1
|
Howell J, Omwenga S, Jimenez M, Hammarton TC. Analysis of the Leishmania mexicana promastigote cell cycle using imaging flow cytometry provides new insights into cell cycle flexibility and events of short duration. PLoS One 2024; 19:e0311367. [PMID: 39361666 PMCID: PMC11449296 DOI: 10.1371/journal.pone.0311367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana. Firstly, we demonstrate that, unlike several other DNA stains, Vybrant™ DyeCycle™ Orange (DCO) is non-toxic and enables quantitative DNA imaging in live promastigotes. Secondly, by tagging the orphan spindle kinesin, KINF, with mNeonGreen, we describe KINF's cell cycle-dependent expression and localisation. Then, by combining manual gating of DCO DNA intensity profiles with automated masking and morphological measurements of parasite images, visual determination of the number of flagella per cell, and automated masking and analysis of mNG:KINF fluorescence, we provide a newly detailed description of L. mexicana promastigote cell cycle events that, for the first time, includes the durations of individual G2, mitosis and post-mitosis phases, and identifies G1 cells within the first 12 minutes of the new cell cycle. Our custom-developed masking and gating scheme allowed us to identify elusive G2 cells and to demonstrate that the CDK-inhibitor, flavopiridol, arrests cells in G2 phase, rather than mitosis, providing proof-of-principle of the utility of IFC for drug mechanism-of-action studies. Further, the high-throughput nature of IFC allowed the close examination of promastigote cytokinesis, revealing considerable flexibility in both the timing of cytokinesis initiation and the direction of furrowing, in contrast to the related kinetoplastid parasite, Trypanosoma brucei and many other cell types. Our new pipeline offers many advantages over traditional methods of cell cycle analysis such as fluorescence microscopy and flow cytometry and paves the way for novel high-throughput analysis of Leishmania cell division.
Collapse
Affiliation(s)
- Jessie Howell
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sulochana Omwenga
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Melanie Jimenez
- Biomedical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Constant surface area-to-volume ratio during cell growth as a design principle in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601447. [PMID: 39005340 PMCID: PMC11244959 DOI: 10.1101/2024.07.02.601447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
All cells are subject to geometric constraints, such as surface area-to-volume (SA/V) ratio, that impact cell functions and force biological adaptations. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. Here, we investigate this in near-spherical mammalian cells using single-cell measurements of cell mass and surface proteins, as well as imaging of plasma membrane morphology. We find that the SA/V ratio remains surprisingly constant as cells grow larger. This observation is largely independent of the cell cycle and the amount of cell growth. Consequently, cell growth results in increased plasma membrane folding, which simplifies cellular design by ensuring sufficient membrane area for cell division, nutrient uptake and deformation at all cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N. Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M. Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
4
|
Brewer PJ, Sweet AD. Prevalence and diversity of parasitic bird lice (Insecta: Psocodea) in northeast Arkansas. Int J Parasitol Parasites Wildl 2023; 22:205-215. [PMID: 37941681 PMCID: PMC10628595 DOI: 10.1016/j.ijppaw.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 11/10/2023]
Abstract
Many groups of parasites lack basic information on biodiversity and host associations, which poses challenges for conservation and understanding the ecological relationships between hosts and their parasites. This gap in knowledge is particularly relevant for parasitic species with obscure lifestyles. Ectoparasitc bird lice (Insecta: Psocodea: Phthiraptera) are a group of parasites that has received a relatively substantial research focus, yet patterns of bird-louse relationships and louse diversity remain understudied in many geographic regions, including in parts of the southeastern United States. In this study, we assessed the diversity, prevalence, abundance, and intensity of lice from live and salvaged birds in northeastern Arkansas. We also focused on the frequency of co-occurrence of lice and symbiotic feather mites. Finally, we used nuclear and mitochondrial genes to assess the phylogenic relationships among the most common genera of lice in our sample. We found a total louse prevalence of 10.57% with the highest prevalence on the Passeriformes families Turdidae, Passerellidae, and Parulidae. We also found the louse genera Myrsidea and Brueelia to be the most prevalent and abundant in our sample. Additionally, we reported several novel associations among well-studied bird species. We also found that louse phylogenic patterns tend to reflect host taxonomy and/or ecology. Overall, our results provide important insight into the biodiversity, community structure, and host interactions of parasitic lice from North American birds.
Collapse
Affiliation(s)
- Paige J. Brewer
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Andrew D. Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
5
|
Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proc Natl Acad Sci U S A 2023; 120:e2303077120. [PMID: 37722043 PMCID: PMC10523466 DOI: 10.1073/pnas.2303077120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
Cell size and cell count are adaptively regulated and intimately linked to growth and function. Yet, despite their widespread relevance, the relation between cell size and count has never been formally examined over the whole human body. Here, we compile a comprehensive dataset of cell size and count over all major cell types, with data drawn from >1,500 published sources. We consider the body of a representative male (70 kg), which allows further estimates of a female (60 kg) and 10-y-old child (32 kg). We build a hierarchical interface for the cellular organization of the body, giving easy access to data, methods, and sources (https://humancelltreemap.mis.mpg.de/). In total, we estimate total body counts of ≈36 trillion cells in the male, ≈28 trillion in the female, and ≈17 trillion in the child. These data reveal a surprising inverse relation between cell size and count, implying a trade-off between these variables, such that all cells within a given logarithmic size class contribute an equal fraction to the body's total cellular biomass. We also find that the coefficient of variation is approximately independent of mean cell size, implying the existence of cell-size regulation across cell types. Our data serve to establish a holistic quantitative framework for the cells of the human body, and highlight large-scale patterns in cell biology.
