1
|
Hande SS, Andronowski JM, Miller EH. Microarchitecture of the penis bone (baculum) of a seal: A 3D morphometric examination using synchrotron and laboratory micro-computed tomography. Anat Rec (Hoboken) 2024; 307:2858-2874. [PMID: 38311971 DOI: 10.1002/ar.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
We examined the ultrastructure of the mammalian os penis at the high-resolution synchrotron level. Previously, bacular microanatomy had only been investigated histologically. We studied the baculum of the harp seal (Pagophilus groenlandicus), in which the baculum varies more in size and shape than does a mechanically constrained bone (humerus). We (1) investigated the microarchitecture of bacula and humeri from the same seal specimens, and (2) described changes in bone micro- and macro-morphology associated with age (n = 15, age range = 1-35 years) and bone type. We analyzed cross-sectional geometry non-destructively through laboratory micro-computed tomography. We suggest that the midshaft may resist axial compression while the proximal region may resist torsion, based on measurements of cross-sectional and cortical areas, perimeter, ratio of maximum and minimum moments of inertia, and polar moment of inertia. In addition, midshaft bacula may be less mechanosensitive than humeri, based on microstructural variables (e.g., volume, surface area, diameter associated with lacunae and cortical porosity) analyzed across age groupings. Our findings related to the microarchitecture of the pinniped baculum provide a basis for further studies on development, mechanical properties, functions, and adaptations in this and other pinniped species. Our use of a multi-modal imaging approach was minimally destructive for reproducible and accurate comparison of three-dimensional bone ultrastructure. Such methods, coupled with multidisciplinary analyses, enable diverse studies of bone biology, life history, and evolution using museum collections.
Collapse
Affiliation(s)
- Shreya S Hande
- Department of Biology, Memorial University of Newfoundland, Canada
| | - Janna M Andronowski
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| | - Edward H Miller
- Department of Biology, Memorial University of Newfoundland, Canada
| |
Collapse
|
2
|
Vogt CC, Zipple MN, Sprockett DD, Miller CH, Hardy SX, Arthur MK, Greenstein AM, Colvin MS, Michel LM, Moeller AH, Sheehan MJ. Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures. BMC Biol 2024; 22:35. [PMID: 38355587 PMCID: PMC10865716 DOI: 10.1186/s12915-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.
Collapse
Affiliation(s)
- Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caitlin H Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Summer X Hardy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew K Arthur
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Adam M Greenstein
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Melanie S Colvin
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Lucie M Michel
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Clear E, Grant R, Gardiner J, Brassey C. Baculum shape complexity correlates to metrics of post-copulatory sexual selection in Musteloidea. J Morphol 2023; 284:e21572. [PMID: 36806148 PMCID: PMC10952176 DOI: 10.1002/jmor.21572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
The penis bone, or baculum, is present in many orders of mammals, although its function is still relatively unknown, mainly due to the challenges with studying the baculum in vivo. Suggested functions include increasing vaginal friction, prolonging intromission and inducing ovulation. Since it is difficult to study baculum function directly, functional morphology can give important insights. Shape complexity techniques, in particular, are likely to offer a useful metric of baculum morphology, especially since finding homologous landmarks on such a structure is challenging. This study focuses on measuring baculum shape complexity in the Musteloidea-a large superfamily spanning a range of body sizes with well-developed, qualitatively diverse bacula. We compared two shape complexity metrics-alpha shapes and ariaDNE and conducted analyses over a range of six different coefficients, or bandwidths, in 32 species of Musteloidea. Overall, we found that shape complexity, especially at the baculum distal tip, is associated with intromission duration using both metrics. These complexities can include hooks, bifurcations and other additional projections. In addition, alpha shapes complexity was also associated with relative testes mass. These results suggest that post-copulatory mechanisms of sexual selection are probably driving the evolution of more complex-shaped bacula tips in Musteloidea and are likely to be especially involved in increasing intromission duration during copulation.
Collapse
Affiliation(s)
- Emma Clear
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Robyn Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - James Gardiner
- Institute of Life Course and Medical SciencesThe University of LiverpoolLiverpoolUK
| | - Charlotte Brassey
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
4
|
Gutgesell RM, Jamshed L, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Naphthenic acid fraction components from oil sands process-affected water from the Athabasca Oil Sands Region impair murine osteoblast differentiation and function. J Appl Toxicol 2022; 42:2005-2015. [PMID: 35894097 PMCID: PMC9804983 DOI: 10.1002/jat.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.
