1
|
Mirjat D, Kashif M, Roberts CM. Shake It Up Baby Now: The Changing Focus on TWIST1 and Epithelial to Mesenchymal Transition in Cancer and Other Diseases. Int J Mol Sci 2023; 24:17539. [PMID: 38139368 PMCID: PMC10743446 DOI: 10.3390/ijms242417539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
TWIST1 is a transcription factor that is necessary for healthy neural crest migration, mesoderm development, and gastrulation. It functions as a key regulator of epithelial-to-mesenchymal transition (EMT), a process by which cells lose their polarity and gain the ability to migrate. EMT is often reactivated in cancers, where it is strongly associated with tumor cell invasion and metastasis. Early work on TWIST1 in adult tissues focused on its transcriptional targets and how EMT gave rise to metastatic cells. In recent years, the roles of TWIST1 and other EMT factors in cancer have expanded greatly as our understanding of tumor progression has advanced. TWIST1 and related factors are frequently tied to cancer cell stemness and changes in therapeutic responses and thus are now being viewed as attractive therapeutic targets. In this review, we highlight non-metastatic roles for TWIST1 and related EMT factors in cancer and other disorders, discuss recent findings in the areas of therapeutic resistance and stemness in cancer, and comment on the potential to target EMT for therapy. Further research into EMT will inform novel treatment combinations and strategies for advanced cancers and other diseases.
Collapse
Affiliation(s)
- Dureali Mirjat
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Muhammad Kashif
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Cai M. Roberts
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
2
|
Jiang T, Tang XY, Mao Y, Zhou YQ, Wang JJ, Li RM, Xie XR, Zhang HM, Fang B, Ouyang NJ, Tang GH. Matrix mechanics regulate the polarization state of bone marrow-derived neutrophils through the JAK1/STAT3 signaling pathway. Acta Biomater 2023; 168:159-173. [PMID: 37467837 DOI: 10.1016/j.actbio.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Matrix mechanics regulate essential cell behaviors through mechanotransduction, and as one of its most important elements, substrate stiffness was reported to regulate cell functions such as viability, communication, migration, and differentiation. Neutrophils (Neus) predominate the early inflammatory response and initiate regeneration. The activation of Neus can be regulated by physical cues; however, the functional alterations of Neus by substrate stiffness remain unknown, which is critical in determining the outcomes of engineered tissue mimics. Herein, a three-dimensional (3D) culture system made of hydrogels was developed to explore the effects of varying stiffnesses (1.5, 2.6, and 5.7 kPa) on the states of Neus. Neus showed better cell integrity and viability in the 3D system. Moreover, it was shown that the stiffer matrix tended to induce Neus toward an anti-inflammatory phenotype (N2) with less adhesion molecule expression, less reactive oxygen species (ROS) production, and more anti-inflammatory cytokine secretion. Additionally, the aortic ring assay indicated that Neus cultured in a stiffer matrix significantly increased vascular sprouting. RNA sequencing showed that a stiffer matrix could significantly activate JAK1/STAT3 signaling in Neus and the inhibition of JAK1 ablated the stiffness-dependent increase in the expression of CD182 (an N2 marker). Taken together, these results demonstrate that a stiffer matrix promotes Neus to shift to the N2 phenotype, which was regulated by JAK1/STAT3 pathway. This study lays the groundwork for further research on fabricating engineered tissue mimics, which may provide more treatment options for ischemic diseases and bone defects. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yu-Qi Zhou
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jia-Jia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Ru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Hong-Ming Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
3
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
4
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
You Y, Grasso E, Alvero A, Condon J, Dimova T, Hu A, Ding J, Alexandrova M, Manchorova D, Dimitrova V, Liao A, Mor G. Twist1-IRF9 Interaction Is Necessary for IFN-Stimulated Gene Anti-Zika Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1899-1912. [PMID: 37144865 PMCID: PMC10615665 DOI: 10.4049/jimmunol.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
An efficient immune defense against pathogens requires sufficient basal sensing mechanisms that can deliver prompt responses. Type I IFNs are protective against acute viral infections and respond to viral and bacterial infections, but their efficacy depends on constitutive basal activity that promotes the expression of downstream genes known as IFN-stimulated genes (ISGs). Type I IFNs and ISGs are constitutively produced at low quantities and yet exert profound effects essential for numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Although the canonical response pathway for type I IFNs has been extensively characterized, less is known regarding the transcriptional regulation of constitutive ISG expression. Zika virus (ZIKV) infection is a major risk for human pregnancy complications and fetal development and depends on an appropriate IFN-β response. However, it is poorly understood how ZIKV, despite an IFN-β response, causes miscarriages. We have uncovered a mechanism for this function specifically in the context of the early antiviral response. Our results demonstrate that IFN regulatory factor (IRF9) is critical in the early response to ZIKV infection in human trophoblast. This function is contingent on IRF9 binding to Twist1. In this signaling cascade, Twist1 was not only a required partner that promotes IRF9 binding to the IFN-stimulated response element but also an upstream regulator that controls basal levels of IRF9. The absence of Twist1 renders human trophoblast cells susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Yuan You
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Esteban Grasso
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
- School of Science, University of Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, 1428
| | - Ayesha Alvero
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jennifer Condon
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Hu
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jiahui Ding
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| |
Collapse
|
6
|
Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol Cancer 2023; 22:90. [PMID: 37259089 DOI: 10.1186/s12943-023-01793-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathological (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at different levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and GAlert, an intermediate phase allowing quiescent stem cells to enter the cell cycle rapidly.
Collapse
Affiliation(s)
- Azamat Akhmetkaliyev
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | | | - Darya Shafiee
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
7
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Mir MA, Bashir M, Ishfaq. Role of the CXCL8–CXCR1/2 Axis in Cancer and Inflammatory Diseases. CYTOKINE AND CHEMOKINE NETWORKS IN CANCER 2023:291-329. [DOI: 10.1007/978-981-99-4657-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Peng S, Chen Y, Li T, Mao J, Yang P, Zou B, Luo L, Zhang W, Wang W, Xie R, Li J, Zeng L. Hsa-microRNA-370-3p targeting Snail and Twist1 suppresses IL-8/STAT3-driven hepatocellular carcinoma metastasis. Cancer Sci 2022; 113:4120-4134. [PMID: 36083239 DOI: 10.1111/cas.15571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
The pro-inflammatory factor interleukin-8 (IL-8) is related to poor prognosis in hepatocellular carcinoma (HCC) patients. Interleukin-8 enhanced HCC invasion by upregulating Snail and Twist1, whether this modulation relies on microRNAs (miR) is unclear. In this study, hsa-miR-370-3p was screened as candidate miRNA targeting Snail and Twist1, and its expression was downregulated by IL-8. Luciferase assays and RNA electrophoretic mobility shift assays were used to evaluate the interaction between miR-370-3p and targeted mRNAs. Coimmunoprecipitation, luciferase, and ChIP assays were undertaken to investigate the mechanisms underlying IL-8-mediated modification of miR-370-3p. Gain- and loss-of-function studies, Transwell assays, and a xenograft nude mouse model were used to investigate pro- and antitumor activities. Interleukin-8 and miR-370-3p levels were analyzed for clinical relevance in HCC patients. Our results showed that HCC patients with high levels of IL-8 experienced more metastasis and shorter survival. Interleukin-8 induced epithelial-mesenchymal transition and promoted liver cancer cell migration, invasion, and metastasis both in vitro and in vivo. MicroRNA-370-3p interacted with its cognate mRNA within the 3'-UTR regions of Twist1 and Snail mRNA directly and specifically and attenuated IL-8 protumoral effects on liver cancer cells. Interleukin-8 negatively modulated miR-370-3p through signal transducer and activator of transcription 3 (STAT3) activation by recruiting histone deacetylase 1 (HDAC1) to miR-370-3p promoter. The STAT3 and HDAC antagonists inhibited liver cancer cell migration and invasion. Patients with high miR-370-3p and low IL-8 levels had longer overall survival. In conclusion, our study elucidated a novel axis IL-8/STAT3/miR-370-3p/Twist1 and Snail relying on HDAC1 recruitment, which showed both diagnostic and therapeutic potentials of miR-370-3p in HCC metastasis.
