RV strain predicts worsening of RV EF.
Collapse
Affiliation(s)
- Shafkat Anwar
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Matthew A Harris
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kevin K Whitehead
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Marc S Keller
- Division of Radiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mark A Fogel
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Mercer-Rosa
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia PA. 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy. Pediatr Res 2016; 79:629-36. [PMID: 26672735 PMCID: PMC4837049 DOI: 10.1038/pr.2015.257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. METHODS We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. RESULTS We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. CONCLUSION These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.
Collapse
|
17
|
Yamada S, Arrell DK, Martinez-Fernandez A, Behfar A, Kane GC, Perez-Terzic CM, Crespo-Diaz RJ, McDonald RJ, Wyles SP, Zlatkovic-Lindor J, Nelson TJ, Terzic A. Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.114.001614. [PMID: 25964205 PMCID: PMC4599402 DOI: 10.1161/jaha.114.001614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF. Methods and Results Progressive cardiac dyssynchrony was provoked in a chronic transgenic model of stress-triggered dilated cardiomyopathy. In contrast to rampant end-stage disease afflicting untreated cohorts, stem cell intervention early in disease, characterized by mechanical dyssynchrony and a narrow QRS-complex, aborted progressive dyssynchronous HF and prevented QRS widening. Stem cell-treated hearts acquired coordinated ventricular contraction and relaxation supporting systolic and diastolic performance. Rescue of contractile dynamics was underpinned by a halted left ventricular dilatation, limited hypertrophy, and reduced fibrosis. Reverse remodeling reflected a restored cardiomyopathic proteome, enforced at systems level through correction of the pathological molecular landscape and nullified adverse cardiac outcomes. Cell therapy of a dyssynchrony-prone cardiomyopathic cohort translated prospectively into improved exercise capacity and prolonged survivorship. Conclusions In narrow QRS HF, a regenerative approach demonstrated functional and structural benefit, introducing the prospect of device-autonomous resynchronization therapy for refractory disease.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - D Kent Arrell
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Almudena Martinez-Fernandez
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Garvan C Kane
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Carmen M Perez-Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.) Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN (C.M.P.T.)
| | - Ruben J Crespo-Diaz
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Robert J McDonald
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Saranya P Wyles
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Jelena Zlatkovic-Lindor
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| | - Timothy J Nelson
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.) Division of General Internal Medicine, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN (T.J.N.)
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN (S.Y., K.A., A.M.F., A.B., G.C.K., C.M.P.T., R.J.C.D., R.J.M.D., S.P.W., J.Z.L., T.J.N., A.T.)
| |
Collapse
|
18
|
|
19
|
Schmidt R, Orwat S, Kempny A, Schuler P, Radke R, Kahr PC, Hellige A, Baumgartner H, Diller GP. Value of speckle-tracking echocardiography and MRI-based feature tracking analysis in adult patients after Fontan-type palliation. CONGENIT HEART DIS 2013; 9:397-406. [PMID: 24373377 DOI: 10.1111/chd.12156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients are commonly affected by ventricular dysfunction and heart failure after Fontan palliation. Reliable quantification of ventricular function is of interest but hampered by complex ventricular anatomy and physiology. OBJECTIVES We aimed to assess myocardial function using a novel cardiac magnetic resonance imaging (CMR)-based feature-tracking (FT) technique and to study its clinical utility in Fontan patients. METHODS Retrospective study in consecutive patients attending our service. RESULTS We included 15 adult Fontan patients (age 27 ± 7 years) who underwent a standardized transthoracic echocardiographic investigation (TTE) with measurement of global strain using speckle tracking. Thirteen patients also underwent CMR, with assessment of myocardial deformation by FT, providing longitudinal and circumferential global strain for the single ventricle. The value of TTE-based strain measurements was limited by the fact that in 63% of patients at least one myocardial segment could not be adequately quantified due to limited acoustic windows. In contrast, CMR allowed for a complete visualization of all wall segments. Not surprisingly, there was poor agreement between the techniques but good or moderate interobserver variability for FT (coefficients of variability 6.6% and 14.3% for circumferential and longitudinal strain). Unlike ejection fraction, FT parameters correlated significantly with age at Fontan completion, New York Heart Association (NYHA) class, and peak oxygen uptake on cardiopulmonary exercise testing. CONCLUSIONS Assessment of myocardial function using CMR cine-based feature tracking is feasible in Fontan patients. Unlike echocardiographic techniques, FT is independent of inadequate acoustic windows and FT measurements relate to clinical parameters, suggesting that this approach could have clinical relevance in future.