Collapse
Affiliation(s)
| | - Laiba Jamshed
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| | - Richard A. Frank
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - L. Mark Hewitt
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - Philippe J. Thomas
- Environment and Climate Change CanadaNational Wildlife Research CentreOttawaONCanada
| | - Alison C. Holloway
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| |
Collapse
|
5
|
Seth A, Rivera A, Choi IS, Medina-Martinez O, Lewis S, O’Neill M, Ridgeway A, Moore J, Jorgez C, Lamb DJ. Gene dosage changes in KCTD13 result in penile and testicular anomalies via diminished androgen receptor function. FASEB J 2022; 36:e22567. [PMID: 36196997 PMCID: PMC10538574 DOI: 10.1096/fj.202200558r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Despite the high prevalence of hypospadias and cryptorchidism, the genetic basis for these conditions is only beginning to be understood. Using array-comparative-genomic-hybridization (aCGH), potassium-channel-tetramerization-domain-containing-13 (KCTD13) encoded at 16p11.2 was identified as a candidate gene involved in hypospadias, cryptorchidism and other genitourinary (GU) tract anomalies. Copy number variants (CNVs) at 16p11.2 are among the most common syndromic genomic variants identified to date. Many patients with CNVs at this locus exhibit GU and/or neurodevelopmental phenotypes. KCTD13 encodes a substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (B-cell receptor (BCR) [BTB (the BTB domain is a conserved motif involved in protein-protein interactions) Cullin3 complex RING protein Rbx1] E3-ubiqutin-protein-ligase complex), which has essential roles in the regulation of cellular cytoskeleton, migration, proliferation, and neurodevelopment; yet its role in GU development is unknown. The prevalence of KCTD13 CNVs in patients with GU anomalies (2.58%) is significantly elevated when compared with patients without GU anomalies or in the general population (0.10%). KCTD13 is robustly expressed in the developing GU tract. Loss of KCTD13 in cell lines results in significantly decreased levels of nuclear androgen receptor (AR), suggesting that loss of KCTD13 affects AR sub-cellular localization. Kctd13 haploinsufficiency and homozygous deletion in mice cause a significant increase in the incidence of cryptorchidism and micropenis. KCTD13-deficient mice exhibit testicular and penile abnormalities together with significantly reduced levels of nuclear AR and SOX9. In conclusion, gene-dosage changes of murine Kctd13 diminish nuclear AR sub-cellular localization, as well as decrease SOX9 expression levels which likely contribute in part to the abnormal GU tract development in Kctd13 mouse models and in patients with CNVs in KCTD13.
Collapse
Affiliation(s)
- Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Surgery, Nemours Children’s Hospital, Orlando, Florida 32827
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - In-Seon Choi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Olga Medina-Martinez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Shaye Lewis
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Marisol O’Neill
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Alex Ridgeway
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Carolina Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Dolores J. Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- The James Buchanan Brady Foundation Department of Urology, Center for Reproductive Genomics and Englander Institute for Personalized Medicine, Weill Cornell Medical College
| |
Collapse
|
6
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
7
|
André GI, Firman RC, Simmons LW. The effect of genital stimulation on competitive fertilization success in house mice. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Orr TJ, Lukitsch T, Eiting TP, Brennan PLR. Testing Morphological Relationships Between Female and Male Copulatory Structures in Bats. Integr Comp Biol 2022; 62:icac040. [PMID: 35661885 DOI: 10.1093/icb/icac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower reproductive tract of female mammals has several competing functions including mating, tract health maintenance, and parturition. Diverse vaginal anatomy suggests interactions between natural and sexual selection, yet despite its importance, female copulatory morphology remains under-studied. We undertook a comparative study across the species-rich mammalian order Chiroptera (bats) with a focus on the suborder Yangochiroptera (Vespertilioniformes) to examine how female vaginal features may have coevolved with male penis morphology to minimize mechanical damage to their tissues during copulation. The penis morphology is diverse, presenting great potential for post-copulatory sexual selection and coevolution with the female morphology, but vaginas have not been carefully examined. Here we test the hypotheses that vaginal thickness and collagen density have coevolved with features of the male penis including the presence of spines and a baculum. We present histological data from females of 24 species from 7 families of bats, and corresponding data on male penis anatomy. We also examine the role of phylogenetic history in the morphological patterns we observe. We found evidence that female vaginal thickness has coevolved with the presence of penile spines, but not with baculum presence or width. Collagen density did not appear to covary with male penile features. Our findings highlight the importance of considering interactions between the sexes in influencing functional reproductive structures and examine how these structures have been under selection in bats.
Collapse
Affiliation(s)
- Teri J Orr
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Theresa Lukitsch
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| |
Collapse
|
9
|
André GI, Firman RC, Simmons LW. The effect of baculum shape and mating behavior on mating-induced prolactin release in female house mice. Behav Ecol 2021. [DOI: 10.1093/beheco/arab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Male genitalia are subject to rapid divergent evolution, and sexual selection is believed to be responsible for this pattern of evolutionary divergence. Genital stimulation during copulation is an essential feature of sexual reproduction. In mammals, the male intromittent genitalia induces a cascade of physiological and neurological changes in females that promote pregnancy. Previous studies of the house mouse have shown that the shape of the baculum (penis bone) influences male reproductive success and responds to experimentally imposed variation in sexual selection. Here, we test the hypothesis that the baculum is subject to sexual selection due to a stimulatory function during copulation. We selected male and female house mice (Mus musculus domesticus) from families with breeding values at the extremes of baculum shape and performed two series of experimental matings following which we examined the concentration of prolactin in the blood of females either 15 (“early”) or 75 (“late”) min after ejaculation. Our results provide evidence of a mating-induced release of prolactin in the female house mouse early after ejaculation, the level of which is dependent on an interaction between the shape of the baculum and male sexual behavior. Our data thereby provide novel insight into the mechanism(s) of sexual selection acting on the mammalian baculum.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
10
|
Winkler L, Lindholm AK, Ramm SA, Sutter A. The baculum affects paternity success of first but not second males in house mouse sperm competition. BMC Ecol Evol 2021; 21:159. [PMID: 34384348 PMCID: PMC8359600 DOI: 10.1186/s12862-021-01887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The vast variation observed in genital morphology is a longstanding puzzle in evolutionary biology. Studies showing that the morphology of the mammalian baculum (penis bone) can covary with a male’s paternity success indicate a potential impact of baculum morphology on male fitness, likely through influencing sperm competition outcomes. We therefore measured the size (measurements of length and width) and shape (geometric morphometric measurements) of the bacula of male house mice used in previously published sperm competition experiments, in which two males mated successively with the same female in staged matings. This enabled us to correlate baculum morphology with sperm competition success, incorporating potential explanatory variables related to copulatory plugs, male mating behavior and a selfish genetic element that influences sperm motility. We found that a wider baculum shaft increased a male’s paternity share when mating first, but not when mating second with a multiply-mating female. Geometric morphometric shape measurements were not clearly associated with fertilization success for either male. We found limited evidence that the effect of baculum morphology on male fertilization success was altered by experimental removal of the copulatory plug. Furthermore, neither genetic differences in sperm motility, nor covariation with male mating behavior mediated the effect of baculum morphology on male fertilization success. Taken together with previous findings, the mating-order effects we found here suggest that baculum-mediated stimulation by the first male might be particularly important for fertilization.
