1
|
Erratt K, Creed IF, Freeman EC, Trick CG, Westrick J, Birbeck JA, Watson LC, Zastepa A. Deep Cyanobacteria Layers: An Overlooked Aspect of Managing Risks of Cyanobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17902-17912. [PMID: 36414474 PMCID: PMC9775209 DOI: 10.1021/acs.est.2c06928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The risk of human exposure to cyanotoxins is partially influenced by the location of toxin-producing cyanobacteria in waterbodies. Cyanotoxin production can occur throughout the water column, with deep water production representing a potential public health concern, specifically for drinking water supplies. Deep cyanobacteria layers are often unreported, and it remains to be seen if lower incident rates reflect an uncommon phenomenon or a monitoring bias. Here, we examine Sunfish Lake, Ontario, Canada as a case study lake with a known deep cyanobacteria layer. Cyanotoxin and other bioactive metabolite screening revealed that the deep cyanobacteria layer was toxigenic [0.03 μg L-1 microcystins (max) and 2.5 μg L-1 anabaenopeptins (max)]. The deep layer was predominantly composed of Planktothrix isothrix (exhibiting a lower cyanotoxin cell quota), with Planktothrix rubescens (exhibiting a higher cyanotoxin cell quota) found at background levels. The co-occurrence of multiple toxigenic Planktothrix species underscores the importance of routine surveillance for prompt identification leading to early intervention. For instance, microcystin concentrations in Sunfish Lake are currently below national drinking water thresholds, but shifting environmental conditions (e.g., in response to climate change or nutrient modification) could fashion an environment favoring P. rubescens, creating a scenario of greater cyanotoxin production. Future work should monitor the entire water column to help build predictive capacities for identifying waterbodies at elevated risk of developing deep cyanobacteria layers to safeguard drinking water supplies.
Collapse
Affiliation(s)
- Kevin
J. Erratt
- School
of Environment & Sustainability, University
of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SaskatchewanS7N 5E2, Canada
| | - Irena F. Creed
- School
of Environment & Sustainability, University
of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SaskatchewanS7N 5E2, Canada
- Department
of Physical & Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, OntarioM1C 1A4, Canada
| | - Erika C. Freeman
- Ecosystems
and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 1TN, U.K.
| | - Charles G. Trick
- Department
of Health & Society, University of Toronto, 1265 Military Trail, Toronto, OntarioM1C 1A4, Canada
| | - Judy Westrick
- Lumigen
Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, Michigan48202, United States
| | - Johnna A. Birbeck
- Lumigen
Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, Michigan48202, United States
| | - L. Cynthia Watson
- Environment
and Climate Change Canada, Canada Centre
for Inland Waters, 867
Lakeshore Road, Burlington, OntarioL7S1A1, Canada
| | - Arthur Zastepa
- Environment
and Climate Change Canada, Canada Centre
for Inland Waters, 867
Lakeshore Road, Burlington, OntarioL7S1A1, Canada
| |
Collapse
|
2
|
Knapp D, Fernández Castro B, Marty D, Loher E, Köster O, Wüest A, Posch T. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium Planktothrix rubescens Triggered by Stratification Dynamics and Irradiance. Front Microbiol 2021; 12:705914. [PMID: 34512582 PMCID: PMC8425285 DOI: 10.3389/fmicb.2021.705914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Planktothrix rubescens is a harmful planktonic cyanobacterium, forming concentrated metalimnetic populations in deep oligo- and mesotrophic lakes, even after successful restoration. In Lake Zurich (Switzerland), P. rubescens emerged as a keystone species with annual mass developments since the 1970s. Its success was partly attributed to effects of lake warming, such as changes in thermal stratification and seasonal deep mixing. However, recent observations based on a biweekly monitoring campaign (2009-2020) revealed two massive breakdowns and striking seasonal oscillations of the population. Here, we disentangle positive from negative consequences of secular lake warming and annual variations in weather conditions on P. rubescens dynamics: (i) despite the high survival rates of overwintering populations (up to 25%) during three consecutive winters (2014-2016) of