Collapse
Affiliation(s)
- Renate Schmidt
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamada S, Arrell DK, Kane GC, Nelson TJ, Perez-Terzic CM, Behfar A, Purushothaman S, Prinzen FW, Auricchio A, Terzic A. Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy. J Am Heart Assoc 2013; 2:e000410. [PMID: 24308936 PMCID: PMC3886734 DOI: 10.1161/jaha.113.000410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease. Methods and Results High‐resolution speckle‐tracking echocardiography was applied in a knockout murine surrogate of adult‐onset human cardiomyopathy caused by mutations in cardioprotective ATP‐sensitive K+ (KATP) channels. Preceding the established criteria of cardiac dyssynchrony, multiparametric speckle‐based strain resolved nascent erosion of dysfunctional regions within cardiomyopathic ventricles of the KATP channel–null mutant exposed to hemodynamic stress. Not observed in wild‐type counterparts, intraventricular disparity in wall motion, validated by the degree, direction, and delay of myocardial speckle patterns, unmasked the disease substrate from asymptomatic to overt heart failure. Mechanical dyssynchrony preceded widening of the QRS complex and exercise intolerance and progressed into global myocardial discoordination and decompensated cardiac pump function, precipitating a low output syndrome. Conclusions The present study, with the use of high‐resolution imaging, prospectively resolved the origin and extent of intraventricular motion disparity in a KATP channel–knockout model of dilated cardiomyopathy. Mechanical dyssynchrony established as an early marker of cardiomyopathic disease offers novel insight into the pathodynamics of dyssynchronous heart failure.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harrild DM, Marcus E, Hasan B, Alexander ME, Powell AJ, Geva T, McElhinney DB. Impact of transcatheter pulmonary valve replacement on biventricular strain and synchrony assessed by cardiac magnetic resonance feature tracking. Circ Cardiovasc Interv 2013; 6:680-7. [PMID: 24300136 DOI: 10.1161/circinterventions.113.000690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Transcatheter pulmonary valve (TPV) replacement is an emerging therapy intended to restore pulmonary valve function in patients with right ventricular outflow tract conduit dysfunction; the impact of this technique on ventricular strain and synchrony is not known. METHODS AND RESULTS Cardiac magnetic resonance and ECG data acquired at 1 center as part of the US Melody TPV trial were analyzed. Biventricular strain and mechanical synchrony measurements were made based on short-axis and 4-chamber steady-state free precession images using feature tracking software. Post- versus pre-TPV replacement findings were compared for all patients (n=31) and subgroups with predominant pulmonary regurgitation (n=13) or stenosis (n=18). Most patients had tetralogy of Fallot (18/31). After TPV replacement, left ventricular (LV) circumferential strain increased for the whole cohort (P<0.001) and both subgroups (pulmonary regurgitation P=0.01; pulmonary stenosis P=0.02). LV longitudinal strain increased for the whole cohort (P=0.02) and pulmonary regurgitation subgroup (P=0.05); circumferential right ventricular strain increased for the pulmonary stenosis group only (P=0.05). LV longitudinal synchrony improved significantly in the pulmonary regurgitation group (maximum wall delay P=0.03; cross-correlation delay P=0.01). Electric measures of synchrony did not improve. CONCLUSIONS In patients with right ventricular outflow tract conduit dysfunction, TPV replacement is associated with improved global LV strain, as well as improved right ventricular strain and LV synchrony in subgroups. Given the associations between strain and synchrony and clinical outcomes, these findings support potential long-term benefits of TPV replacement.
Collapse
Affiliation(s)
- David M Harrild
- From the Department of Cardiology, Boston Children's Hospital, MA; and Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fayssoil A, Nardi O, Annane D, Orlikowski D. Successful cardiac resynchronisation therapy in Duchenne muscular dystrophy: a 5-year follow-up. Presse Med 2013; 43:330-1. [PMID: 24216053 DOI: 10.1016/j.lpm.2013.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Abdallah Fayssoil
- Raymond-Poincare Hospital, AP-HP, University of Versailles SQY, 92380 Garches, France.