Collapse
Affiliation(s)
- Lennart Winkler
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany. .,Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062, Dresden, Germany.
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
11
|
van der Horst G, Kotzè S, O'Riain MJ, Muller N, Maree L. A possible highway system for the rapid delivery of sperm from the testis to the penis in the naked mole-rat, Heterocephalus glaber. J Morphol 2021; 282:1478-1498. [PMID: 34296784 DOI: 10.1002/jmor.21399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Gametogenesis is suppressed in most members of the eusocial naked mole-rat (NMR) colony, while the queen selects mainly one breeding male during her life span. Recently, it was reported that the NMR testicular organization seems to produce spermatozoa on demand after suppression of spermatogenesis during most of gestation. A Sertoli cell "pump" is then used to flush the spermatozoa into short tubuli recti and simplified rete testis to reach the excurrent duct system. We hypothesize that the components of this duct system are adapted for rapid delivery of spermatozoa to the penis and for numerous copulations with the queen. Therefore, the aim was to study the ultrastructure of the male NMR reproductive duct system using light microscopy and transmission electron microscopy. The NMR rete testis gives rise to six to eight efferent tubules joining the caput epididymis. The caput epididymis resembles that of other rodents but with less distinction in terms of histological zoning. The remainder of the epididymis is considerably reduced in length compared to other rodents. In contrast, the vas deferens epithelium is highly specialized in that a vast range of vesicles, often closely associated with the spermatozoa, were visible. The large ampulla is a factory for merocrine and apocrine secretions, producing even more diverse vesicles. The transitional epithelial cells of the bladder appear to secrete abundant mucous and the penis as well as its baculum is relatively small. We speculate that these modifications strongly suggest that the excurrent duct system has been simplified and adjusted to compensate for the absence of long maturation and storage of spermatozoa. We propose that these adaptations to the NMR reproductive tract are associated with a state of degenerative orthogenesis that was selected for due to the absence of sperm competition and apparently rapid delivery of spermatozoa from the testis.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| | - Sanet Kotzè
- Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Nolan Muller
- National Health Laboratory Services, Anatomical Pathology, Tygerberg Hospital, Parow, South Africa
| | - Liana Maree
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
12
|
Yato TO, Motokawa M. Comparative Morphology of the Male Genitalia of Japanese Muroidea Species. MAMMAL STUDY 2021. [DOI: 10.3106/ms2020-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takashi O. Yato
- Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaharu Motokawa
- The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
The ultimate database to (re)set the evolutionary history of primate genital bones. Sci Rep 2021; 11:11245. [PMID: 34045627 PMCID: PMC8160331 DOI: 10.1038/s41598-021-90787-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Scientific literature concerning genital bones in primates consists of both ancient works (dating back to the nineteenth century) and more recent revisions/meta-analyses, which, however, are not always so detailed or exhaustive. Based on a thorough analysis, several conflicting data, inaccurate references, and questionable claims have emerged. We generated a binary matrix of genital bone occurrence data, considering only data at the species level, based on (1) a rigorous literature search protocol, (2) raw data (collected exclusively from primary literature), (3) an updated taxonomy (often tracing back to the species taxonomic history) and (4) new occurrence data from scanned genitals of fresh and museum specimens (using micro-computed tomography-micro-CT). Thanks to this methodological approach, we almost doubled available occurrence data so far, avoiding any arbitrary extension of generic data to conspecific species. This practice, in fact, has been recently responsible for an overestimation of the occurrence data, definitively flattening the interspecific variability. We performed the ancestral state reconstruction analysis of genital bone occurrence and results were mapped onto the most updated phylogeny of primates. As for baculum, we definitively demonstrated its simplesiomorphy for the entire order. As for baubellum, we interpreted all scattered absences as losses, actually proposing (for the first time) a simplesiomorphic state for the clitoral bone as well. The occurrence data obtained, while indirectly confirming the baculum/baubellum homology (i.e., for each baubellum a baculum was invariably present), could also directly demonstrate an intra-specific variability affecting ossa genitalia occurrence. With our results, we established a radically improved and updated database about the occurrence of genital bones in primates, available for further comparative analyses.