Collapse
Affiliation(s)
- Siqi Peng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ting Li
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lisi Luo
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weiyu Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Wang
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
10
|
Micellar Curcumin Substantially Increases the Antineoplastic Activity of the Alkylphosphocholine Erufosine against TWIST1 Positive Cutaneous T Cell Lymphoma Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14122688. [PMID: 36559182 PMCID: PMC9781439 DOI: 10.3390/pharmaceutics14122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.
Collapse
|
11
|
D'Agostino S, Mazzega E, Praček K, Piccinin S, Pivetta F, Armellin M, Fortuna S, Maestro R, de Marco A. Interference of p53:Twist1 interaction through competing nanobodies. Int J Biol Macromol 2022; 194:24-31. [PMID: 34863830 DOI: 10.1016/j.ijbiomac.2021.11.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Twist1 promote the bypass of p53 response by interacting with p53 and facilitating its MDM2-mediated degradation. We reasoned that reagents able to interfere with the p53:Twist1 complex might alleviate Twist1 inhibitory effect over p53, thus representing potential therapeutic tools in p53 wild type tumors. From a pre-immune library of llama nanobodies (VHH), we isolated binders targeting the p53 C-terminal region (p53-CTD) involved in the interaction with Twist1 by using recombinant Twist1 as an epitope-specific competitor during elution. Positive hits were validated by proving their capacity to immunoprecipitate p53 and to inhibit Twist1:p53 binding in vitro. Molecular modeling confirmed a preferential docking of positive hits with p53-CTD. D11 VHH activity was validated in human cell models, succeeded in immunoprecipitating endogenous p53 and, similarly to Twist1 knock-down, interfered with p53 turnover, p53 phosphorylation at Serine 392 and affected cell viability. Despite the limited functional effect determined by D11 expression in target cells, our results provide the proof of principle that nanobodies ectopically expressed within a cell, have the capacity to target the assembly of the pro-tumorigenic Twist1:p53 complex. These results disclose novel tools for dissecting p53 biology and lay down the grounds for the development of innovative targeted therapeutic approaches.
Collapse
Affiliation(s)
- Serena D'Agostino
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Via Gallini 2, 33081 Aviano, PN, Italy
| | - Elisa Mazzega
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000 Rožna Dolina, Nova Gorica, Slovenia
| | - Katja Praček
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000 Rožna Dolina, Nova Gorica, Slovenia; Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sara Piccinin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Via Gallini 2, 33081 Aviano, PN, Italy
| | - Flavia Pivetta
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Via Gallini 2, 33081 Aviano, PN, Italy
| | - Michela Armellin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Via Gallini 2, 33081 Aviano, PN, Italy
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Via Gallini 2, 33081 Aviano, PN, Italy
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000 Rožna Dolina, Nova Gorica, Slovenia.
| |
Collapse
|
12
|
Ebrahimi N, Adelian S, Shakerian S, Afshinpour M, Chaleshtori SR, Rostami N, Hamblin MR, Aref AR. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: implications for inflammation and cancer therapy. Cytokine Growth Factor Rev 2022; 64:33-45. [DOI: 10.1016/j.cytogfr.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
|
13
|
Kanzaki H, Chatterjee A, Hossein Nejad Ariani H, Zhang X, Chung S, Deng N, Ramanujan VK, Cui X, Greene MI, Murali R. Disabling the Nuclear Translocalization of RelA/NF-κB by a Small Molecule Inhibits Triple-Negative Breast Cancer Growth. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:419-430. [PMID: 34262338 PMCID: PMC8275049 DOI: 10.2147/bctt.s310231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Constitutive activation of NF-κB has been implicated as being contributive to cancer cell growth, drug resistance, and tumor recurrence in many cancers including breast cancer. Activation of NF-κB leads to nuclear translocation of RelA, a critical component of the NF-κB transcription factor complex, which subsequently binds to specific DNA sites and activates a multitude of genes involved in diverse cell functions. Studies show that triple-negative breast cancer (TNBC) cells possess constitutively active NF-κB and concomitantly have higher levels of nuclear localization of RelA than cytoplasmic RelA. This feature is considered to be associated with the response to chemotherapy. However, currently, there is no specific inhibitor to block nuclear translocation of RelA. METHODS A structure-based approach was used to develop a small-molecule inhibitor of RelA nuclear translocation. The interaction between this molecule and RelA was verified biophysically through isothermal titration calorimetry and microscale thermophoresis. TNBC cell lines MDA-MB-231 and MDA-MB-468 and a human TNBC xenograft model were used to verify in vitro and in vivo efficacy of the small molecule, respectively. RESULTS We found that the small molecule, CRL1101, bound specifically to RelA as indicated by the biophysical assays. Further, CRL1101 blocked RelA nuclear translocation in breast cancer cells in vitro, and markedly reduced breast tumor growth in a triple-negative breast cancer xenograft model. CONCLUSION Our study demonstrates that CRL1101 may lead to new NF-κB-targeted therapeutics for TNBC. Further, blocking of nuclear translocation of shuttling transcription factors may be a useful general strategy in cancer drug development.
Collapse
Affiliation(s)
- Hirotaka Kanzaki
- Department of Biomedical Sciences, Research Division of Immunology
| | | | | | | | | | - Nan Deng
- Biostatistics and Bioinformatics Research Center
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Biomedical Sciences, Research Division of Immunology
- Department of Surgery
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Mark I Greene
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
14
|
Nafie E, Lolarga J, Lam B, Guo J, Abdollahzadeh E, Rodriguez S, Glackin C, Liu J. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PLoS One 2021; 16:e0247652. [PMID: 33626096 PMCID: PMC7904211 DOI: 10.1371/journal.pone.0247652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in the United States. The majority of deaths (90%) in breast cancer patients is caused by invasion and metastasis-two features related to the epithelial-to-mesenchymal transition (EMT). Twist1 is a key transcription factor that promotes the EMT, which leads to cell migration, invasion, cancer metastasis, and therapeutic resistance. Harmine is a beta-carboline alkaloid found in a variety of plants and was recently shown to be able to induce degradation of Twist Family BHLH Transcription Factor 1 (Twist1) in non-small cell lung cancer cells (NSCLC). In this study, we show that harmine can inhibit migration and invasion of both human and mouse breast cancer cells in a dose-dependent manner. Further study shows that this inhibition is most likely achieved by inducing a proteasome-dependent Twist1 degradation. At the concentrations tested, harmine did not affect the viability of cells significantly, suggesting that its inhibition of cancer cell migration and invasion is largely independent of its cytotoxicity, but due to its ability to affect regulators of EMT such as Twist1. This result may facilitate the development of strategies that target Twist1 to treat metastatic breast cancer, as Twist1 is expressed at a high level in metastatic breast cancer cells but not in normal cells.