Collapse
Affiliation(s)
- Ian A. Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
| | - Eric D. Galbraith
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
- ICREA, Barcelona08010, Spain
| | - Nono S. C. Merleau
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, D-04105Leipzig, Germany
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Benjamin McDonald Smith
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QuebecH4A 3S5, Canada
- Department of Medicine, Columbia University Medical Center, New York, NY10032
| | | |
Collapse
|
6
|
Zhou L, Xu J, Schwab A, Tong W, Xu J, Zheng L, Li Y, Li Z, Xu S, Chen Z, Zou L, Zhao X, van Osch GJ, Wen C, Qin L. Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells (ESPCs)-mediated articular cartilage repair. Bioact Mater 2023; 26:490-512. [PMID: 37304336 PMCID: PMC10248882 DOI: 10.1016/j.bioactmat.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 06/13/2023] Open
Abstract
As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jietao Xu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Andrea Schwab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences - CRMH, 999077, Hong Kong SAR, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Zhuo Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), 2600 AA, Delft, the Netherlands
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology & Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, 518000, Shenzhen, China
| |
Collapse
|
7
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
8
|
Figueirido B, Pérez-Ramos A, Hotchner A, Lovelace DM, Pastor FJ, Palmqvist P. The brain of the North American cheetah-like cat Miracinonyx trumani. iScience 2022; 25:105671. [PMID: 36536677 PMCID: PMC9758517 DOI: 10.1016/j.isci.2022.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The cheetah Acinonyx jubatus, the fastest living land mammal, is an atypical member of the family Felidae. The extinct feline Miracinonyx trumani, known as the North American cheetah, is thought to have convergently evolved with Acinonyx to pursue fast and open-country prey across prairies and steppe environments of the North American Pleistocene. The brain of Acinonyx is unique among the living felids, but it is unknown whether the brain of the extinct M. trumani is convergent to that of Acinonyx. Here, we investigate the brain of M. trumani from a cranium endocast, using a comparative sample of other big cats. We demonstrate that the brain of M. trumani was different from that of the living A. jubatus. Indeed, its brain shows a unique combination of traits among living cats. This suggests that the case of extreme convergence between Miracinonyx and its living Old World vicar should be reconsidered.
Collapse
Affiliation(s)
- Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Anthony Hotchner
- Anatomy Department, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
| | - David M. Lovelace
- University of Wisconsin-Madison, Department of Geoscience, Madison, WI 53706, USA
| | - Francisco J. Pastor
- Departamento de Anatomía y Radiología, Museo de Anatomía, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
9
|
Jeilani M, Billington K, Sunter JD, Dean S, Wheeler RJ. Nucleolar targeting in an early-branching eukaryote suggests a general mechanism for ribosome protein sorting. J Cell Sci 2022; 135:jcs259701. [PMID: 36052646 PMCID: PMC9659390 DOI: 10.1242/jcs.259701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalised eukaryotic cell demands accurate targeting of proteins to the organelles in which they function, whether membrane-bound (like the nucleus) or non-membrane-bound (like the nucleolus). Nucleolar targeting relies on positively charged localisation signals and has received rejuvenated interest since the widespread recognition of liquid-liquid phase separation (LLPS) as a mechanism contributing to nucleolus formation. Here, we exploit a new genome-wide analysis of protein localisation in the early-branching eukaryote Trypanosoma brucei to analyse general nucleolar protein properties. T. brucei nucleolar proteins have similar properties to those in common model eukaryotes, specifically basic amino acids. Using protein truncations and addition of candidate targeting sequences to proteins, we show both homopolymer runs and distributed basic amino acids give nucleolar partition, further aided by a nuclear localisation signal (NLS). These findings are consistent with phase separation models of nucleolar formation and physical protein properties being a major contributing mechanism for eukaryotic nucleolar targeting, conserved from the last eukaryotic common ancestor. Importantly, cytoplasmic ribosome proteins, unlike mitochondrial ribosome proteins, have more basic residues - pointing to adaptation of physicochemical properties to assist segregation.