Collapse
|
14
|
House CM, Lewis Z, Sharma MD, Hodgson DJ, Hunt J, Wedell N, Hosken DJ. Sexual selection on the genital lobes of male Drosophila simulans. Evolution 2021; 75:501-514. [PMID: 33386741 DOI: 10.1111/evo.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection is thought to be responsible for the rapid divergent evolution of male genitalia with several studies detecting multivariate sexual selection on genital form. However, in most cases, selection is only estimated during a single episode of selection, which provides an incomplete view of net selection on genital traits. Here, we estimate the strength and form of multivariate selection on the genitalia arch of Drosophila simulans when mating occurs in the absence of a competitor and during sperm competition, in both sperm defence and offense roles (i.e., when mating first and last). We found that the strength of sexual selection on the genital arch was strongest during noncompetitive mating and weakest during sperm offense. However, the direction of selection was similar across selection episodes with no evidence for antagonistic selection. Overall, selection was not particularly strong despite genitals clearly evolving rapidly in this species.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hodgson
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia.,Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - Nina Wedell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
15
|
Jakovlić I. The missing human baculum: a victim of conspecific aggression and budding self‐awareness? Mamm Rev 2021. [DOI: 10.1111/mam.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Grassland Agro‐Ecosystem Institute of Innovation Ecology Lanzhou University Lanzhou730000China
- Bio‐Transduction Lab, Biolake Wuhan430075China
| |
Collapse
|
16
|
Sarver BAJ, Herrera ND, Sneddon D, Hunter SS, Settles ML, Kronenberg Z, Demboski JR, Good JM, Sullivan J. Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: Tamias). Syst Biol 2021; 70:908-921. [PMID: 33410870 DOI: 10.1093/sysbio/syaa085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon-capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (T. canipes, T. cinereicollis, T. dorsalis, T. quadrivittatus, T. rufus, and T. umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group.
Collapse
Affiliation(s)
- Brice A J Sarver
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| | | | - David Sneddon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho.,UC-Davis Genome Center, Davis, California
| | | | | | - John R Demboski
- Department of Zoology, Denver Museum of Nature & Sciences, Denver, Colorado
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana.,Wildlife Biology Program, University of Montana, Missoula, Montana
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| |
Collapse
|
17
|
Firman RC. Of mice and women: advances in mammalian sperm competition with a focus on the female perspective. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200082. [PMID: 33070720 DOI: 10.1098/rstb.2020.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although initially lagging behind discoveries being made in other taxa, mammalian sperm competition is now a productive and advancing field of research. Sperm competition in mammals is not merely a 'sprint-race' between the gametes of rival males, but rather a race over hurdles; those hurdles being the anatomical and physiological barriers provided by the female reproductive tract, as well as the egg and its vestments. With this in mind, in this review, I discuss progress in the field while focusing on the female perspective. I highlight ways by which sperm competition can have positive effects on female reproductive success and discuss how competitive outcomes are not only owing to dynamics between the ejaculates of rival males, but also attributable to mechanisms by which female mammals bias paternity toward favourable sires. Drawing on examples across different species-from mice to humans-I provide an overview of the accumulated evidence which firmly establishes that sperm competition is a key selective force in the evolution of male traits and detail how females can respond to increased sperm competitiveness with increased egg resistance to fertilization. I also discuss evidence for facultative responses to the sperm competition environment observed within mammal species. Overall, this review identifies shortcomings in our understanding of the specific mechanisms by which female mammals 'select' sperm. More generally, this review demonstrates how, moving forward, mammals will continue to be effective animal models for studying both evolutionary and facultative responses to sperm competition. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
18
|
André GI, Firman RC, Simmons LW. Baculum shape and paternity success in house mice: evidence for genital coevolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200150. [PMID: 33070728 DOI: 10.1098/rstb.2020.0150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sexual selection is believed to be responsible for the rapid divergence of male genitalia, which is a widely observed phenomenon across different taxa. Among mammals, the stimulatory role of male genitalia and female 'sensory perception' has been suggested to explain these evolutionary patterns. Recent research on house mice has shown that baculum (penis bone) shape can respond to experimentally imposed sexual selection. Here, we explore the adaptive value of baculum shape by performing two experiments that examine the effects of male and female genitalia on male reproductive success. Thus, we selected house mice (Mus musculus domesticus) from families characterized by extremes in baculum shape (relative width) and examined paternity success in both non-competitive (monogamous) and competitive (polyandrous) contexts. Our analyses revealed that the relative baculum shape of competing males influenced competitive paternity success, but that this effect was dependent on the breeding value for baculum shape of the family from which females were derived. Our data provide novel insight into the potential mechanisms underlying the evolution of the house mouse baculum and lend support to the stimulatory hypothesis for the coevolution of male and female genitalia. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Goncalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| |
Collapse
|
19
|
Brassey CA, Behnsen J, Gardiner JD. Postcopulatory sexual selection and the evolution of shape complexity in the carnivoran baculum. Proc Biol Sci 2020; 287:20201883. [PMID: 33049172 PMCID: PMC7657853 DOI: 10.1098/rspb.2020.1883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The baculum is an enigmatic bone within the mammalian glans penis, and the driving forces behind its often bizarre shape have captivated evolutionary biologists for over a century. Hypotheses for the function of the baculum include aiding in intromission, stimulating females and assisting with prolonged mating. Previous attempts to test these hypotheses have focused on the gross size of the baculum and have failed to reach a consensus. We conducted three-dimensional imaging and apply a new method to quantify three-dimensional shape complexity in the carnivoran baculum. We show that socially monogamous species are evolving towards complex-shaped bacula, whereas group-living species are evolving towards simple bacula. Overall three-dimensional baculum shape complexity is not related to relative testes mass, but tip complexity is higher in induced ovulators and species engaging in prolonged copulation. Our study provides evidence of postcopulatory sexual selection pressures driving three-dimensional shape complexity in the carnivore baculum.