| | - Olivier Nardi
- Raymond-Poincare Hospital, AP-HP, University of Versailles SQY, 92380 Garches, France
| | - Djillali Annane
- Raymond-Poincare Hospital, AP-HP, University of Versailles SQY, 92380 Garches, France
| | - David Orlikowski
- Raymond-Poincare Hospital, AP-HP, University of Versailles SQY, 92380 Garches, France
| |
Collapse
|
23
|
El Ghannudi S, Germain P, Jeung MY, Breton E, Croisille P, Durand E, Roy C, Gangi A. Quantification of left ventricular dyssynchrony in patients with systolic dysfunction: A comparison of circumferential strain MR-tagging metrics. J Magn Reson Imaging 2013; 40:1238-46. [DOI: 10.1002/jmri.24447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/10/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Soraya El Ghannudi
- Department of Radiology; University Hospital; Strasbourg France
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Philippe Germain
- Department of Radiology; University Hospital; Strasbourg France
- Department of Cardiology; University Hospital; Strasbourg France
| | - Mi-Young Jeung
- Department of Radiology; University Hospital; Strasbourg France
| | - Elodie Breton
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| | - Pierre Croisille
- Department of Radiology; University Jean Monnet Saint-Etienne; CREATIS, UMR CNRS 5220-INSERM U1044 Lyon France
| | - Emmanuel Durand
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Catherine Roy
- Department of Radiology; University Hospital; Strasbourg France
| | - Afshin Gangi
- Department of Radiology; University Hospital; Strasbourg France
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| |
Collapse
|
24
|
Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 2013; 15:95. [PMID: 24134158 PMCID: PMC4016574 DOI: 10.1186/1532-429x-15-95] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/20/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography. METHODS We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain). RESULTS Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p < 0.001). CONCLUSIONS FT-CMR delivered measurements of radial dyssynchrony from CMR cine acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.
Collapse
Affiliation(s)
- Toshinari Onishi
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | | | - Daniel R Ludwig
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Tetsuari Onishi
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Josef J Marek
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - João L Cavalcante
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Erik B Schelbert
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - David Schwartzman
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - John Gorcsan
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Pennell DJ, Baksi AJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2012. J Cardiovasc Magn Reson 2013; 15:76. [PMID: 24006874 PMCID: PMC3847143 DOI: 10.1186/1532-429x-15-76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023] Open
Abstract
There were 90 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2012, which is an 8% increase in the number of articles since 2011. The quality of the submissions continues to increase. The editors are delighted to report that the 2011 JCMR Impact Factor (which is published in June 2012) has risen to 4.44, up from 3.72 for 2010 (as published in June 2011), a 20% increase. The 2011 impact factor means that the JCMR papers that were published in 2009 and 2010 were cited on average 4.44 times in 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - A John Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - John Paul Carpenter
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - David N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Philip J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Raad H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| | - Sanjay K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- Imperial College, London, UK
| |
Collapse
|
26
|
Fayssoil A, Nardi O, Orlikowski D, Annane D. Cardiac asynchrony in Duchenne muscular dystrophy. J Clin Monit Comput 2013; 27:587-9. [PMID: 23632738 DOI: 10.1007/s10877-013-9472-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/23/2013] [Indexed: 11/27/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited myogenic disorder due to mutations in the dystrophin gene on chromosome Xp21.1. Heart failure is a classical complication in this disease. Little data are available about systolic dyssynchrony in DMD. We sought to assess the prevalence of left ventricular dysfunction and systolic asynchrony in DMD patients using echocardiographic parameters. We performed electrocardiography and echocardiography for adult's patients with DMD. For systolic dyssynchrony assessment, echocardiography-Doppler was performed and completed by tissular Doppler imaging. 48 DMD were included in our study. Age ranged from 20 to 37 years. QRS duration >120 ms was present in 10 patients/48 and 1 patient disclosed a QRS duration >150 ms. Left ventricular (LV) ejection fraction (EF) ranged from 10 to 62 % with a median of 43 %. Inter-ventricular asynchrony was found in 11.9 % of patients with EF < 35 % and in 2.6 % of patients with EF > 35 %. Intra-ventricular asynchrony was present in 6 % of patients with EF < 35 %. We found a high prevalence of LV dysfunction in DMD. Systolic ventricular asynchrony seems frequent particularly in patients with EF < 35 %.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- Réanimation médicale, hôpital Raymond Poincaré (AP-HP), Université de Versailles SQY, 104 boulevard Raymond Poincaré, 92380, Garches, France,
| | | | | | | |
Collapse
|
27
|
Buchhorn R, Willaschek C, Selbach J, Jahns R. Immunadsorption therapy for end stage heart failure due to Duchenne muscular dystrophy. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojped.2013.31003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Pennell DJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2011. J Cardiovasc Magn Reson 2012; 14:78. [PMID: 23158097 PMCID: PMC3519784 DOI: 10.1186/1532-429x-14-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022] Open
Abstract
There were 83 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2011, which is an 11% increase in the number of articles since 2010. The quality of the submissions continues to increase. The editors had been delighted with the 2010 JCMR Impact Factor of 4.33, although this fell modestly to 3.72 for 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, we remain very pleased with the progress of the journal's impact over the last 5 years. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors feel it is useful to summarize the papers for the readership into broad areas of interest or theme, which we feel would be useful, so that areas of interest from the previous year can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - John Paul Carpenter
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The following review will focus on the current advances in both echocardiography and cardiovascular MRI (CMRI) in the assessment of cardiac function. RECENT FINDINGS The assessment of cardiac function in pediatric patients and in congenital heart disease (CHD) patients has dramatically improved over the last several years. The advancement of transthoracic echocardiography with tissue Doppler imaging, speckle tracking, and three-dimensional echocardiography has enabled strain assessment and the ability to estimate ventricular volumes in these complex patients. In the last few decades, CMRI has become an imaging modality that is now part of the standard tools used for cardiac assessment. With superb two-dimensional and three-dimensional resolution, CMRI allows clear delineation of cardiac and extracardiac structures as well as accurate and reproducible assessment of ventricular volume and function. The most recent and robust contributions of CMRI are its ability to provide characterization of the myocardium and the development of new measurements of global and regional myocardial mechanics and function. SUMMARY Recent advances in echocardiography and CMRI allow a better understanding of myocardial mechanics and composition as well as accurate assessment of ventricular volume and global and regional function in the complex and unique anatomy often found in CHD patients.