Collapse
Affiliation(s)
- Ebtesam Nafie
- Beckman Research Institute, City of Hope, Duarte, CA, United States of America
- Zoology Department, Faculty of Sciences, Benha University, Benha, Egypt
| | - Jade Lolarga
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Brandon Lam
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Jonathan Guo
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Elnaz Abdollahzadeh
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Sandy Rodriguez
- Department of Biological Sciences, California State University, Long Beach, CA, United States of America
| | - Carlotta Glackin
- Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| |
Collapse
|
15
|
Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, Ben-Baruch A. Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Front Oncol 2021; 10:614468. [PMID: 33585241 PMCID: PMC7873936 DOI: 10.3389/fonc.2020.614468] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity poses an immense therapeutic challenge in cancer due to a constant change in tumor cell characteristics, endowing cancer cells with the ability to dynamically shift between states. Intra-tumor heterogeneity is largely driven by cancer cell plasticity, demonstrated by the ability of malignant cells to acquire stemness and epithelial-to-mesenchymal transition (EMT) properties, to develop therapy resistance and to escape dormancy. These different aspects of cancer cell remodeling are driven by intrinsic as well as by extrinsic signals, the latter being dominated by factors of the tumor microenvironment. As part of the tumor milieu, chronic inflammation is generally regarded as a most influential player that supports tumor development and progression. In this review article, we put together recent findings on the roles of inflammatory elements in driving forward key processes of tumor cell plasticity. Using breast cancer as a representative research system, we demonstrate the critical roles played by inflammation-associated myeloid cells (mainly macrophages), pro-inflammatory cytokines [such as tumor necrosis factor α (TNFα) and interleukin 6 (IL-6)] and inflammatory chemokines [primarily CXCL8 (interleukin 8, IL-8) and CXCL1 (GROα)] in promoting tumor cell remodeling. These inflammatory components form a common thread that is involved in regulation of the three plasticity levels: stemness/EMT, therapy resistance, and dormancy. In view of the fact that inflammatory elements are a common denominator shared by different aspects of tumor cell plasticity, it is possible that their targeting may have a critical clinical benefit for cancer patients.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Ben-Yaakov
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Human Papillomavirus 16 (HPV16) E2 Repression of TWIST1 Transcription Is a Potential Mediator of HPV16 Cancer Outcomes. mSphere 2020; 5:5/6/e00981-20. [PMID: 33298572 PMCID: PMC7729257 DOI: 10.1128/msphere.00981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Human papillomaviruses (HPVs) are causative agents in around 5% of all cancers, including cervical and oropharyngeal. A feature of HPV cancers is their better clinical outcome compared with non-HPV anatomical counterparts. In turn, the presence of E2 predicts a better clinical outcome in HPV-positive cancers; the reason(s) for the better outcome of E2-positive patients is not fully understood. Previously, we demonstrated that HPV16 E2 regulates host gene transcription that is relevant to the HPV16 life cycle in N/Tert-1 cells. One of the genes repressed by E2 and the entire HPV16 genome in N/Tert-1 cells is TWIST1. Here, we demonstrate that TWIST1 RNA levels are reduced in HPV-positive versus HPV-negative head and neck cancer and that E2 and HPV16 downregulate both TWIST1 RNA and protein in our N/Tert-1 model; E6/E7 cannot repress TWIST1. E2 represses the TWIST1 promoter in transient assays and is localized to the TWIST1 promoter; E2 also induces repressive epigenetic changes on the TWIST1 promoter. TWIST1 is a master transcriptional regulator of the epithelial to mesenchymal transition (EMT), and a high level of TWIST1 is a prognostic marker indicative of poor cancer outcomes. We demonstrate that TWIST1 target genes are also downregulated in E2-positive N/Tert-1 cells and that E2 promotes a failure in wound healing, a phenotype of low TWIST1 levels. We propose that the presence of E2 in HPV-positive tumors leads to TWIST1 repression and that this plays a role in the better clinical response of E2-positive HPV tumors. IMPORTANCE HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Here, we demonstrate that E2 represses expression of the TWIST1 gene; an elevated level of this gene is a marker of poor prognosis for a variety of cancers. We demonstrate that E2 directly binds to the TWIST1 promoter and actively represses transcription. TWIST1 is a master regulator promoting EMT, and here, we demonstrate that the presence of E2 reduces the ability of N/Tert-1 cells to wound heal. Overall, we propose that the E2 repression of TWIST1 may contribute to the better clinical outcome of E2-positive HPV16-positive tumors.
Collapse
|
17
|
Wang Y, Lin Y, Cheng C, Chen P, Zhang P, Wu H, Li K, Deng Y, Qian J, Zhang X, Yu B. NF-κB/TWIST1 Mediates Migration and Phagocytosis of Macrophages in the Mice Model of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Microbiol 2020; 11:1301. [PMID: 32595631 PMCID: PMC7304240 DOI: 10.3389/fmicb.2020.01301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infection-induced osteomyelitis is a great challenge in clinic treatment. Identification of the essential genes and biological processes that are specifically changed in mononuclear cells at an early stage of S. aureus osteomyelitis is of great clinical significance. Based on transcriptional dataset GSE16129 available publicly, a bioinformatic analysis was performed to identify the differentially expressed genes of osteomyelitis caused by S. aureus infection. ERBB2, TWIST1, and NANOG were screened out as the most valuable osteomyelitis-related genes (OMRGs). A mice model of implant-associated S. aureus osteomyelitis was used to verify the above genes. We found significantly up-regulated expression of TWIST1 in macrophages and accumulation of macrophages around the infected implant. Meanwhile, S. aureus infection increased the expression of TWIST1, MMP9, and MMP13, and stimulated the migration and phagocytosis function of Raw 264.7 cells. Additionally, knock-down of the expression of TWIST1 by siRNA could significantly down-regulate MMP9 and MMP13 and suppress the migration and phagocytosis ability of macrophages in response to S. aureus infection. Furthermore, we found that NF-κB signaling was activated in Raw 264.7 cells by S. aureus and that inhibition of NF-κB signaling by Bay11-7082 blocked the expression of TWIST1, MMP9, and MMP13 as well as cell migration and phagocytosis evoked by S. aureus. Our findings demonstrate that NF-κB/TWIST1 is necessary for migration and phagocytosis of macrophages in response to S. aureus infection. Our study highlights the essential role of NF-κB/TWIST1 in early innate immune response to S. aureus infection in bone.