Collapse
Affiliation(s)
- Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, M1 5GD, UK
| | - Julia Behnsen
- Manchester X-ray Imaging Facility, University of Manchester, M13 9PL, UK
| | - James D Gardiner
- Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, UK
| |
Collapse
|
20
|
Matryba P, Wolny A, Pawłowska M, Sosnowska A, Rydzyńska Z, Jasiński M, Stefaniuk M, Gołąb J. Tissue clearing-based method for unobstructed three-dimensional imaging of mouse penis with subcellular resolution. JOURNAL OF BIOPHOTONICS 2020; 13:e202000072. [PMID: 32352207 DOI: 10.1002/jbio.202000072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Although mice are widely used to elucidate factors contributing to penile disorders and develop treatment options, quantification of tissue changes upon intervention is either limited to minuscule tissue volume (histology) or acquired with limited spatial resolution (MRI/CT). Thus, imaging method suitable for expeditious acquisition of the entire mouse penis with subcellular resolution is described that relies on both aqueous- (clear, unobstructed brain imaging cocktails and computational analysis) and solvent-based (fluorescence-preserving capability imaging of solvent-cleared organs) tissue optical clearing (TOC). The combined TOC approach allows to image mouse penis innervation and vasculature with unprecedented detail and, for the first time, reveals the three-dimensional structure of murine penis fibrocartilage.
Collapse
Affiliation(s)
- Paweł Matryba
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Wolny
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Pawłowska
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jasiński
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Stefaniuk
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
André GI, Firman RC, Simmons LW. The coevolution of male and female genitalia in a mammal: A quantitative genetic insight. Evolution 2020; 74:1558-1567. [PMID: 32490547 DOI: 10.1111/evo.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/10/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
22
|
Hennefarth MR, Chen L, Wang B, Lue TF, Stoller ML, Lin G, Kang M, Ho SP. Physicochemical and biochemical spatiotemporal maps of a mouse penis. J Biomech 2020; 101:109637. [PMID: 32037018 DOI: 10.1016/j.jbiomech.2020.109637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Spatiotemporal mechanobiology resulting in penile pathologies continues to be investigated using small scale animals models such as mice. However, species-dependent functional biomechanics of a mouse penis, is not known. In this study, spatial mapping of a mechanosensitive transcription factor, scleraxis (Scx), at ages 4, 5, 6 weeks, and 1 year were generated to identify mechanoactive regions within penile tissues. Reconstructed volumes of baculum collected using micro X-ray computed tomography illustrated significantly increased baculum length with decreased porosity, and increased mineral density (p < 0.05) with age. The bony-baculum was held centrally in the Scx positive corpus cavernosum glandis (CCG), indicating mechanoactivity within the struts in a 6 week old mouse. The struts also were stained positive for fibrillar proteins including collagen and elastin, and globular proteins including protein gene product 9.5, and α-smooth muscle actin. The corpus cavernosum penis (CCP) contained significantly (p < 0.05) more collagen than CCG within the same penis, and both regions contained blood vessels with equivalent innervation at any given age. Comparison of volumes of flaccid and erect penile forms revealed functional characteristics of the CCP. Results of this study provided insights into biomechanical function of the CCG; in that, it is a high-pressure chamber that stiffens the penis and is similar to the human corpus cavernosum.
Collapse
Affiliation(s)
- Matthew R Hennefarth
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, United States
| | - Ling Chen
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, United States
| | - Bohan Wang
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tom F Lue
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marshall L Stoller
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Guiting Lin
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Misun Kang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, United States
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, United States; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
23
|
Horáková S, Šumbera R, Sovová J, Robovský J. The penial and bacular morphology of the solitary silvery mole-rat (Heliophobius argenteocinereus, Bathyergidae) from Malawi and evolutionary patterns across the African mole-rat family. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Jubilato FC, Comelis MT, Bueno LM, Taboga SR, Góes RM, Morielle‐Versute E. Histomorphology of the glans penis in Vespertilionidae and Phyllostomidae species (Chiroptera, Mammalia). J Morphol 2019; 280:1759-1776. [DOI: 10.1002/jmor.21062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Fernanda C. Jubilato
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Manuela T. Comelis
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Larissa M. Bueno
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Sebastião R. Taboga
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Rejane M. Góes
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Eliana Morielle‐Versute
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| |
Collapse
|
25
|
Casinos A, García-Martínez R, Borroto-Páez R. Cross-Sectional Geometry and Scaling in the Baculum of Cuban Hutias (Rodentia: Capromyidae). Anat Rec (Hoboken) 2019; 303:1346-1353. [PMID: 31569306 DOI: 10.1002/ar.24268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022]
Abstract
Bacula from 61 individual hutia (Rodentia) from five species were studied. The purpose was to investigate cross-sectional geometry as an indicator of mechanical behavior in order to answer questions around the origin and maintenance of the mammalian baculum. From images of the apical and basal cross sections, the following variables were calculated: perimeter, cross-sectional area, maximum second moment of area, and polar moment. An allometric analysis showed that these variables were related to body size. The orientation of the maximum second moment of area was analyzed by means of circular statistics. This orientation was transverse in both the apical and basal cross sections. Values for the second moment of area and polar moment, obtained from the predicted value of the allometric equations, showed that either the bending moment or the twisting moment of the baculum must be relatively low in hutias, compared with those of the radius in the same species. The results of the second moment of area predict that the main bending stress acting on the baculum is transverse. At the same time, shear stress would not be negligible. Anat Rec, 303:1346-1353, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrià Casinos
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Rubén García-Martínez
- Centre de Restauració i Interpretació Paleontològica (CRIP), Els Hostalets de Pierola, Spain
| | | |
Collapse
|
26
|
Are baculum size and allometry a response to post-copulatory sexual selection in promiscuous males of the house mouse? ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Fuse M, Sawada K. Morphological development of baculum and forelimb second-to-fourth digit ratio in mice. Congenit Anom (Kyoto) 2019; 59:24-25. [PMID: 29665137 DOI: 10.1111/cga.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Minami Fuse
- Department of Nutrition, Tsukuba International University, Tsuchiura, Japan
| | - Kazuhiko Sawada
- Department of Nutrition, Tsukuba International University, Tsuchiura, Japan
| |
Collapse
|
28
|
|
29
|
Brassey CA, Gardiner JD, Kitchener AC. Testing hypotheses for the function of the carnivoran baculum using finite-element analysis. Proc Biol Sci 2018; 285:20181473. [PMID: 30232157 PMCID: PMC6170803 DOI: 10.1098/rspb.2018.1473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
The baculum (os penis) is a mineralized bone within the glans of the mammalian penis and is one of the most morphologically diverse structures in the mammal skeleton. Recent experimental work provides compelling evidence for sexual selection shaping the baculum, yet the functional mechanism by which this occurs remains unknown. Previous studies have tested biomechanical hypotheses for the role of the baculum based on simple metrics such as length and diameter, ignoring the wealth of additional shape complexity present. For the first time, to our knowledge, we apply a computational simulation approach (finite-element analysis; FEA) to quantify the three-dimensional biomechanical performance of carnivoran bacula (n = 74) based upon high-resolution micro-computed tomography scans. We find a marginally significant positive correlation between sexual size dimorphism and baculum stress under compressive loading, counter to the 'vaginal friction' hypothesis of bacula becoming more robust to overcome resistance during initial intromission. However, a highly significant negative relationship exists between intromission duration and baculum stress under dorsoventral bending. Furthermore, additional FEA simulations confirm that the presence of a ventral groove would reduce deformation of the urethra. We take this as evidence in support of the 'prolonged intromission' hypothesis, suggesting the carnivoran baculum has evolved in response to pressures on the duration of copulation and protection of the urethra.