incomplete deep convective mixing, cyanobacterial regrowth during the following stratified season was moderate and not overshooting a distinct standing stock threshold. Moreover, we recorded a negative trend for annual population maxima and total population size, pointing to a potential nutrient limitation after a series of incomplete winter mixing. Thus, the predication of steadily increasing blooms of P. rubescens could not be confirmed for the last decade. (ii) The seasonal reestablishment of P. rubescens was strongly coupled with a timely formation of a stable metalimnion structure, where the first positive net growth in the following productive summer season was observed. The trigger for the vertical positioning of filaments within the metalimnion was irradiance and not maximal water column stability. Repetitive disruptions of the vernal metalimnion owing to unstable weather conditions, as in spring 2019, went in parallel with a massive breakdown of the standing stock and marginal regrowth during thermal stratification. (iii) Driven by light intensity, P. rubescens was entrained into the turbulent epilimnion in autumn, followed by a second peak in population growth. Thus, the typical bimodal growth pattern was still intact during the last decade. Our long-term study highlights the finely tuned interplay between climate-induced changes and variability of thermal stratification dynamics and physiological traits of P. rubescens, determining its survival in a mesotrophic temperate lake.
Collapse
Affiliation(s)
- Deborah Knapp
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Bieito Fernández Castro
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Daniel Marty
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Eugen Loher
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | | | - Alfred Wüest
- Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, Institute of Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
3
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
4
|
Pálffy K, Vörös L. Phytoplankton functional composition shows higher seasonal variability in a large shallow lake after a eutrophic past. Ecosphere 2019. [DOI: 10.1002/ecs2.2684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Károly Pálffy
- Balaton Limnological Institute MTA Centre for Ecological Research 3 Klebelsberg Kuno Street Tihany H‐8237 Hungary
- GINOP Sustainable Ecosystems Group MTA Centre for Ecological Research 3 Klebelsberg Kuno Street Tihany H‐8237 Hungary
| | - Lajos Vörös
- Balaton Limnological Institute MTA Centre for Ecological Research 3 Klebelsberg Kuno Street Tihany H‐8237 Hungary
- GINOP Sustainable Ecosystems Group MTA Centre for Ecological Research 3 Klebelsberg Kuno Street Tihany H‐8237 Hungary
| |
Collapse
|
5
|
Guellati FZ, Touati H, Tambosco K, Quiblier C, Humbert JF, Bensouilah M. Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PLoS One 2017; 12:e0183540. [PMID: 28859113 PMCID: PMC5578670 DOI: 10.1371/journal.pone.0183540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022] Open
Abstract
Succession in bloom-forming cyanobacteria belonging to distant functional groups in freshwater ecosystems is currently an undescribed phenomenon. However in the Hammam Debagh reservoir (Algeria), P. rubescens and Microcystis sp. co-occur and sometimes proliferate. With the aim of identifying the main factors and processes involved in this unusual cohabitation, water samples were collected monthly from February 2013 to June 2015 at the subsurface at four sampling stations and along the entire water column at one sampling station. In addition, the composition of the cyanobacterial communities was estimated by Illumina sequencing of a 16S rRNA gene fragment from samples collected over one year (October 2013-November 2014). This molecular approach showed that the Hammam Debagh reservoir displays high species richness (89 species) but very low diversity due to the high dominance of Microcystis in this community. Furthermore, it appears that Planktothrix rubescens and Microcystis sp. coexisted (from September to January) but proliferated alternately (Spring 2015 for P. rubescens and Spring 2014 and Autumn 2014/2015 for Microcystis). The main factors and processes explaining these changes in bloom-forming species seem to be related to the variation in the depth of the lake during the mixing period and to the water temperatures during the winter prior to the bloom season in spring.