Collapse
Affiliation(s)
- Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihuang Lin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangtian Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiqun Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jikun Qian
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Abdel Raouf SM, Ibrahim TR, Abdelaziz LA, Farid MI, Mohamed SY. Prognostic Value of TWIST1 and EZH2 Expression in Colon Cancer. J Gastrointest Cancer 2019; 52:90-98. [PMID: 31823218 DOI: 10.1007/s12029-019-00344-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
21
|
Lin J, Zhang W, Niu LT, Zhu YM, Weng XQ, Sheng Y, Zhu J, Xu J. TRIB3 Stabilizes High TWIST1 Expression to Promote Rapid APL Progression and ATRA Resistance. Clin Cancer Res 2019; 25:6228-6242. [DOI: 10.1158/1078-0432.ccr-19-0510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
|
22
|
Pineda B, Diaz-Lagares A, Pérez-Fidalgo JA, Burgués O, González-Barrallo I, Crujeiras AB, Sandoval J, Esteller M, Lluch A, Eroles P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenetics 2019; 11:33. [PMID: 30786922 PMCID: PMC6381754 DOI: 10.1186/s13148-019-0626-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) varies between 30 and 40% approximately. To provide further insight into the prediction of pCR, we evaluated the role of an epigenetic methylation-based signature. Methods Epigenetic assessment of DNA extracted from biopsy archived samples previous to NAC from TNBC patients was performed. Patients included were categorized according to previous response to NAC in responder (pCR or residual cancer burden, RCB = 0) or non-responder (non-pCR or RCB > 0) patients. A methyloma study was performed in a discovery cohort by the Infinium HumanMethylation450 BeadChip (450K array) from Illumina. The epigenetic silencing of those methylated genes in the discovery cohort were validated by bisulfite pyrosequencing (PyroMark Q96 System version 2.0.6, Qiagen) and qRT-PCR in an independent cohort of TN patients and in TN cell lines. Results Twenty-four and 30 patients were included in the discovery and validation cohorts, respectively. In the discovery cohort, nine genes were differentially methylated: six presented higher methylation in non-responder patients (LOC641519, LEF1, HOXA5, EVC2, TLX3, CDKL2) and three greater methylation in responder patients (FERD3L, CHL1, and TRIP10). After validation, a two-gene (FER3L and TRIP10) epigenetic score predicted RCB = 0 with an area under the ROC curve (AUC) = 0.905 (95% CI = 0.805–1.000). Patients with a positive epigenetic two-gene score showed 78.6% RCB = 0 versus only 10.7% RCB = 0 if signature were negative. Conclusions These results suggest that pCR in TNBC could be accurately predicted with an epigenetic signature of FERD3L and TRIP10 genes. Further prospective validation of these findings is warranted. Electronic supplementary material The online version of this article (10.1186/s13148-019-0626-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Begoña Pineda
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Angel Diaz-Lagares
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - José Alejandro Pérez-Fidalgo
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Octavio Burgués
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Ana B Crujeiras
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Laboratory of Epigenomics in Endocrinology and Nutrition, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC) and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Biomarkers and Precision Medicne Unit (UByMP), Instituto de Investigación Sanitaria La Fe (IISLaFeValencia), Valencia, Spain
| | - Manel Esteller
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Badalona, Barcelona, Catalonia, Spain
| | - Ana Lluch
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute (INCLIVA), Valencia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,COST action, CA15204, Brussels, Belgium.
| |
Collapse
|
23
|
Glackin CA. Nanoparticle Delivery of TWIST Small Interfering RNA and Anticancer Drugs: A Therapeutic Approach for Combating Cancer. Enzymes 2018; 44:83-101. [PMID: 30360816 DOI: 10.1016/bs.enz.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast and ovarian cancer are the leading cause of cancer-related deaths in women in the United States with over 232,000 new Breast Cancer (BC) diagnoses expected in 2018 and almost 40,000 deaths and an estimated 239,000 new ovarian cancer (OC) cases and 152,000 deaths worldwide annually. OC is the most lethal gynecologic malignancy. This high mortality rate is due to tumor recurrence and metastasis, primarily caused by chemoresistant cancer stem-like cells (CSCs). Triple Negative Breast Cancer (TNBC) patients also become resistant to chemotherapy due to recurrence of CSCs. Currently, no ovarian or breast cancer therapies target CSC specifically. TWIST is overexpressed in the majority of chemoresistant cancers resulting in a low survival rate. Our long-term goal is to develop novel treatments for women with ovarian and breast cancer, specifically treatments that sensitize chemoresistant tumors. Despite successful initial surgery and chemotherapy, over 70% of advanced EOC will recur, and only 15-30% of recurrent disease will respond to chemotherapy (Cortez et al., 2017; Berezhnaya, 2010; Jackson et al., 2015). Moreover, drug resistance causes treatment failure in over 90% of patients with metastatic disease (Solmaz et al., 2015). Thus, recurrent metastatic disease is a major clinical challenge without effective therapy. One of the major challenges in the treatment of breast cancer is the presence of a subpopulation of cancer cells that are chemoresistant (CRC) and metastatic. Given that metastasis is the driving force behind mortality for breast and ovarian cancer patients, it is essential to identify the characteristics of these aberrant cancer cells that allow them to spread to distant sites in the body and develop into metastatic tumors. Understanding the metastatic mechanisms driving cancer cell dispersal will open the door to developing novel therapies that prevent metastasis and improve long-term outcomes for patients. In this chapter we assess the feasibility of targeting the Twist and EMT signaling pathways in breast and ovarian cancer. Additional discussions of the pathways that mediate epithelial-mesenchymal transition (EMT), a process that can give rise to chemoresistance. We review potential treatment strategies for targeting EMT and drug resistance as well as the problems that may arise with these targeted delivery therapeutic approaches. Finally, we examine recent advances in the field, including cancer stem cell targeted nanoparticle delivery and small interference RNA (siRNA) technology, and discuss the impact that these approaches may have on translating much needed therapeutic approaches into the clinic, for the benefit of patients battling this devastating disease.
Collapse
Affiliation(s)
- Carlotta A Glackin
- Developmental and Stem Cell Biology, City of Hope Medical Center, Duarte, CA, United States.
| |
Collapse
|
24
|
Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L, Qu L, Wen W, Dellinger T, Unternaehrer J, Tamanoi F, Zink JI, Glackin CA. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1381-1394. [PMID: 29665439 DOI: 10.1016/j.nano.2018.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
TWIST protein is critical to development and is activated in many cancers. TWIST regulates epithelial-mesenchymal transition, and is linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance. The majority of epithelial ovarian cancer (EOC) patients with metastatic disease respond well to first-line chemotherapy but most relapse with disease that is both metastatic and drug resistant, leading to a five-year survival rate under 20%. We are investigating the role of TWIST in mediating these relapses. We demonstrate TWIST-siRNA (siTWIST) and a novel nanoparticle delivery platform to reverse chemoresistance in an EOC model. Hyaluronic-acid conjugated mesoporous silica nanoparticles (MSN-HAs) carried siTWIST into target cells and led to sustained TWIST knockdown in vitro. Mice treated with siTWIST-MSN-HA and cisplatin exhibited specific tumor targeting and reduction of tumor burden. This platform has potential application for overcoming clinical challenges of tumor cell targeting, metastasis and chemoresistance in ovarian and other TWIST overexpressing cancers.