Collapse
Affiliation(s)
- Milad Jeilani
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Samuel Dean
- Warwick Medical School, Warwick University, Warwick CV4 7AL, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
10
|
López-Escobar L, Hänisch B, Halliday C, Ishii M, Akiyoshi B, Dean S, Sunter JD, Wheeler RJ, Gull K. Stage-specific transcription activator ESB1 regulates monoallelic antigen expression in Trypanosoma brucei. Nat Microbiol 2022; 7:1280-1290. [PMID: 35879525 PMCID: PMC9352583 DOI: 10.1038/s41564-022-01175-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Variant surface glycoprotein (VSG) coats bloodstream form Trypanosoma brucei parasites, and monoallelic VSG expression underpins the antigenic variation necessary for pathogenicity. One of thousands of VSG genes is transcribed by RNA polymerase I in a singular nuclear structure called the expression site body (ESB), but how monoallelic VSG transcription is achieved remains unclear. Using a localization screen of 153 proteins we found one, ESB-specific protein 1 (ESB1), that localized only to the ESB and is expressed only in VSG-expressing life cycle stages. ESB1 associates with DNA near the active VSG promoter and is necessary for VSG expression, with overexpression activating inactive VSG promoters. Mechanistically, ESB1 is necessary for recruitment of a subset of ESB components, including RNA polymerase I, revealing that the ESB has separately assembled subdomains. Because many trypanosomatid parasites have divergent ESB1 orthologues yet do not undergo antigenic variation, ESB1 probably represents an important class of transcription regulators.
Collapse
Affiliation(s)
| | - Benjamin Hänisch
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Munyenyembe K, Timmons C, Weiner AKM, Katz LA, Yan Y. DAPI staining and DNA content estimation of nuclei in uncultivable microbial eukaryotes (Arcellinida and Ciliates). Eur J Protistol 2021; 81:125840. [PMID: 34717075 PMCID: PMC8699166 DOI: 10.1016/j.ejop.2021.125840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Though representing a major component of eukaryotic biodiversity, many microbial eukaryotes remain poorly studied, including the focus of the present work, testate amoebae of the order Arcellinida (Amoebozoa) and non-model lineages of ciliates (Alveolata). In particular, knowledge of genome structures and changes in genome content over the often-complex life cycles of these lineages remains enigmatic. However, the limited available knowledge suggests that microbial eukaryotes have the potential to challenge our textbook views on eukaryotic genomes and genome evolution. In this study, we developed protocols for DAPI (4',6-diamidino-2-phenylindole) staining of Arcellinida nuclei and adapted protocols for ciliates. In addition, image analysis software was used to estimate the DNA content in the nuclei of Arcellinida and ciliates, and the measurements of target organisms were compared to those of well-known model organisms.The results demonstrate that the methods we have developed for nuclear staining in these lineages are effective and can be applied to other microbial eukaryotic groups by adjusting certain stages in the protocols.
Collapse
Affiliation(s)
- Ketty Munyenyembe
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Caitlin Timmons
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Agnes K M Weiner
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, MA, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, MA, USA.
| | - Ying Yan
- Smith College, Department of Biological Sciences, Northampton, MA, USA.
| |
Collapse
|
13
|
Fesser AF, Braissant O, Olmo F, Kelly JM, Mäser P, Kaiser M. Non-invasive monitoring of drug action: A new live in vitro assay design for Chagas' disease drug discovery. PLoS Negl Trop Dis 2020; 14:e0008487. [PMID: 32716934 PMCID: PMC7419005 DOI: 10.1371/journal.pntd.0008487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
New assay designs are needed to improve the predictive value of the Trypanosoma cruzi in vitro tests used as part of the Chagas' disease drug development pipeline. Here, we employed a green fluorescent protein (eGFP)-expressing parasite line and live high-content imaging to monitor the growth of T. cruzi amastigotes in mouse embryonic fibroblasts. A novel assay design allowed us to follow parasite numbers over 6 days, in four-hour intervals, while occupying the microscope for only 24 hours per biological replicate. Dose-response curves were calculated for each time point after addition of test compounds, revealing how EC50 values first decreased over the time of drug exposure, and then leveled off. However, we observed that parasite numbers could vary, even in the untreated controls, and at different sites in the same well, which caused variability in the EC50 values. To overcome this, we established that fold change in parasite number per hour is a more robust and informative measure of drug activity. This was calculated based on an exponential growth model for every biological sample. The net fold change per hour is the result of parasite replication, differentiation, and death. The calculation of this fold change enabled us to determine the tipping point of drug action, i.e. the time point when the death rate of the parasites exceeded the growth rate and the fold change dropped below 1, depending on the drug concentration and exposure time. This revealed specific pharmacodynamic profiles of the benchmark drugs benznidazole and posaconazole. Chagas' disease, caused by Trypanosoma cruzi, is a chronic debilitating infection occurring mostly in Latin America. There is an urgent need for new, well tolerated drugs. However, the latest therapeutic candidates have yielded disappointing outcomes in clinical trials, despite promising preclinical results. This demands new and more predictive in vitro assays. To address this, we have developed an assay design that enables the growth of T. cruzi intracellular forms to be monitored in real time, under drug pressure, for 6 days post-infection. This allowed us to establish the tipping point of drug action, when the death rate of the parasites exceeded the growth rate. The resulting pharmacodynamics profiles can provide robust and informative details on anti-chagasic candidates, as demonstrated for the benchmark drugs benznidazole and posaconazole.