Collapse
Affiliation(s)
- Charlotte A Brassey
- School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - James D Gardiner
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
| |
Collapse
|
30
|
Csanády A, Stanko M, Mošanský L. Are differences in variation and allometry in testicular size of two sibling species of the genus Mus (Mammalia, Rodentia) caused by female promiscuity? MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
André GI, Firman RC, Simmons LW. Phenotypic plasticity in genitalia: baculum shape responds to sperm competition risk in house mice. Proc Biol Sci 2018; 285:20181086. [PMID: 30051823 PMCID: PMC6053933 DOI: 10.1098/rspb.2018.1086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Males are known to adjust their expenditure on testes growth and sperm production in response to sperm competition risk. Genital morphology can also contribute to competitive fertilization success but whether male genital morphology can respond plastically to the sperm competition environment has received little attention. Here, we exposed male house mice to two different sperm competition environments during their sexual development and quantified phenotypic plasticity in baculum morphology. The sperm competition environment generated plasticity in body growth. Males maturing under sperm competition risk were larger and heavier than males maturing under no sperm competition risk. We used a landmark-based geometric morphometric approach to measure baculum size and shape. Independent of variation in body size, males maintained under risk of sperm competition had a relatively thicker and more distally extended baculum bulb compared with males maintained under no sperm competition risk. Plasticity in baculum shape paralleled evolutionary responses to selection from sperm competition reported in previous studies of house mice. Our findings provide experimental evidence of socially mediated phenotypic plasticity in male genitalia.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
32
|
Dixson A. Copulatory and Postcopulatory Sexual Selection in Primates. Folia Primatol (Basel) 2018; 89:258-286. [DOI: 10.1159/000488105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/04/2018] [Indexed: 12/24/2022]
|
33
|
Comelis MT, Bueno LM, Góes RM, Taboga S, Morielle-Versute E. Morphological and histological characters of penile organization in eleven species of molossid bats. ZOOLOGY 2018; 127:70-83. [DOI: 10.1016/j.zool.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 01/27/2018] [Indexed: 11/24/2022]
|
34
|
Wu H, Jiang T, Huang X, Feng J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch's rule and potential causes. Sci Rep 2018; 8:2616. [PMID: 29422495 PMCID: PMC5805768 DOI: 10.1038/s41598-018-21077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
Rensch's rule, stating that sexual size dimorphism (SSD) becomes more evident and male-biased with increasing body size, has been well supported for taxa that exhibit male-biased SSD. Bats, primarily having female-biased SSD, have so far been tested for whether SSD allometry conforms to Rensch's rule in only three studies. However, these studies did not consider phylogeny, and thus the mechanisms underlying SSD variations in bats remain unclear. Thus, the present study reviewed published and original data, including body size, baculum size, and habitat types in 45 bats of the family Rhinolophidae to determine whether horseshoe bats follow Rensch's rule using a phylogenetic comparative framework. We also investigated the potential effect of postcopulatory sexual selection and habitat type on SSD. Our findings indicated that Rensch's rule did not apply to Rhinolophidae, suggesting that SSD did not significantly vary with increasing size. This pattern may be attributable interactions between weak sexual selection to male body size and strong fecundity selection for on female body size. The degree of SSD among horseshoe bats may be attributed to a phylogenetic effect rather than to the intersexual competition for food or to baculum length. Interestingly, we observed that species in open habitats exhibited greater SSD than those in dense forests, suggesting that habitat types may be associated with variations in SSD in horseshoe bats.
Collapse
Affiliation(s)
- Hui Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Tinglei Jiang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Xiaobin Huang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Jiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China.