Collapse
Affiliation(s)
- Sophia A Shahin
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Ruining Wang
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Shirleen I Simargi
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Biological Sciences, California State University, Pomona, CA
| | - Altagracia Contreras
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Biological Sciences, California State University, Long Beach, CA
| | - Liliana Parra Echavarria
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Louise Qu
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Wei Wen
- Department of Surgery, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Thanh Dellinger
- Department of Surgery, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Juli Unternaehrer
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Carlotta A Glackin
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA.
| |
Collapse
|
25
|
Huang W, Cui X, Chen J, Feng Y, Song E, Li J, Liu Y. Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition. Oncotarget 2018; 7:62520-62532. [PMID: 27613832 PMCID: PMC5308743 DOI: 10.18632/oncotarget.11528] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/08/2016] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged recently as key regulators of tumor development and progression. Our previous study identified an NF-KappaB interacting lncRNA (NKILA) which was negatively correlated with breast cancer metastasis and patient prognosis. However, its clinical significance and potential role in Tongue squamous cell carcinoma (TSCC) remain unclear. Here we show that NKILA is down-regulated in TSCC cancer tissues than that in matched adjacent noncancerous tissues. And low NKILA expression in TSCC is significantly correlated with tumor metastasis and poor patient prognosis. In vitro, overexpression of NKILA decreases TSCC cells migration and invasion. Mechanistic study shows that NKILA inhibits the phosphorylation of IκBα and NF-κB activation as well as the induction of the epithelial-mesenchymal transition (EMT) process. Ectopic expression of NKILA in Tscca cells inhibits NF-κB activator TNF-α-promoted cell migration and invasion, while applying NF-κB inhibitor Bay-117082 or JSH-23 in NKILA silenced CAL27 cells reverses cell migration capacity to lower level. In vivo experimental metastasis model also demonstrates NKILA inhibits lung metastasis of NOD/SCID mice with TSCC tumors. These results suggested that NKILA is a vital determinant of TSCC migration and invasion and NF-κB signaling pathway mediates this effect. Given the above mentioned function of NKILA, it could act as a potential predictor for overall survival in patients with TSCC and a potential therapeutic target for TSCC intervention.
Collapse
Affiliation(s)
- Wei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhuan Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
26
|
Oh BY, Kim SY, Lee YS, Hong HK, Kim TW, Kim SH, Lee WY, Cho YB. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget 2018; 7:57066-57076. [PMID: 27494849 PMCID: PMC5302973 DOI: 10.18632/oncotarget.10974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) with microsatellite instability (MSI) may exhibit impaired epithelial-mesenchymal transition (EMT), but little is known about the underlying mechanisms of this phenomenon. In this study, we investigated the role of Twist1 and its downstream signaling cascades in EMT induction according to MSI status. To investigate the effects of Twist1 on EMT induction according to MSI status, MSS LS513 and MSI LoVo colon cancer cell lines, which overexpress human Twist1, were generated. Twist1-induced EMT and its downstream signaling pathways were evaluated via in vitro and in vivo experiments. We found that Twist1 induced EMT markers and stem cell-like characteristics via AKT signaling pathways. Twist1 induced activation of AKT and suppression of glycogen synthase kinase (GSK)-3β, which resulted in the activation of β-catenin, increasing CD44 expression. In addition, Twist1 activated the AKT-induced NF-κB pathway, increasing CD44 and CD166 expression. Activation of both the AKT/GSK-3β/β-catenin and AKT/NF-κB pathways occurred in MSS LS513 cells, while only the AKT/GSK-3β/β-catenin pathway was activated in MSI LoVo cells. In conclusion, Twist1 induces stem cell-like characteristics in colon cancer cell lines related to EMT via AKT signaling pathways, and those pathways depend on MSI status.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So-Young Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Yeo Song Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hye Kyung Hong
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seok Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
27
|
Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJB, Noguchi M, Hirata N, Suizu F, Yamada T, Kudo M, Sakuragi N. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017; 8:13509-13520. [PMID: 28088786 PMCID: PMC5355116 DOI: 10.18632/oncotarget.14586] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
EZH2 inhibition and reactivation of tumor suppressor microRNAs (miRNAs) represent attractive anti-cancer therapeutic strategies. We found that EZH2-suppressed let 7b and miR-361, two likely tumor suppressors, inhibited endometrial cancer (EC) cell proliferation and invasion, and abrogated cancer stem cell-like properties. In EC cells, EZH2 induced and functioned together with YY1 to epigenetically suppress miR-361, which upregulated Twist, a direct target of miR-361. Treating EC cells with GSK343, a specific EZH2 inhibitor, mimicked the effects of siRNA-mediated EZH2 knockdown, upregulating miR-361 and downregulating Twist expression. Combining GSK343 with 5 AZA-2′-deoxycytidine synergistically suppressed cell proliferation and invasion in vitro, and decreased tumor size and weight in EC cell xenografted mice. Quantitative real-time PCR analysis of 24 primary EC tissues showed that lower let-7b and miR-361 levels were associated with worse patient outcomes. These results were validated in a larger EC patient dataset from The Cancer Genome Atlas. Our findings suggest that EZH2 drives EC progression by regulating miR-361/Twist signaling, and support EZH2 inhibition as a promising anti-EC therapeutic strategy.
Collapse
Affiliation(s)
- Kei Ihira
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yosuke Konno
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Takahiro Yamada
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Noriaki Sakuragi
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan.,Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| |
Collapse
|
28
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
29
|
Roberts CM, Shahin SA, Loeza J, Dellinger TH, Williams JC, Glackin CA. Disruption of TWIST1-RELA binding by mutation and competitive inhibition to validate the TWIST1 WR domain as a therapeutic target. BMC Cancer 2017; 17:184. [PMID: 28283022 PMCID: PMC5345230 DOI: 10.1186/s12885-017-3169-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/04/2017] [Indexed: 11/15/2022] Open
Abstract
Background Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance. Methods In this study, we identified evolutionarily well-conserved residues within the TWIST1 WR domain and used alanine substitution to determine their role in WR domain-mediated protein binding. Co-immunoprecipitation was used to assay binding affinity between TWIST1 and the NFκB subunit p65 (RELA). Biological activity of this complex was assayed using a dual luciferase assay system in which firefly luciferase was driven by the interleukin-8 (IL-8) promoter, which is upregulated by the TWIST1-RELA complex. Finally, in order to inhibit the TWIST1-RELA interaction, we created a fusion protein comprising GFP and the WR domain. Cell fractionation and proteasome inhibition experiments were utilized to elucidate the mechanism of action of the GFP-WR fusion. Results We found that the central residues of the WR domain (W190, R191, E193) were important for TWIST1 binding to RELA, and for increased activation of the IL-8 promoter. We also found that the C-terminal 245 residues of RELA are important for TWIST1 binding and IL-8 promoter activation. Finally, we found the GFP-WR fusion protein antagonized TWIST1-RELA binding and downstream signaling. Co-expression of GFP-WR with TWIST1 and RELA led to proteasomal degradation of TWIST1, which could be inhibited by MG132 treatment. Conclusions These data provide evidence that mutation or inhibition of the WR domain reduces TWIST1 activity, and may represent a potential therapeutic modality. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai M Roberts
- City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.,Present address: Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | | - Joana Loeza
- California State University, 5151 State University Drive, Los Angeles, CA, 90032, USA.,Present address: University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | | | | | | |
Collapse
|
30
|
Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D, Cheng JX. Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. Cell Stem Cell 2017; 20:303-314.e5. [PMID: 28041894 PMCID: PMC5337165 DOI: 10.1016/j.stem.2016.11.004] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Lack of sensitive single-cell analysis tools has limited the characterization of metabolic activity in cancer stem cells. By hyperspectral-stimulated Raman scattering imaging of single living cells and mass spectrometry analysis of extracted lipids, we report here significantly increased levels of unsaturated lipids in ovarian cancer stem cells (CSCs) as compared to non-CSCs. Higher lipid unsaturation levels were also detected in CSC-enriched spheroids compared to monolayer cultures of ovarian cancer cell lines or primary cells. Inhibition of lipid desaturases effectively eliminated CSCs, suppressed sphere formation in vitro, and blocked tumor initiation capacity in vivo. Mechanistically, we demonstrate that nuclear factor κB (NF-κB) directly regulates the expression levels of lipid desaturases, and inhibition of desaturases blocks NF-κB signaling. Collectively, our findings reveal that increased lipid unsaturation is a metabolic marker for ovarian CSCs and a target for CSC-specific therapy.