Collapse
Affiliation(s)
- Anna F. Fesser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Braissant
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francisco Olmo
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pascal Mäser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Marcel Kaiser
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
ImageJ for Partially and Fully Automated Analysis of Trypanosome Micrographs. Methods Mol Biol 2020. [PMID: 32221933 DOI: 10.1007/978-1-0716-0294-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Trypanosomes and related parasites such as Leishmania are unicellular parasites with a precise internal structure. This makes light microscopy a powerful tool for interrogating their biology-whether considering advance techniques for visualizing the precise localization of proteins within the cell or simply measuring parasite cell shape. Methods to partially or fully automate analysis and interpretation are extremely powerful and provide easier access to microscope images as a source of quantitative data. This chapter provides an introduction to these methods using ImageJ/FIJI, free and open source software for scientific image analysis. It provides an overview of how ImageJ handles images and introduces the ImageJ macro/scripting language for automated images, starting at a basic level and assuming no previous programming/scripting experience. It then outlines three methods using ImageJ for automated analysis of trypanosome micrographs: Semiautomated cropping and setting image contrast for presentation, automated analysis of cell properties from a light micrograph field of view, and example semiautomated tools for quantitative analysis of protein localization. These are not presented as strict methods, but are instead described in detail with the intention of furnishing the reader with the ability to "hack" the scripts for their own needs or write their own scripts for partially and fully automated quantitation of trypanosomes from light micrographs. Most of the methods described here are transferrable to other types of microscope image and other cell types.
Collapse
|
15
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of ( a) the nucleus, ( b) the kinetoplast, and ( c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J. Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
16
|
Walker BJ, Ishimoto K, Wheeler RJ. Automated identification of flagella from videomicroscopy via the medial axis transform. Sci Rep 2019; 9:5015. [PMID: 30899085 PMCID: PMC6428899 DOI: 10.1038/s41598-019-41459-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/08/2019] [Indexed: 12/03/2022] Open
Abstract
Ubiquitous in eukaryotic organisms, the flagellum is a well-studied organelle that is well-known to be responsible for motility in a variety of organisms. Commonly necessitated in their study is the capability to image and subsequently track the movement of one or more flagella using videomicroscopy, requiring digital isolation and location of the flagellum within a sequence of frames. Such a process in general currently requires some researcher input, providing some manual estimate or reliance on an experiment-specific heuristic to correctly identify and track the motion of a flagellum. Here we present a fully-automated method of flagellum identification from videomicroscopy based on the fact that the flagella are of approximately constant width when viewed by microscopy. We demonstrate the effectiveness of the algorithm by application to captured videomicroscopy of Leishmania mexicana, a parasitic monoflagellate of the family Trypanosomatidae. ImageJ Macros for flagellar identification are provided, and high accuracy and remarkable throughput are achieved via this unsupervised method, obtaining results comparable in quality to previous studies of closely-related species but achieved without the need for precursory measurements or the development of a specialised heuristic, enabling in general the automated generation of digitised kinematic descriptions of flagellar beating from videomicroscopy.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| | - Kenta Ishimoto
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.,Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan
| | - Richard J Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
17
|
Fu Y, Ji H. Cytomorphology-based microchip with contour extraction processing for bioparticle analysis. Electrophoresis 2018; 40:1195-1201. [PMID: 30387160 DOI: 10.1002/elps.201800271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/15/2018] [Accepted: 10/28/2018] [Indexed: 11/08/2022]
Abstract
In this paper, we demonstrated an integrated digital image processing framework that is training-free for high throughput beads or biological cells detection and enumeration by the bead aggregation splitting algorithm. By making contour extraction processing, the aggregated beads can be clearly split for precise counting. It can be potentially embedded on-chip in a miniaturized medical equipment to automatically adjust illumination condition and de-noise. This study demonstrates that the existing hematological analysis can be updated from manual classification and counting by high-speed and precise machine-based programs.
Collapse
Affiliation(s)
- Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hong Ji
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
18
|
Thomas JA, Baker N, Hutchinson S, Dominicus C, Trenaman A, Glover L, Alsford S, Horn D. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl Trop Dis 2018; 12:e0006980. [PMID: 30475806 PMCID: PMC6283605 DOI: 10.1371/journal.pntd.0006980] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy continues to have a major impact on reducing the burden of disease caused by trypanosomatids. Unfortunately though, the mode-of-action (MoA) of antitrypanosomal drugs typically remains unclear or only partially characterised. This is the case for four of five current drugs used to treat Human African Trypanosomiasis (HAT); eflornithine is a specific inhibitor of ornithine decarboxylase. Here, we used a panel of T. brucei cellular assays to probe the MoA of the current HAT drugs. The assays included DNA-staining followed by microscopy and quantitative image analysis, or flow cytometry; terminal dUTP nick end labelling to monitor mitochondrial (kinetoplast) DNA replication; antibody-based detection of sites of nuclear DNA damage; and fluorescent dye-staining of mitochondria or lysosomes. We found that melarsoprol inhibited mitosis; nifurtimox reduced mitochondrial protein abundance; pentamidine triggered progressive loss of kinetoplast DNA and disruption of mitochondrial membrane potential; and suramin inhibited cytokinesis. Thus, current antitrypanosomal drugs perturb distinct and specific cellular compartments, structures or cell cycle phases. Further exploiting the findings, we show that putative mitogen-activated protein-kinases contribute to the melarsoprol-induced mitotic defect, reminiscent of the mitotic arrest associated signalling cascade triggered by arsenicals in mammalian cells, used to treat leukaemia. Thus, cytology-based profiling can rapidly yield novel insight into antitrypanosomal drug MoA.