Collapse
Affiliation(s)
- Fatma Zohra Guellati
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
- * E-mail: (FZG); (JFH)
| | - Hassen Touati
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
| | - Kevin Tambosco
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
| | - Catherine Quiblier
- Muséum, National d’Histoire Naturelle, UMR 7245 MNHN-CNRS, Paris, France
- Université Paris Diderot, Paris, France
| | - Jean-François Humbert
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
- * E-mail: (FZG); (JFH)
| | - Mourad Bensouilah
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
| |
Collapse
|
6
|
Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 2017; 7:8342. [PMID: 28827675 PMCID: PMC5566422 DOI: 10.1038/s41598-017-08701-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
We investigated possibility of predicting whether blooms, if they occur, would be formed of microcystin-producing cyanobacteria. DGGE analysis of 16S-ITS and mcyA genes revealed that only Planktothrix and Microcystis possessed mcy-genes and Planktothrix was the main microcystin producer. qPCR analysis revealed that the proportion of cells with mcy-genes in Planktothrix populations was almost 100%. Microcystin concentration correlated with the number of potentially toxic and total Planktothrix cells and the proportion of Planktothrix within all cyanobacteria, but not with the proportion of cells with mcy-genes in total Planktothrix. The share of Microcystis cells with mcy-genes was low and variable in time. Neither the number of mcy-possessing cells, nor the proportion of these cells in total Microcystis, correlated with the concentration of microcystins. This suggests that it is possible to predict whether the bloom in the Masurian Lakes will be toxic based on Planktothrix occurrence. Two species of toxin producing Planktothrix, P. agardhii and P. rubescens, were identified by phylogenetic analysis of 16S-ITS. Based on morphological and ecological features, the toxic Planktothrix was identified as P. agardhii. However, the very high proportion of cells with mcy-genes suggests P. rubescens. Our study reveals the need of universal primers for mcyA genes from environment.
Collapse
Affiliation(s)
- Aleksandra Bukowska
- Department of Microbial Ecology & Environmental Biotechnology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Tomasz Kaliński
- Department of Microbial Ecology & Environmental Biotechnology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, A. Pawińskiego 5a, 02-106, Warszawa, Poland
| | | | - Jan Kwiatowski
- Department of Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Iwona Jasser
- Department of Plant Ecology & Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland.
| |
Collapse
|
7
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
8
|
Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes. Appl Environ Microbiol 2016; 82:6472-6482. [PMID: 27565621 DOI: 10.1128/aem.02174-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 02/01/2023] Open
Abstract
We reconstructed cyanobacterial community structure and phylogeny using DNA that was isolated from layers of stratified sediments spanning 200 years of lake history in the perialpine lakes Greifensee and Lake Zurich (Switzerland). Community analysis based on amplification and sequencing of a 400-nucleotide (nt)-long 16S rRNA fragment specific to Cyanobacteria revealed operational taxonomic units (OTUs) capturing the whole phylum, including representatives of a newly characterized clade termed Melainabacteria, which shares common ancestry with Cyanobacteria and has not been previously described in lakes. The reconstruction of cyanobacterial richness and phylogenetic structure was validated using a data set consisting of 40 years of pelagic microscopic counts from each lake. We identified the OTUs assigned to common taxa known to be present in Greifensee and Lake Zurich and found a strong and significant relationship (adjusted R2 = 0.89; P < 0.001) between pelagic species richness in water and OTU richness in the sediments. The water-sediment richness relationship varied between cyanobacterial orders, indicating that the richness of Chroococcales and Synechococcales may be underestimated by microscopy. PCR detection of the microcystin synthetase gene mcyA confirmed the presence of potentially toxic cyanobacterial taxa over recent years in Greifensee and throughout the last century in Lake Zurich. The approach presented in this study demonstrates that it is possible to reconstruct past pelagic cyanobacterial communities in lakes where the integrity of the sedimentary archive is well preserved and to explore changes in phylogenetic and functional diversity over decade-to-century timescales. IMPORTANCE Cyanobacterial blooms can produce toxins that affect water quality, especially under eutrophic conditions, which are a consequence of human-induced climate warming and increased nutrient availability. Lakes worldwide have suffered from regular cyanobacterial blooms over the last century. The lack of long-term data limits our understanding of how these blooms form. We successfully reconstructed the past diversity of whole cyanobacterial communities over two hundred years by sequencing genes preserved in the sediments of two perialpine lakes in Switzerland. We identified changes in diversity over time and validated our results using existing data collected in the same two lakes over the past 40 years. This work shows the potential of our approach for addressing important ecological questions about the effects of a changing environment on lake ecology.