Collapse
Affiliation(s)
- Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Thomes-Pepin
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN 46202, USA
| | - Xiaoxiao Ma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
31
|
Jiang X, Guo D, Li W, Yu T, Zhou J, Gong J. Combination Twist1 and CA15-3 in axillary lymph nodes for breast cancer prognosis. Mol Med Rep 2017; 15:1123-1134. [PMID: 28112378 PMCID: PMC5367340 DOI: 10.3892/mmr.2017.6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Twist1 overexpression is involved in epithelial-mesenchymal transition resulting in migration and metastasis of breast cancer. Carcinoma antigen 15–3 (CA15-3) is widely used to monitor the prognosis for patients after treatment. However, the significance of Twist1 in axillary lymph nodes (ALN) and CA15-3 for co-examination for survival rates remains to be elucidated. The present study aimed to explore the role of the combination of Twist1 expression in metastasized ALN and the serum level of CA15-3 in evaluating the prognosis of patients with breast cancer. cluster of differentiation (CD)44, CD24, aldehyde dehydrogenase (ALDH)1 and Twist1 expression in normal and metastasized ALN from 102 patients with breast cancer were detected using laser confocal microscopy and the expression of the genes evaluated by reverse transcription-quantitative polymerase chain reaction; E-cadherin, N-cadherin and vimentin expression was also tested by western blotting. The serum concentrations of CA15-3 prior to and following surgery were analyzed by chemiluminescence immunoassay. The expression of CD44, ALDH1 and Twist1 mRNA in the primary breast cancer tissues and involved ALN was upregulated compared with the normal ALN (P<0.05). The proteins N-cadherin and vimentin of the involved ALN were poorly expressed compared with breast cancer tissues, however E-cadherin protein expression was higher in metastasized and normal ALN compared with primary cancer tissues (P<0.05). Of the 102 patients, the serum CA15-3 levels of the patients in stages I and II were significantly lower compared with stages III and IV (P<0.05). Twist1+/CA15-3+, HER2-negative/Twist1+/CA15-3+ and Triple-receptor negative/Twist1+/CA15-3+ groups displayed a shorter progression-free survival compared with others. The results of the present study demonstrated that CD44, ALDH1 and Twist1 were significantly overexpressed in involved ALN. The serum levels of CA15-3 in those patients were clearly increased and the survival rates decreased, which suggested that a combination of Twist1 in ALN and CA15-3 may function as an indicator for the prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dan Guo
- Department of Breast Gland Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wenfang Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Tianwu Yu
- Department of General Surgery, Affiliated Yong Chuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Jian Zhou
- Department of General Surgery, Affiliated Yong Chuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
32
|
Roberts CM, Shahin SA, Wen W, Finlay JB, Dong J, Wang R, Dellinger TH, Zink JI, Tamanoi F, Glackin CA. Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:965-976. [PMID: 27890656 DOI: 10.1016/j.nano.2016.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/29/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most deadly gynecologic malignancy on account of its late stage at diagnosis and frequency of drug resistant recurrences. Novel therapies to overcome these barriers are urgently needed. TWIST is a developmental transcription factor reactivated in cancers and linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance, making it a promising therapeutic target. In this work, we demonstrate the efficacy of TWIST siRNA (siTWIST) and two nanoparticle delivery platforms to reverse chemoresistance in EOC models. Polyamidoamine dendrimers and mesoporous silica nanoparticles (MSNs) carried siTWIST into target cells and led to sustained TWIST knockdown in vitro. Mice treated with cisplatin plus MSN-siTWIST exhibited lower tumor burden than mice treated with cisplatin alone, with most of the effect coming from reduction in disseminated tumors. This platform has potential application for overcoming the clinical challenges of metastasis and chemoresistance in EOC and other TWIST overexpressing cancers.
Collapse
Affiliation(s)
- Cai M Roberts
- Irell & Manella Graduate School of Biological Sciences, City of Hope-Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope-Beckman Research Institute Duarte, California, USA.
| | - Sophia Allaf Shahin
- Irell & Manella Graduate School of Biological Sciences, City of Hope-Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope-Beckman Research Institute Duarte, California, USA.
| | - Wei Wen
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA.
| | - James B Finlay
- Irell & Manella Graduate School of Biological Sciences, City of Hope-Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope-Beckman Research Institute Duarte, California, USA.
| | - Juyao Dong
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA.
| | - Ruining Wang
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA.
| | - Thanh H Dellinger
- Department of Surgery, City of Hope-Beckman Research Institute, California, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA.
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA.
| | - Carlotta A Glackin
- Department of Stem Cell and Developmental Biology, City of Hope-Beckman Research Institute Duarte, California, USA.
| |
Collapse
|
33
|
Roberts CM, Tran MA, Pitruzzello MC, Wen W, Loeza J, Dellinger TH, Mor G, Glackin CA. TWIST1 drives cisplatin resistance and cell survival in an ovarian cancer model, via upregulation of GAS6, L1CAM, and Akt signalling. Sci Rep 2016; 6:37652. [PMID: 27876874 PMCID: PMC5120297 DOI: 10.1038/srep37652] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most deadly gynaecologic malignancy due to late onset of symptoms and propensity towards drug resistance. Epithelial-mesenchymal transition (EMT) has been linked to the development of chemoresistance in other cancers, yet little is known regarding its role in EOC. In this study, we sought to determine the role of the transcription factor TWIST1, a master regulator of EMT, on cisplatin resistance in an EOC model. We created two Ovcar8-derived cell lines that differed only in their TWIST1 expression. TWIST1 expression led to increased tumour engraftment in mice, as well as cisplatin resistance in vitro. RNA sequencing analysis revealed that TWIST1 expression resulted in upregulation of GAS6 and L1CAM and downregulation of HMGA2. Knockdown studies of these genes demonstrated that loss of GAS6 or L1CAM sensitized cells to cisplatin, but that loss of HMGA2 did not give rise to chemoresistance. TWIST1, in part via GAS6 and L1CAM, led to higher expression and activation of Akt upon cisplatin treatment, and inhibition of Akt activation sensitized cells to cisplatin. These results suggest TWIST1- and EMT-driven increase in Akt activation, and thus tumour cell proliferation, as a potential mechanism of drug resistance in EOC.