Collapse
Affiliation(s)
- James A. Thomas
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Nicola Baker
- The Centre for Immunology and Infection, University of York, Heslington, York, United Kingdom
| | | | | | - Anna Trenaman
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
19
|
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 2018; 70:1267-1274. [PMID: 30291814 PMCID: PMC6334171 DOI: 10.1002/iub.1894] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022]
Abstract
The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans‐splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper‐inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4′,6‐diamidino‐2‐phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein‐coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet‐like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology., 70(12):1267–1274, 2018
Collapse
Affiliation(s)
- Julius Lukeš
- Institute of ParasitologyBiology Centre, Czech Academy of SciencesČeské Budějovice (Budweis)Czech Republic
- Faculty of ScienceUniversity of South BohemiaČeské Budějovice (Budweis)Czech Republic
| | - Richard Wheeler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Dagmar Jirsová
- Institute of ParasitologyBiology Centre, Czech Academy of SciencesČeské Budějovice (Budweis)Czech Republic
| | - Vojtěch David
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| | - John M. Archibald
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| |
Collapse
|
20
|
Hiraiwa PM, de Aguiar AM, Ávila AR. Fluorescence-based assay for accurate measurement of transcriptional activity in trypanosomatid parasites. Cytometry A 2018; 93:727-736. [PMID: 30118574 DOI: 10.1002/cyto.a.23387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/05/2022]
Abstract
Trypanosomatid parasites are causative agents of neglected human diseases. Their lineage diverged early from the common eukaryotic ancestor, and they evolved singular mechanisms of gene expression that are crucial for their survival. Studies on unusual and essential molecular pathways lead to new drug targets. In this respect, assays to analyze transcriptional activity will provide useful information to identify essential and specific factors. However, the current methods are laborious and do not provide global and accurate measures. For this purpose, a previously reported radiolabeling in vitro nascent mRNA methodology was used to establish an alternative fluorescent-based assay that is able to precisely quantify nascent mRNA using both flow cytometry and a high-content image system. The method allowed accurate and global measurements in Trypanosoma brucei, a representative species of trypanosomatid parasites. We obtained data demonstrating that approximately 70% of parasites from a population under normal growth conditions displayed mRNA transcriptional activity, whilst the treatment with α-amanitin (75 µg/ml) inhibited the polymerase II activity. The adaptation of the method also allowed the analyses of the transcriptional activity during the cell cycle. Therefore, the methodology described herein contributes to obtaining precise measurements of transcriptional rates using multiparametric analysis. This alternative method can facilitate investigations of genetic and biochemical processes in trypanosome parasites and consequently provide additional information related to new treatment or prophylaxis strategies involving these important human parasites.
Collapse
Affiliation(s)
- Priscila M Hiraiwa
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Alessandra M de Aguiar
- Flow Cytometry Facility, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil.,Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Andréa R Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| |
Collapse
|
21
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
22
|
Faktorová D, Valach M, Kaur B, Burger G, Lukeš J. Mitochondrial RNA Editing and Processing in Diplonemid Protists. RNA METABOLISM IN MITOCHONDRIA 2018. [DOI: 10.1007/978-3-319-78190-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
23
|
Benz C, Dondelinger F, McKean PG, Urbaniak MD. Cell cycle synchronisation of Trypanosoma brucei by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Sci Rep 2017; 7:17599. [PMID: 29242601 PMCID: PMC5730572 DOI: 10.1038/s41598-017-17779-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
We report an optimised centrifugal counter-flow elutriation protocol for the rapid and direct isolation of G1 cell cycle synchronised populations of both the procyclic and bloodstream form stages of Trypanosoma brucei that yields viable and proliferative cells. The high quality of the synchronisation achieved can be judged by the uniform DNA content, narrow size distribution, synchronous division, and the maintenance of synchronicity into subsequent cell cycles. We show that early-eluting fractions represent different G1 subpopulations that progress through the cell cycle with distinct temporal profiles post-elutriation, as exemplified by the observation of the maturation of a second flagellar basal body in late G1 phase, DNA replication in S phase, and dimethylation of histone H3 in mitosis/cytokinesis. We use our temporal observations to construct a revised model of the relative timing and duration of the nuclear and kinetoplast cell cycle that differs from the current model.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Frank Dondelinger
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Paul G McKean
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
24
|
A genetically enhanced sterile insect technique against the fruit fly, Bactrocera dorsalis (Hendel) by feeding adult double-stranded RNAs. Sci Rep 2017. [PMID: 28642479 PMCID: PMC5481416 DOI: 10.1038/s41598-017-04431-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNAi based sterile insect technique (SIT) is an authentic insect management approach but requires proper target genes. During this study, spermless males were developed by interfering with germ cell differentiation and azoospermia related genes. Data demonstrates significant reductions in the target genes expressions (boul, zpg, dsxM, fzo and gas8) after oral dsRNAs administration. Knock down of target genes significantly affected the reproductive ability of males and reduced egg-hatching as compared to the control group. Furthermore, different combinations of selected gene dsRNAs (boul + zpg, boul + dsxM and zpg + dsxM) were made, which resulted up to 85.40% of male sterility. The most effective combination was selected to prepare different concentrations of dsRNA, 250, 500, 750 and 1000 ng/μl, that caused 18.97%, 38.68%, 58.02% and 85.40% male sterility, respectively. Subsequently, 1000 ng/μl of the same combination of ds-RNAs was used against differently aged adult flies (1, 5, 7, 10 days) which lead to 85.40%, 31.42%, 21.76% and 9.90% male sterility, respectively. SIT developed in this study showed that, boul + zpg combination of dsRNA feeding for 6 hours significantly reduced the number of spermatozoa and viability of sperm in 1-day-old B. dorsalis flies. In short, this study provides an effective SIT technique for long-term B. dorsalis management.