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
35
|
Lough‐Stevens M, Schultz NG, Dean MD. The baubellum is more developmentally and evolutionarily labile than the baculum. Ecol Evol 2018; 8:1073-1083. [PMID: 29375780 PMCID: PMC5773289 DOI: 10.1002/ece3.3634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding the evolutionary forces that influence sexual dimorphism is a fundamental goal in biology. Here, we focus on one particularly extreme example of sexual dimorphism. Many mammal species possess a bone in their penis called a baculum. The female equivalent of this bone is called the baubellum and occurs in the clitoris, which is developmentally homologous to the male penis. To understand the potential linkage between these two structures, we scored baculum/baubellum presence/absence across 163 species and analyzed their distribution in a phylogenetic framework. The majority of species (N = 134) shared the same state in males and females (both baculum and baubellum present or absent). However, the baubellum has experienced significantly more transitions, and more recent transitions, so that the remaining 29 species have a baculum but not a well-developed baubellum. Even in species where both bones are present, the baubellum shows more ontogenetic variability and harbors more morphological variation than the baculum. Our study demonstrates that the baculum and baubellum are generally correlated across mammals, but that the baubellum is more evolutionarily and developmentally labile than the baculum. The accumulation of more evolutionary transitions, especially losses in the baubellum, as well as noisier developmental patterns, suggests that the baubellum may be nonfunctional, and lost over time.
Collapse
Affiliation(s)
- Michael Lough‐Stevens
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Nicholas G. Schultz
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Matthew D. Dean
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
36
|
Rakotondramanana CF, Goodman SM. A Review of the Bacular Morphology of Malagasy Bats. ACTA CHIROPTEROLOGICA 2017. [DOI: 10.3161/15081109acc2017.19.1.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claude Fabienne Rakotondramanana
- Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, BP 906, Antananarivo 101, Madagascar
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Steven Michael Goodman
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
37
|
Miyado M, Miyado K, Nakamura A, Fukami M, Yamada G, Oda SI. Expression patterns of Fgf8 and Shh in the developing external genitalia of Suncus murinus. Reproduction 2017; 153:187-195. [DOI: 10.1530/rep-16-0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/23/2023]
Abstract
Reciprocal epithelial–mesenchymal interactions and several signalling pathways regulate the development of the genital tubercle (GT), an embryonic primordium of external genitalia. The morphology of the adult male external genitalia of the Asian house musk shrew Suncus murinus (hereafter, laboratory name: suncus) belonging to the order Eulipotyphla (the former order Insectivora or Soricomorpha) differs from those of mice and humans. However, the developmental process of the suncus GT and its regulatory genes are unknown. In the present study, we explored the morphological changes and gene expression patterns during the development of the suncus GT. Morphological observations suggested the presence of common (during the initial outgrowth) and species-specific (during the sexual differentiation of GT) developmental processes of the suncus GT. In gene expression analysis, fibroblast growth factor 8 (Fgf8) and sonic hedgehog (Shh), an indicator and regulator of GT development in mice respectively, were found to be expressed in the cloacal epithelium and the developing urethral epithelium of the suncus GT. This pattern of expression specifically in GT epithelium is similar to that observed in the developing mouse GT. Our results indicate that the mechanism of GT formation regulated by the FGF and SHH signalling pathways is widely conserved in mammals.
Collapse
|
38
|
Brindle M, Opie C. Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proc Biol Sci 2016; 283:20161736. [PMID: 27974519 PMCID: PMC5204150 DOI: 10.1098/rspb.2016.1736] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection.
Collapse
Affiliation(s)
- Matilda Brindle
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Christopher Opie
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| |
Collapse
|
39
|
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The Baculum was Gained and Lost Multiple Times during Mammalian Evolution. Integr Comp Biol 2016; 56:644-56. [PMID: 27252214 PMCID: PMC6080509 DOI: 10.1093/icb/icw034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid evolution of male genitalia is a nearly ubiquitous pattern across sexually reproducing organisms, likely driven by the evolutionary pressures of male-male competition, male-female interactions, and perhaps pleiotropic effects of selection. The penis of many mammalian species contains a baculum, a bone that displays astonishing morphological diversity. The evolution of baculum size and shape does not consistently correlate with any aspects of mating system, hindering our understanding of the evolutionary processes affecting it. One potential explanation for the lack of consistent comparative results is that the baculum is not actually a homologous structure. If the baculum of different groups evolved independently, then the assumption of homology inherent in comparative studies is violated. Here, we specifically test this hypothesis by modeling the presence/absence of bacula of 954 mammalian species across a well-established phylogeny and show that the baculum evolved a minimum of nine times, and was lost a minimum of ten times. Three different forms of bootstrapping show our results are robust to species sampling. Furthermore, groups with a baculum show evidence of higher rates of diversification. Our study offers an explanation for the inconsistent results in the literature, and provides insight into the evolution of this remarkable structure.