Collapse
Affiliation(s)
- Cai M Roberts
- Department of Developmental and Stem Cell Biology, 1500 E. Duarte Road Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Michelle A Tran
- Department of Developmental and Stem Cell Biology, 1500 E. Duarte Road Duarte, CA 91010, USA
| | - Mary C Pitruzzello
- Division of Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Wei Wen
- Department of Surgery, Division of Gynaecologic Oncology, City of Hope Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joana Loeza
- California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Thanh H Dellinger
- Department of Surgery, Division of Gynaecologic Oncology, City of Hope Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Gil Mor
- Division of Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Carlotta A Glackin
- Department of Developmental and Stem Cell Biology, 1500 E. Duarte Road Duarte, CA 91010, USA
| |
Collapse
|
34
|
Bouard C, Terreux R, Honorat M, Manship B, Ansieau S, Vigneron AM, Puisieux A, Payen L. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences. Nucleic Acids Res 2016; 44:5470-89. [PMID: 27151200 PMCID: PMC4914114 DOI: 10.1093/nar/gkw334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022] Open
Abstract
The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon 69008, France Institut de Biochimie des protéines IBCP, Lyon 69007, France CNRS UMR 5305, Lyon 69007, France
| | - Mylène Honorat
- Institut de Biochimie des protéines IBCP, Lyon 69007, France
| | | | - Stéphane Ansieau
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Arnaud M Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Institut Universitaire de France, Paris 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire du CHLS, Lyon 69003, France
| |
Collapse
|
35
|
Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol 2015; 37:185-97. [DOI: 10.1007/s13277-015-4450-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022] Open
|
36
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-60. [PMID: 26106143 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
37
|
Nuti SV, Mor G, Li P, Yin G. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis. Oncotarget 2015; 5:7260-71. [PMID: 25238494 PMCID: PMC4202121 DOI: 10.18632/oncotarget.2428] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflammation. More recently, TWIST1 has been found to be involved in the process of tumor metastasis through the regulation of Epithelial Mesenchymal Transition (EMT). The objective of this review is to examine the normal functions of TWIST1 and its role in tumor development, with a particular focus on ovarian cancer. We discuss the potential role of TWIST1 in the context of ovarian cancer stem cells and its influence in the process of tumor formation.
Collapse
Affiliation(s)
- Sudhakar V Nuti
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Peiyao Li
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Gang Yin
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Finlay J, Roberts CM, Dong J, Zink JI, Tamanoi F, Glackin CA. Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1657-66. [PMID: 26115637 DOI: 10.1016/j.nano.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. FROM THE CLINICAL EDITOR Tumor progression and metastasis eventually lead to patient mortality in the clinical setting. In other studies, it has been found that TWIST1, a transcription factor, if reactivated in tumors, would lead to downstream events including angiogenesis and result in poor prognosis in cancer patients. In this article, the authors were able to show that when siRNA against TWIST1 was delivered via mesoporous silica nanoparticle, there was tumor reduction in an in-vivo model. The results have opened up a new avenue for further research in this field.
Collapse
Affiliation(s)
- James Finlay
- Division of Comparative Medicine and, Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Cai M Roberts
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Juyao Dong
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Fuyuhiko Tamanoi
- Department of Microbiology Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Carlotta A Glackin
- Department of Neurosciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
39
|
Suarez-Carmona M, Bourcy M, Lesage J, Leroi N, Syne L, Blacher S, Hubert P, Erpicum C, Foidart JM, Delvenne P, Birembaut P, Noël A, Polette M, Gilles C. Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. J Pathol 2015; 236:491-504. [PMID: 25880038 DOI: 10.1002/path.4546] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/18/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
Epithelial-mesenchymal transition (EMT) programmes provide cancer cells with invasive and survival capacities that might favour metastatic dissemination. Whilst signalling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumour cells and the tumour microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumour. Our findings indicate that EMT phenotypes relate to the induction of a panel of secreted mediators, namely IL-8, IL-6, sICAM-1, PAI-1 and GM-CSF, and implicate the EMT-transcription factor Snail as a regulator of this process. We further show that EMT-derived soluble factors are pro-angiogenic in vivo (in the mouse ear sponge assay), ex vivo (in the rat aortic ring assay) and in vitro (in a chemotaxis assay). Additionally, conditioned medium from EMT-positive cells stimulates the recruitment of myeloid cells. In a bank of 40 triple-negative breast cancers, tumours presenting features of EMT were significantly more angiogenic and infiltrated by a higher quantity of myeloid cells compared to tumours with little or no EMT. Taken together, our results show that EMT programmes trigger the expression of soluble mediators in cancer cells that stimulate angiogenesis and recruit myeloid cells in vivo, which might in turn favour cancer spread.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium.,Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Morgane Bourcy
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Julien Lesage
- INSERM UMR-S 903, Laboratoire Pol Bouin, University of Reims, France
| | - Natacha Leroi
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Laïdya Syne
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology (LEP), GIGA-Cancer, Liège, Belgium
| | | | - Agnès Noël
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| | - Myriam Polette
- INSERM UMR-S 903, Laboratoire Pol Bouin, University of Reims, France
| | - Christine Gilles
- Laboratory of Tumour and Development Biology (LBTD), GIGA-Cancer, Liège, Belgium
| |
Collapse
|
40
|
Chang AT, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop JW, Paz H, Wang D, Li HR, Fu XD, Rauscher FJ, Yang J. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev 2015; 29:603-16. [PMID: 25762439 PMCID: PMC4378193 DOI: 10.1101/gad.242842.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial-mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST-E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR-WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; The Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, 92093, USA
| | - Yuanjie Liu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | - Chris Benner
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yike Jiang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; The Biological Science Graduate Program, University of California at San Diego, La Jolla, California, 92093, USA
| | - Jeremy W Prokop
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Helicia Paz
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA
| | - Dong Wang
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | - Hai-Ri Li
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | - Xiang-Dong Fu
- Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, California, 92093, USA
| | | | - Jing Yang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093, USA; Department of Pediatrics, University of California at San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
41
|
Wang QS, Kong PZ, Li XQ, Yang F, Feng YM. FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer. Breast Cancer Res 2015; 17:30. [PMID: 25848863 PMCID: PMC4361145 DOI: 10.1186/s13058-015-0531-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/04/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Our previous clinical study demonstrated that the under-expression of FOXF2 is associated with early-onset metastasis and poor prognosis of patients with triple-negative breast cancer. In this study, we further characterized the role of FOXF2 in metastasis of basal-like breast cancer (BLBC) and underlying molecular mechanisms. Methods RT-qPCR, immunoblot, immunofluorescence and immunohistochemistry were performed to assess the expression of genes and proteins in cell lines and tissues. A series of in vitro and in vivo assays was performed in the cells with RNAi-mediated knockdown or overexpression to elucidate the function and transcriptional regulatory role of FOXF2 in breast cancer. Results We found that FOXF2 was specifically expressed in most basal-like breast cells. FOXF2 deficiency enhanced the metastatic ability of BLBC cells in vitro and in vivo. Additionally, FOXF2 deficiency induced the epithelial-mesenchymal transition (EMT) of basal-like breast cells. Furthermore, we identified that TWIST1 is a transcriptional target of FOXF2. TWIST1 was negatively regulated by FOXF2 and mediated the FOXF2-regulated EMT phenotype of basal-like breast cells and aggressive property of BLBC. Conclusions FOXF2 is a novel EMT-suppressing transcription factor in BLBC. FOXF2 deficiency enhances metastatic ability of BLBC cells by activating the EMT program through upregulating the transcription of TWIST1. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0531-1) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:382745. [PMID: 25759817 PMCID: PMC4339717 DOI: 10.1155/2015/382745] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women in the United States, and survival rates are lower for patients with metastases and/or triple-negative breast cancer (TNBC; ER, PR, and Her2 negative). Understanding the mechanisms of cancer metastasis is therefore crucial to identify new therapeutic targets and develop novel treatments to improve patient outcomes. A potential target is the TWIST1 transcription factor, which is often overexpressed in aggressive breast cancers and is a master regulator of cellular migration through epithelial-mesenchymal transition (EMT). Here, we demonstrate an siRNA-based TWIST1 silencing approach with delivery using a modified poly(amidoamine) (PAMAM) dendrimer. Our results demonstrate that SUM1315 TNBC cells efficiently take up PAMAM-siRNA complexes, leading to significant knockdown of TWIST1 and EMT-related target genes. Knockdown lasts up to one week after transfection and leads to a reduction in migration and invasion, as determined by wound healing and transwell assays. Furthermore, we demonstrate that PAMAM dendrimers can deliver siRNA to xenograft orthotopic tumors and siRNA remains in the tumor for at least four hours after treatment. These results suggest that further development of dendrimer-based delivery of siRNA for TWIST1 silencing may lead to a valuable adjunctive therapy for patients with TNBC.