Collapse
|
25
|
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The Baculum was Gained and Lost Multiple Times during Mammalian Evolution. Integr Comp Biol 2016; 56:644-56. [PMID: 27252214 PMCID: PMC6080509 DOI: 10.1093/icb/icw034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid evolution of male genitalia is a nearly ubiquitous pattern across sexually reproducing organisms, likely driven by the evolutionary pressures of male-male competition, male-female interactions, and perhaps pleiotropic effects of selection. The penis of many mammalian species contains a baculum, a bone that displays astonishing morphological diversity. The evolution of baculum size and shape does not consistently correlate with any aspects of mating system, hindering our understanding of the evolutionary processes affecting it. One potential explanation for the lack of consistent comparative results is that the baculum is not actually a homologous structure. If the baculum of different groups evolved independently, then the assumption of homology inherent in comparative studies is violated. Here, we specifically test this hypothesis by modeling the presence/absence of bacula of 954 mammalian species across a well-established phylogeny and show that the baculum evolved a minimum of nine times, and was lost a minimum of ten times. Three different forms of bootstrapping show our results are robust to species sampling. Furthermore, groups with a baculum show evidence of higher rates of diversification. Our study offers an explanation for the inconsistent results in the literature, and provides insight into the evolution of this remarkable structure.
Collapse
Affiliation(s)
- Nicholas G Schultz
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Eric Abreu
- West Adams Preparatory High School, 1500 W Washington Blvd, Los Angeles, CA 90007, USA
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Matthew D Dean
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, Aresta-Branco F, Bento F, Young SA, Pinto A, Van Den Abbeele J, Ribeiro RM, Dias S, Smith TK, Figueiredo LM. Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host Microbe 2016; 19:837-48. [PMID: 27237364 PMCID: PMC4906371 DOI: 10.1016/j.chom.2016.05.002] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 04/30/2016] [Indexed: 11/17/2022]
Abstract
Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenous myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. These findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness. T. brucei parasites accumulate in the adipose tissue early after mouse infection Adipose tissue forms (ATFs) can replicate and are capable of infecting naive mice ATFs are transcriptionally distinct and upregulate genes for fatty acid metabolism ATFs can actively uptake exogenous myristate and form β-oxidation intermediates
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Filipa Rijo-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Daniel Pinto-Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Fabien Guegan
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Francisco Aresta-Branco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Fabio Bento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Simon A Young
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, B-2000 Antwerp, Belgium; Department of Physiology, Laboratory of Zoophysiology, University of Ghent, B-9000 Ghent, Belgium
| | - Ruy M Ribeiro
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Guest Professor, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal.
| |
Collapse
|
27
|
Godoy PL, Bronzati M, Eltink E, Marsola JCDA, Cidade GM, Langer MC, Montefeltro FC. Postcranial anatomy of Pissarrachampsa sera (Crocodyliformes, Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and phylogenetic significance. PeerJ 2016; 4:e2075. [PMID: 27257551 PMCID: PMC4888301 DOI: 10.7717/peerj.2075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
The postcranial anatomy of Crocodyliformes has historically been neglected, as most descriptions are based solely on skulls. Yet, the significance of the postcranium in crocodyliforms evolution is reflected in the great lifestyle diversity exhibited by the group, with members ranging from terrestrial animals to semi-aquatic and fully marine forms. Recently, studies have emphasized the importance of the postcranium. Following this trend, here we present a detailed description of the postcranial elements of Pissarrachampsa sera (Mesoeucrocodylia, Baurusuchidae), from the Adamantina Formation (Bauru Group, Late Cretaceous of Brazil). The preserved elements include dorsal vertebrae, partial forelimb, pelvic girdle, and hindlimbs. Comparisons with the postcranial anatomy of baurusuchids and other crocodyliforms, together with body-size and mass estimates, lead to a better understanding of the paleobiology of Pissarrachampsa sera, including its terrestrial lifestyle and its role as a top predator. Furthermore, the complete absence of osteoderms in P. sera, a condition previously known only in marine crocodyliforms, suggests osteoderms very likely played a minor role in locomotion of baurusuchids, unlike other groups of terrestrial crocodyliforms. Finally, a phylogenetic analysis including the newly recognized postcranial features was carried out, and exploratory analyses were performed to investigate the influence of both cranial and postcranial characters in the phylogeny of Crocodyliformes. Our results suggest that crocodyliform relationships are mainly determined by cranial characters. However, this seems to be a consequence of the great number of missing entries in the data set with only postcranial characters and not of the lack of potential (or synapomorphies) for this kind of data to reflect the evolutionary history of Crocodyliformes.