Collapse
Affiliation(s)
- Nicholas G Schultz
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Eric Abreu
- West Adams Preparatory High School, 1500 W Washington Blvd, Los Angeles, CA 90007, USA
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Matthew D Dean
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Lack of Evolution of Sexual Size Dimorphism in Heteromyidae (Rodentia): The Influence of Resource Defense and the Trade-Off between Pre- and Post-Copulatory Trait Investment. Evol Biol 2016. [DOI: 10.1007/s11692-016-9390-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Schneider MR, Mangels R, Dean MD. The molecular basis and reproductive function(s) of copulatory plugs. Mol Reprod Dev 2016; 83:755-767. [PMID: 27518218 DOI: 10.1002/mrd.22689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
In many animals, male ejaculates coagulate to form what has been termed a copulatory plug, a structure that varies in size and shape but often fills and seals the female's reproductive tract. The first published observation of a copulatory plug in a mammal was made more than 160 years ago, and questions about its formation and role in reproduction continue to endear evolutionary and population geneticists, behavioral ecologists, and molecular, reproductive, and developmental biologists alike. Here, we review the current knowledge of copulatory plugs, focusing on rodents and asking two main questions: how is it formed and what does it do? An evolutionary biology perspective helps us understand the latter, potentially leading to insights into the selective regimes that have shaped the diversity of this structure. Mol. Reprod. Dev. 83: 755-767, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rachel Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
42
|
Kelly DA, Moore BC. The Morphological Diversity of Intromittent Organs: An Introduction to the Symposium. Integr Comp Biol 2016; 56:630-4. [DOI: 10.1093/icb/icw103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Orr TJ, Brennan PLR. All Features Great and Small—the Potential Roles of the Baculum and Penile Spines in Mammals. Integr Comp Biol 2016; 56:635-43. [DOI: 10.1093/icb/icw057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Kelly DA. Intromittent Organ Morphology and Biomechanics: Defining the Physical Challenges of Copulation. Integr Comp Biol 2016; 56:705-14. [PMID: 27252215 DOI: 10.1093/icb/icw058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intromittent organs-structures that place gametes into a mate for internal fertilization-evolved many times within the animal kingdom, and are remarkable for their extravagant morphological diversity. Some taxa build intromittent organs from tissues with reproductive system antecedents, but others copulate with modified fins, tentacles, or legs: anatomically, these structures can include combinations of stiff tissues, extensible tissues, and muscle. Their mechanical behavior during copulation is also diverse: males in some taxa reorient or protrude genital tissues, others inflate them and change their shape, while still other taxa combine these strategies. For these animals, the ability to ready an intromittent organ for copulation and physically interact with a mate's genital tissues is critical to reproductive success, and may be tied to aspects of postcopulatory selection such as sperm competition and sexual conflict. But we know little about their mechanical behavior during copulation. This review surveys mechanical strategies that animals may use for intromittent organ function during intromission and copulation, and discusses how they may perform when their tissues experience stresses in tension, compression, bending, torsion, or shear.
Collapse
Affiliation(s)
- Diane A Kelly
- *Department of Psychological and Brain Sciences, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Booksmythe I, Head ML, Keogh JS, Jennions MD. Fitness consequences of artificial selection on relative male genital size. Nat Commun 2016; 7:11597. [PMID: 27188478 PMCID: PMC4873965 DOI: 10.1038/ncomms11597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
Abstract
Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital-body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6-8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity).
Collapse
Affiliation(s)
- Isobel Booksmythe
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
- Centre of Excellence in Biological Interactions Research, Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Megan L Head
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - J Scott Keogh
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Michael D Jennions
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
46
|
Schultz NG, Ingels J, Hillhouse A, Wardwell K, Chang PL, Cheverud JM, Lutz C, Lu L, Williams RW, Dean MD. The Genetic Basis of Baculum Size and Shape Variation in Mice. G3 (BETHESDA, MD.) 2016; 6:1141-51. [PMID: 26935419 PMCID: PMC4856068 DOI: 10.1534/g3.116.027888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.
Collapse
Affiliation(s)
- Nicholas G Schultz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jesse Ingels
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Andrew Hillhouse
- Texas A & M, Veterinary Medicine and Biomedical Sciences, College Station, Texas 77845
| | | | - Peter L Chang
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - James M Cheverud
- Loyola University, Department of Biology, Chicago, Illinois 60626
| | | | - Lu Lu
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Robert W Williams
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
47
|
|
48
|
Mangels R, Young B, Keeble S, Ardekani R, Meslin C, Ferreira Z, Clark NL, Good JM, Dean MD. Genetic and phenotypic influences on copulatory plug survival in mice. Heredity (Edinb) 2015; 115:496-502. [PMID: 26103947 PMCID: PMC4806896 DOI: 10.1038/hdy.2015.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Across a diversity of animals, male seminal fluid coagulates upon ejaculation to form a hardened structure known as a copulatory plug. Previous studies suggest that copulatory plugs evolved as a mechanism for males to impede remating by females, but detailed investigations into the time course over which plugs survive in the female's reproductive tract are lacking. Here, we cross males from eight inbred strains to females from two inbred strains of house mice (Mus musculus domesticus). Plug survival was significantly affected by male genotype. Against intuition, plug survival time was negatively correlated with plug size: long-lasting plugs were small and relatively more susceptible to proteolysis. Plug size was associated with divergence in major protein composition of seminal vesicle fluid, suggesting that changes in gene expression may play an important role in plug dynamics. In contrast, we found no correlation to genetic variation in the protein-coding regions of five genes thought to be important in copulatory plug formation (Tgm4, Svs1, Svs2, Svs4 and Svs5). Our study demonstrates a complex relationship between copulatory plug characteristics and survival. We discuss several models to explain unexpected variation in plug phenotypes.
Collapse
Affiliation(s)
- R Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - B Young
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - S Keeble
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - R Ardekani
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - C Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - N L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - M D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Ramm SA, Edward DA, Claydon AJ, Hammond DE, Brownridge P, Hurst JL, Beynon RJ, Stockley P. Sperm competition risk drives plasticity in seminal fluid composition. BMC Biol 2015; 13:87. [PMID: 26507392 PMCID: PMC4624372 DOI: 10.1186/s12915-015-0197-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Ejaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment. Results Our quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid – i.e. seminal fluid proteome composition – differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition – SVS 6, SVS 5 and CEACAM 10 – were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities. Conclusions Our study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven A Ramm
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Dominic A Edward
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Amy J Claydon
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Dean E Hammond
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Philip Brownridge
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
50
|
Infante CR, Mihala AG, Park S, Wang JS, Johnson KK, Lauderdale JD, Menke DB. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes. Dev Cell 2015; 35:107-19. [PMID: 26439399 DOI: 10.1016/j.devcel.2015.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/24/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022]
Abstract
The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jialiang S Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Kenji K Johnson
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|