Collapse
|
9
|
Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. HARMFUL ALGAE 2016; 54:69-86. [PMID: 27307781 PMCID: PMC4892429 DOI: 10.1016/j.hal.2016.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/22/2023]
Abstract
Bloom-forming cyanobacteria Planktothrix agardhii and P. rubescens are regularly involved in the occurrence of cyanotoxin in lakes and reservoirs. Besides microcystins (MCs), which inhibit eukaryotic protein phosphatase 1 and 2A, several families of bioactive peptides are produced, thereby resulting in impressive secondary metabolite structural diversity. This review will focus on the current knowledge of the phylogeny, morphology, and ecophysiological adaptations of Planktothrix as well as the toxins and bioactive peptides produced. The relatively well studied ecophysiological adaptations (buoyancy, shade tolerance, nutrient storage capacity) can partly explain the invasiveness of this group of cyanobacteria that bloom within short periods (weeks to months). The more recent elucidation of the genetic basis of toxin and bioactive peptide synthesis paved the way for investigating its regulation both in the laboratory using cell cultures as well as under field conditions. The high frequency of several toxin and bioactive peptide synthesis genes observed within P. agardhii and P. rubescens, but not for other Planktothrix species (e.g. P. pseudagardhii), suggests a potential functional linkage between bioactive peptide production and the colonization potential and possible dominance in habitats. It is hypothesized that, through toxin and bioactive peptide production, Planktothrix act as a niche constructor at the ecosystem scale, possibly resulting in an even higher ability to monopolize resources, positive feedback loops, and resilience under stable environmental conditions. Thus, refocusing harmful algal bloom management by integrating ecological and phylogenetic factors acting on toxin and bioactive peptide synthesis gene distribution and concentrations could increase the predictability of the risks originating from Planktothrix blooms.
Collapse
Affiliation(s)
- Rainer Kurmayer
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria.
| | - Li Deng
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Elisabeth Entfellner
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
10
|
Manganelli M, Stefanelli M, Vichi S, Andreani P, Nascetti G, Scialanca F, Scardala S, Testai E, Funari E. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins. Toxicon 2016; 115:28-40. [PMID: 26948426 DOI: 10.1016/j.toxicon.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that monthly sampling during such a phase could greatly underestimate the 'hazard'. Our results highlight the need to adopt a stepwise monitoring activity, considering the lake and the cyanobacteria specific features. This activity should be complemented with communication to the public and involvement of stakeholders.
Collapse
Affiliation(s)
- Maura Manganelli
- Department of the Environment and Primary Prevention - Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | - Mara Stefanelli
- Research, Certification and Control Division - INAIL, via Fontana candida 1, Monteporzio Catone, Rome, Italy.
| | - Susanna Vichi
- Department of the Environment and Primary Prevention - Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | - Paolo Andreani
- Tutela acque - Concessioni e Risorse idriche, Provincia di Viterbo, Via del Collegio, Viterbo, Italy.
| | - Giuseppe Nascetti
- Department of Ecology and Biology - University La Tuscia, via S. Giovanni decollato 1, Viterbo, Italy.
| | - Fabrizio Scialanca
- Department of Ecology and Biology - University La Tuscia, via S. Giovanni decollato 1, Viterbo, Italy.
| | - Simona Scardala
- Department of the Environment and Primary Prevention - Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | - Emanuela Testai
- Department of the Environment and Primary Prevention - Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | - Enzo Funari
- Department of the Environment and Primary Prevention - Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| |
Collapse
|
11
|
Rivetti C, Gómez-Canela C, Lacorte S, Díez S, Lázaro WL, Barata C. Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:41-50. [PMID: 25667993 DOI: 10.1016/j.aquatox.2015.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects.