Collapse
Affiliation(s)
- Pedro L. Godoy
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mario Bronzati
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatlichen Naturwissenschaftlichen Sammlungen Bayerns, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Estevan Eltink
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Júlio C. de A. Marsola
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giovanne M. Cidade
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe C. Montefeltro
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista (UNESP), Ilha Solteira, Brazil
| |
Collapse
|
28
|
Ishmukhametov RR, Russell AN, Wheeler RJ, Nord AL, Berry RM. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes. Sci Rep 2016; 6:20729. [PMID: 26853732 PMCID: PMC4745110 DOI: 10.1038/srep20729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/11/2016] [Indexed: 12/02/2022] Open
Abstract
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Collapse
Affiliation(s)
- Robert R Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Aidan N Russell
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Richard J Wheeler
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ashley L Nord
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| |
Collapse
|
29
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Fiebig M, Kelly S, Gluenz E. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates. PLoS Pathog 2015; 11:e1005186. [PMID: 26452044 PMCID: PMC4599935 DOI: 10.1371/journal.ppat.1005186] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Michael Fiebig
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (SK); (EG)
| |
Collapse
|
31
|
Asthana J, Yadav D, Pant A, Yadav AK, Gupta MM, Pandey R. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2015; 71:1160-8. [PMID: 26433219 DOI: 10.1093/gerona/glv173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/15/2015] [Indexed: 11/12/2022] Open
Abstract
The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases.
Collapse
Affiliation(s)
| | - Deepti Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - A K Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - M M Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology and
| |
Collapse
|
32
|
Badenhorst D, Hillier LW, Literman R, Montiel EE, Radhakrishnan S, Shen Y, Minx P, Janes DE, Warren WC, Edwards SV, Valenzuela N. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation. Genome Biol Evol 2015; 7:2038-50. [PMID: 26108489 PMCID: PMC4524486 DOI: 10.1093/gbe/evv119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 01/04/2023] Open
Abstract
Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.
Collapse
Affiliation(s)
- Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | | | - Yingjia Shen
- The Genome Institute at Washington University, St Louis
| | - Patrick Minx
- The Genome Institute at Washington University, St Louis
| | - Daniel E Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| |
Collapse
|
33
|
Paul A, Nanjunda R, Kumar A, Laughlin S, Nhili R, Depauw S, Deuser SS, Chai Y, Chaudhary AS, David-Cordonnier MH, Boykin DW, Wilson WD. Mixed up minor groove binders: Convincing A·T specific compounds to recognize a G·C base pair. Bioorg Med Chem Lett 2015; 25:4927-4932. [PMID: 26051649 DOI: 10.1016/j.bmcl.2015.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
DNA minor-groove-binding compounds have limited biological applications, in part due to problems with sequence specificity that cause off-target effects. A model to enhance specificity has been developed with the goal of preparing compounds that bind to two AT sites separated by G·C base pairs. Compounds of interest were probed using thermal melting, circular dichroism, mass spectrometry, biosensor-SPR, and molecular modeling methods. A new minor groove binder that can strongly and specifically recognize a single G·C base pair with flanking AT sequences has been prepared. This multi-site DNA recognition mode offers novel design principles to recognize entirely new DNA motifs.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Sarah Laughlin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Raja Nhili
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Shelby Sheldon Deuser
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yun Chai
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
34
|
Yazdanparast E, Dos Anjos A, Garcia D, Loeuillet C, Shahbazkia HR, Vergnes B. INsPECT, an open-source and versatile software for automated quantification of (Leishmania) intracellular parasites. PLoS Negl Trop Dis 2014; 8:e2850. [PMID: 24831235 PMCID: PMC4022486 DOI: 10.1371/journal.pntd.0002850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/28/2014] [Indexed: 01/14/2023] Open
Abstract
Intracellular protozoan parasites are causative agents of infectious diseases that constitute major health problems for developing countries. Leishmania sp., Trypanosoma cruzi or Toxoplasma gondii are all obligate intracellular protozoan parasites that reside and multiply within the host cells of mammals, including humans. Following up intracellular parasite proliferation is therefore an essential and a quotidian task for many laboratories working on primary screening of new natural and synthetic drugs, analyzing drug susceptibility or comparing virulence properties of natural and genetically modified strains. Nevertheless, laborious manual microscopic counting of intracellular parasites is still the most commonly used approach. Here, we present INsPECT (Intracellular ParasitE CounTer), an open-source and platform independent software dedicated to automate infection level measurement based on fluorescent DNA staining. It offers the possibility to choose between different types of analyses (fluorescent DNA acquisitions only or in combination with phase contrast image set to further separate intra- from extracellular parasites), and software running modes (automatic or custom). A proof-of-concept study with intracellular Leishmania infantum parasites stained with DAPI (4′,6-diamidino-2-phenylindole) confirms a good correspondence between digital results and the “gold standard” microscopic counting method with Giemsa. Interestingly, this software is versatile enough to accurately detect intracellular T. gondii parasites on images acquired with High Content Screening (HCS) systems. In conclusion, INsPECT software is proposed as a new fast and simple alternative to the classical intracellular Leishmania quantification methods and can be adapted for mid to large-scale drug screening against different intracellular parasites. Research on intracellular parasites require using non-invasive technologies to follow up parasite proliferation inside their natural host cells by staying in the more physiological conditions as possible. High Content Screening (HCS) technology has recently emerged as a powerful image-based approach to screen new anti-parasitic compounds or to test parasite susceptibility to existing drugs in vitro. Nevertheless, such equipments will remain poorly accessible for most of academic and clinical diagnostic laboratories that mostly use more affordable, but laborious, microscopic counting procedures. The current work proposes new image-based, open-source software which provides a fast and accurate solution for investigating intracellular parasite quantification. Through an easy-to-use interface, cells' and parasites' information are dug out from DNA fluorescent images, and host cells' boundaries are extracted from corresponding phase contrast image set. Parasites are then reassigned to their related cells and intra/extracellular parasites are discriminated for each cell. The software further automatically calculates all data required for most of experimental infection studies. INsPECT software is proposed as a free substitute or complement to the available quantification methods for measuring Leishmania infection level in vitro. It may be enlarged, however, to different intracellular trypanosomatids or unrelated parasites such as T. gondii.