Collapse
|
30
|
Kempny A, Fernández-Jiménez R, Orwat S, Schuler P, Bunck AC, Maintz D, Baumgartner H, Diller GP. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 2012; 14:32. [PMID: 22650308 PMCID: PMC3464868 DOI: 10.1186/1532-429x-14-32] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/31/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques. We assessed biventricular myocardial function using CMR cine-based feature tracking (FT) and compared it to speckle tracking echocardiography (STE) and to simple endocardial border delineation (EBD). In addition, the relation between parameters of myocardial deformation and clinical parameters was assessed. METHODS Overall, 28 consecutive adult patients with repaired ToF (age 40.4 ± 13.3 years) underwent standard steady-state-free precession sequence CMR, echocardiography, and cardiopulmonary exercise testing. In addition, 25 healthy subjects served as controls. Myocardial deformation was assessed by CMR based FT (TomTec Diogenes software), CMR based EBD (using custom written software) and STE (TomTec Cardiac Performance Analysis software). RESULTS Feature tracking was feasible in all subjects. A close agreement was found between measures of global left (LV) and right ventricular (RV) global strain. Interobserver agreement for FT and STE was similar for longitudinal LV global strain, but FT showed better inter-observer reproducibility than STE for circumferential or radial LV and longitudinal RV global strain. Reproducibility of regional strain on FT was, however, poor. The relative systolic length change of the endocardial border measured by EBD yielded similar results to FT global strain. Clinically, biventricular longitudinal strain on FT was reduced compared to controls (P < 0.0001) and was related to the number of previous cardiac operations. In addition, FT derived RV strain was related to exercise capacity and VE/VCO2-slope. CONCLUSIONS Although neither the inter-study reproducibility nor accuracy of FT software were investigated, and its inter-observer reproducibility for regional strain calculation was poor, its calculations of global systolic strain showed similar or better inter-oberver reproducibility than those by STE, and could be applied across RV image regions inaccessible to echo. 'Global strain' calculated by EBD gave similar results to FT. Measurements made using FT related to exercise tolerance in ToF patients suggesting that the approach could have clinical relevance and deserves further study.
Collapse
Affiliation(s)
- Aleksander Kempny
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Muenster, Albert-Schweitzer-Str. 33,, 48149, Münster, Germany
| | | | - Stefan Orwat
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Muenster, Albert-Schweitzer-Str. 33,, 48149, Münster, Germany
| | - Pia Schuler
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Muenster, Albert-Schweitzer-Str. 33,, 48149, Münster, Germany
| | - Alexander C Bunck
- Department of Clinical Radiology, University Hospital of Muenster, Muenster, Germany
| | - David Maintz
- Department of Clinical Radiology, University Hospital of Muenster, Muenster, Germany
| | - Helmut Baumgartner
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Muenster, Albert-Schweitzer-Str. 33,, 48149, Münster, Germany
| | - Gerhard-Paul Diller
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital of Muenster, Albert-Schweitzer-Str. 33,, 48149, Münster, Germany
| |
Collapse
|
31
|
Otto RK, Ferguson MR, Friedman SD. Cardiac MRI in Muscular Dystrophy: An Overview and Future Directions. Phys Med Rehabil Clin N Am 2012; 23:123-32, xi-xii. [DOI: 10.1016/j.pmr.2011.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|