Collapse
Affiliation(s)
- Claudia Rivetti
- Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Wilkinson L Lázaro
- Centro de Estudos em Limnologia, Biodiversidade e Etnobiologia do Pantanal, Universidade Estadual de Mato Grosso (UNEMAT), Mato Grosso, Brazil. Programa de Pós Graduação em Ecologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Carlos Barata
- Department of Environmental Chemistry, IDÆA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
12
|
Kurmayer R, Blom JF, Deng L, Pernthaler J. Integrating phylogeny, geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix. THE ISME JOURNAL 2015; 9:909-21. [PMID: 25325384 PMCID: PMC4349496 DOI: 10.1038/ismej.2014.189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 11/09/2022]
Abstract
Toxic freshwater cyanobacteria form harmful algal blooms that can cause acute toxicity to humans and livestock. Globally distributed, bloom-forming cyanobacteria Planktothrix either retain or lose the mcy gene cluster (encoding the synthesis of the secondary metabolite hepatotoxin microcystin or MC), resulting in a variable spatial/temporal distribution of (non)toxic genotypes. Despite their importance to human well-being, such genotype diversity is not being mapped at scales relevant to nature. We aimed to reveal the factors influencing the dispersal of those genotypes by analyzing 138 strains (from Europe, Russia, North America and East Africa) for their (i) mcy gene cluster composition, (ii) phylogeny and adaptation to their habitat and (iii) ribosomally and nonribosomally synthesized oligopeptide products. Although all the strains from different species contained at least remnants of the mcy gene cluster, various phylogenetic lineages evolved and adapted to rather specific ecological niches (for example, through pigmentation and gas vesicle protein size). No evidence for an increased abundance of specific peptides in the absence of MC was found. MC and peptide distribution rather depended on phylogeny, ecophysiological adaptation and geographic distance. Together, these findings provide evidence that MC and peptide production are primarily related to speciation processes, while within a phylogenetic lineage the probability that strains differ in peptide composition increases with geographic distance.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck Mondsee, Austria
| | - Judith F Blom
- Limnological Station, Institute of Plant Biology, University of Zürich Kilchberg, Switzerland
| | - Li Deng
- Research Institute for Limnology, University of Innsbruck Mondsee, Austria
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of Zürich Kilchberg, Switzerland
| |
Collapse
|
13
|
Blanco Y, Quesada A, Gallardo-Carreño I, Aguirre J, Parro V. CYANOCHIP: an antibody microarray for high-taxonomical-resolution cyanobacterial monitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1611-1620. [PMID: 25565212 DOI: 10.1021/es5051106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are Gram-negative photosynthetic prokaryotes that are widespread on Earth. Eutrophication and global warming make some aquatic ecosystems behave as bioreactors that trigger rapid and massive cyanobacterial growth with remarkable economic and health consequences. Rapid and efficient early warning systems are required to support decisions by water body authorities. We have produced 17 specific antibodies to the most frequent cyanobacterial strains blooming in freshwater ecosystems, some of which are toxin producers. A sandwich-type antibody microarray immunoassay (CYANOCHIP) was developed for the simultaneous testing of any of the 17 strains, or other closely related strains, in field samples from different habitats (water, rocks, and sediments). We titrated and tested all of the antibodies in succession using a fluorescent sandwich microarray immunoassay. Although most showed high specificity, we applied a deconvolution method based on graph theory to disentangle the few existing cross-reactions. The CYANOCHIP sensitivity ranged from 10(2) to 10(4) cells mL(-1), with most antibodies detecting approximately 10(2) cells mL(-1). We validated the system by testing multiple isolates and crude natural samples from freshwater reservoirs and rocks, both in the laboratory and by in situ testing in the field. The results demonstrated that CYANOCHIP is a valuable tool for the sensitive and reliable detection of cyanobacteria for early warning and research purposes.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC) , Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Variability of microcystin cell quota in metapopulations of Planktothrix rubescens: causes and implications for water management. Toxicon 2014; 90:82-96. [PMID: 25108147 DOI: 10.1016/j.toxicon.2014.