Collapse
Affiliation(s)
| | | | - Deborah Garcia
- MIVEGEC (UM1-CNRS 5290-IRD 224), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Corinne Loeuillet
- MIVEGEC (UM1-CNRS 5290-IRD 224), Institut de Recherche pour le Développement (IRD), Montpellier, France
- UMR 5163, Centre National de la Recherche Scientifique (CNRS), Université Grenoble 1, Grenoble, France
| | - Hamid Reza Shahbazkia
- Universidade do Algarve, DEEI-FCT, Faro, Portugal
- MIVEGEC (UM1-CNRS 5290-IRD 224), Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail: (HRS); (BV)
| | - Baptiste Vergnes
- MIVEGEC (UM1-CNRS 5290-IRD 224), Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail: (HRS); (BV)
| |
Collapse
|
35
|
Peacock L, Bailey M, Carrington M, Gibson W. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei. Curr Biol 2014; 24:181-186. [PMID: 24388851 PMCID: PMC3928991 DOI: 10.1016/j.cub.2013.11.044] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022]
Abstract
In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5]. Trypanosoma brucei is a sexual organism Meiosis is a normal part of the trypanosome’s life cycle Identification of a novel haploid cell type with distinctive morphology First visualization of how trypanosomes mate
Collapse
|
36
|
da Silva MS, Monteiro JP, Nunes VS, Vasconcelos EJ, Perez AM, Freitas-Júnior LDH, Elias MC, Cano MIN. Leishmania amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation during cell cycle. PLoS One 2013; 8:e81397. [PMID: 24278433 PMCID: PMC3836779 DOI: 10.1371/journal.pone.0081397] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
Here, we show the morphological events associated with organelle segregation and their timing in the cell cycle of a reference strain of Leishmania (L.) amazonensis promastigotes, the main causative agent of Tegumentary leishmaniasis in the Americas. We show evidences that during the cell cycle, L. amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation, which occur in different temporal order in different proportions of cells. We used DAPI-staining and EdU-labeling to monitor the segregation of DNA-containing organelles and DNA replication in wild-type parasites. The emergence of a new flagellum was observed using a specific monoclonal antibody. The results show that L. amazonensis cell cycle division is peculiar, with 65% of the dividing cells duplicating the kinetoplast before the nucleus, and the remaining 35% doing the opposite or duplicating both organelles concomitantly. In both cases, the new flagellum appeared during S to G2 phase in 1N1K cells and thus before the segregation of both DNA-containing organelles; however, we could not determine the exact timing of flagellar synthesis. Most of these results were confirmed by the synchronization of parasites using hydroxyurea. Altogether, our data show that during the cell cycle of L. amazonensis promastigotes, similarly to L. donovani, the segregation of nucleus and kinetoplast do not follow a specific order, especially when compared to other trypanosomatids, reinforcing the idea that this characteristic seems to be species-specific and may represent differences in cellular biology among members of the Leishmania genus.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jomar Patrício Monteiro
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Caprinos e Ovinos, Sobral, Ceará, Brazil
| | - Vinícius Santana Nunes
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Arina Marina Perez
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Lúcio de Holanda Freitas-Júnior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Maria Carolina Elias
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Maria Isabel Nogueira Cano
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One 2013; 8:e79581. [PMID: 24260255 PMCID: PMC3834336 DOI: 10.1371/journal.pone.0079581] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023] Open
Abstract
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Nanjunda R, Wilson WD. Binding to the DNA minor groove by heterocyclic dications: from AT-specific monomers to GC recognition with dimers. ACTA ACUST UNITED AC 2013; Chapter 8:Unit8.8. [PMID: 23255206 DOI: 10.1002/0471142700.nc0808s51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, have found extensive uses in biotechnology, and are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences.
Collapse
Affiliation(s)
- Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|