Collapse
|
43
|
Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22:264-89. [PMID: 25386819 PMCID: PMC6690202 DOI: 10.2174/0929867321666141106124315] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree A. Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
44
|
(-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation. Tumour Biol 2014; 36:2747-61. [DOI: 10.1007/s13277-014-2899-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/26/2014] [Indexed: 01/06/2023] Open
|
45
|
Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Abboud HE, Choudhury GG. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res 2014; 328:99-117. [PMID: 25016284 PMCID: PMC4177976 DOI: 10.1016/j.yexcr.2014.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Balakuntalam S Kasinath
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Hanna E Abboud
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - Goutam Ghosh Choudhury
- Veterans Administration Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
46
|
Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014; 16:1105-17. [PMID: 25266422 DOI: 10.1038/ncb3041] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022]
Abstract
The cell-biological program termed the epithelial-mesenchymal transition (EMT) confers on cancer cells mesenchymal traits and an ability to enter the cancer stem cell (CSC) state. However, the interactions between CSCs and their surrounding microenvironment are poorly understood. Here we show that tumour-associated monocytes and macrophages (TAMs) create a CSC niche through juxtacrine signalling with CSCs. We performed quantitative proteomic profiling and found that the EMT program upregulates the expression of CD90, also known as Thy1, and EphA4, which mediate the physical interactions of CSCs with TAMs by directly binding with their respective counter-receptors on these cells. In response, the EphA4 receptor on the carcinoma cells activates Src and NF-κB. In turn, NF-κB in the CSCs induces the secretion of a variety of cytokines that serve to sustain the stem cell state. Indeed, admixed macrophages enhance the CSC activities of carcinoma cells. These findings underscore the significance of TAMs as important components of the CSC niche.
Collapse
Affiliation(s)
- Haihui Lu
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] MIT Ludwig Center for Molecular Oncology, Cambridge, Massachusetts 02139, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Wai Leong Tam
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] MIT Ludwig Center for Molecular Oncology, Cambridge, Massachusetts 02139, USA [3] Genome Institute of Singapore, 60 Biopolis Street Singapore 138672, Singapore
| | - Julia Fröse
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [3] University of Heidelberg, 69120 Heidelberg, Germany
| | - Xin Ye
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Vera S Donnenberg
- 1] Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA [2] Department of Cardiothoracic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Rohit Bhargava
- Magee-Womens Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Robert A Weinberg
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] MIT Ludwig Center for Molecular Oncology, Cambridge, Massachusetts 02139, USA [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
47
|
Abstract
Standard treatment options for breast cancer include surgery, chemotherapy, radiation, and targeted therapies, such as adjuvant hormonal therapy and monoclonal antibodies. Recently, the recognition that chronic inflammation in the tumor microenvironment promotes tumor growth and survival during different stages of breast cancer development has led to the development of novel immunotherapies. Several immunotherapeutic strategies have been studied both preclinically and clinically and already have been shown to enhance the efficacy of conventional treatment modalities. Therefore, therapies targeting the immune system may represent a promising next-generation approach for the treatment of breast cancers. This review will discuss recent findings that elucidate the roles of suppressive immune cells and proinflammatory cytokines and chemokines in the tumor-promoting microenvironment, and the most current immunotherapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Glackin CA. Targeting the Twist and Wnt signaling pathways in metastatic breast cancer. Maturitas 2014; 79:48-51. [DOI: 10.1016/j.maturitas.2014.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 01/31/2023]
|
49
|
Gajula RP, Chettiar ST, Williams RD, Thiyagarajan S, Kato Y, Aziz K, Wang R, Gandhi N, Wild AT, Vesuna F, Ma J, Salih T, Cades J, Fertig E, Biswal S, Burns TF, Chung CH, Rudin CM, Herman JM, Hales RK, Raman V, An SS, Tran PT. The twist box domain is required for Twist1-induced prostate cancer metastasis. Mol Cancer Res 2013; 11:1387-400. [PMID: 23982216 DOI: 10.1158/1541-7786.mcr-13-0218-t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer. Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in prostate cancer cells using in vitro assays, which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extrathoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for prostate cancer cells to colonize metastatic lung lesions and extrathoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in prostate cancer cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and prostate cancer metastasis. IMPLICATIONS Targeting the Twist box domain of Twist1 may effectively limit prostate cancer metastatic potential.
Collapse
Affiliation(s)
- Rajendra P Gajula
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 1550 Orleans Street, CRB2 Rm 406, Baltimore, MD 21231.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu F, Ye X, Wang P, Jung K, Wu C, Douglas D, Kneteman N, Bigras G, Ma Y, Lai R. Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that is dependent on Twist1 and the status of Sox2 transcription activity. BMC Cancer 2013; 13:317. [PMID: 23815808 PMCID: PMC3707762 DOI: 10.1186/1471-2407-13-317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023] Open
Abstract
Background Sox2, an embryonic stem cell marker, is aberrantly expressed in a subset of breast cancer (BC). While the aberrant expression of Sox2 has been shown to significantly correlate with a number of clinicopathologic parameters in BC, its biological significance in BC is incompletely understood. Methods In-vitro invasion assay was used to evaluate whether the expression of Sox2 is linked to the invasiveness of MCF7 and ZR751 cells. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and/or Western blots were used to assess if Sox2 modulates the expression of factors known to regulate epithelial mesenchymal transition (EMT), such as Twist1. Chromatin immunoprecipitation (ChIP) was used to assess the binding of Sox2 to the promoter region of Twist1. Results We found that siRNA knockdown of Sox2 expression significantly increased the invasiveness of MCF7 and ZR751 cells. However, when MCF7 cells were separated into two distinct subsets based on their differential responsiveness to the Sox2 reporter, the Sox2-mediated effects on invasiveness was observed only in ‘reporter un-responsive’ cells (RU cells) but not ‘reporter responsive’ cells (RR cells). Correlating with these findings, siRNA knockdown of Sox2 in RU cells, but not RR cells, dramatically increased the expression of Twist1. Accordingly, using ChIP, we found evidence that Sox2 binds to the promoter region of Twist1 in RU cells only. Lastly, siRNA knockdown of Twist1 largely abrogated the regulatory effect of Sox2 on the invasiveness in RU cells, suggesting that the observed Sox2-mediated effects are Twist1-dependent. Conclusion Sox2 regulates the invasiveness of BC cells via a mechanism that is dependent on Twist1 and the transcriptional status of Sox2. Our results have further highlighted a new level of biological complexity and heterogeneity of BC cells that may carry significant clinical implications.
Collapse
Affiliation(s)
- Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|