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the relationships between microcystin (MCs) concentrations and the biovolumes of Planktothrix rubescens (BPr) in 2 natural lakes (Pusiano and Garda) and 2 artificially dammed reservoirs (Occhito and Ledro) in Italy. In all the considered water bodies, P. rubescens was the dominant cyanobacterium. All the lakes were characterized by significant relationships between MCs and BPr, with limited variability in the MC quota (the content of MCs per unit of biovolume) within each water body compared with the variability between sites. The results were consistent with the development of specific MC-genotypes, with moderate seasonal and spatial changes in the proportion between toxic and non-toxic strains. The MC cell quota obtained in our work (ECQ, Environmental Cell Quota) were in the same range of values computed on the basis of analyses made on environmental samples dominated by P. rubescens or Planktothrix agardhii, and on isolates of the same two species (<1 to over 10 μg mm(-3)). Besides the usual ordinary least square regressions, models have been evaluated by using quantile regression, a method that allows estimating the conditional median or other quantiles of the response variable. We showed that the use of quantile regressions has different advantages, which included the computation of MC quota based on the whole range of available data, the robustness against outliers, and the ability to estimate models also in cases where there is no or only weak relationships. The highest ECQ values estimated from 95% quantile regressions in specific water bodies might be used to estimate the worst-case MC concentrations from algal abundances. Nevertheless, it was stressed that a realistic assessment of toxicity and potential adverse health effects necessarily should take into account the toxicity potential of the more abundant MC-congeners produced by specific cyanobacteria populations.
Collapse
|
15
|
Ostermaier V, Christiansen G, Schanz F, Kurmayer R. Genetic variability of microcystin biosynthesis genes in Planktothrix as elucidated from samples preserved by heat desiccation during three decades. PLoS One 2013; 8:e80177. [PMID: 24265798 PMCID: PMC3827215 DOI: 10.1371/journal.pone.0080177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/09/2013] [Indexed: 11/23/2022] Open
Abstract
Historic samples of phytoplankton can provide information on the abundance of the toxigenic genotypes of cyanobacteria in dependence on increased or decreased eutrophication. The analysis of a time-series from preserved phytoplankton samples by quantitative PCR (qPCR) extends observation periods considerably. The analysis of DNA from heat-desiccated samples by qPCR can be aggravated by point substitutions or the fragmentation of DNA introduced by the high temperature. In this study, we analyzed whether the heat desiccation of the cellular material of the cyanobacterium Planktothrix sp. introduced potential errors to the template DNA that is used for qPCR within (i) 16S rDNA and phycocyanin genes and (ii) the mcyA gene indicative of the incorporation of either dehydrobutyrine (Dhb) or N-methyl-dehydroalanine (Mdha) in position 7, and (ii) the mcyB gene, which is indicative of homotyrosine (Hty) in position 2 of the microcystin (MC) molecule. Due to high temperature desiccation, the deterioration of the DNA template quality was rather due to fragmentation than due to nucleotide substitutions. By using the heat-desiccated samples of Lake Zürich, Switzerland the abundance of the Dhb, Mdha and Hty genotypes was determined during three decades (1977-2008). Despite major changes in the trophic state of the lake resulting in a major increase of the total Planktothrix population density, the proportion of these genotypes encoding the synthesis of different MC congeners showed high stability. Nevertheless, a decline of the most abundant mcyA genotype indicative of the synthesis of Dhb in position 7 of the MC molecule was observed. This decline could be related to the gradual incline in the proportion of a mutant genotype carrying a 1.8kbp deletion of this gene region. The increase of this mcyA (Dhb) gene deletion mutant has been minor so far, however, and likely did not affect the overall toxicity of the population.
Collapse
Affiliation(s)
| | | | - Ferdinand Schanz
- Limnological Station, Institute of Plant Biology, University of Zürich, Kilchberg, Switzerland
| | - Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
- * E-mail:
| |
Collapse
|