1
|
Jamison-Todd S, Mannion PD, Glover AG, Upchurch P. New occurrences of the bone-eating worm Osedax from Late Cretaceous marine reptiles and implications for its biogeography and diversification. Proc Biol Sci 2024; 291:20232830. [PMID: 38593847 PMCID: PMC11003772 DOI: 10.1098/rspb.2023.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
The bone-eating worm Osedax is a speciose and globally distributed clade, primarily found on whale carcasses in marine environments. The earliest fossil evidence for Osedax borings was previously described in plesiosaur and sea turtle bones from the mid-Cretaceous of the United Kingdom, representing the only unequivocal pre-Oligocene occurrences. Confirming through CT scanning, we present new evidence of Osedax borings in three plesiosaur specimens and, for the first time, identify borings in two mosasaur specimens. All specimens are from the Late Cretaceous: one from the Cenomanian of the United Kingdom, two from the Campanian of the southeastern United States, and two from the Maastrichtian of Belgium. This extends the geographic range of Osedax in the Cretaceous to both sides of the northern Atlantic Ocean. The bones contain five borehole morphotypes, potentially created by different species of Osedax, with the Cenomanian specimen containing three morphotypes within a single tooth. This combined evidence of heightened species diversity by the Cenomanian and broad geographic range by the Campanian potentially indicates an earlier origin and diversification for this clade than previously hypothesized. Preservational biases indicate that Osedax was probably even more widely distributed and speciose in the Cretaceous than apparent in the fossil record.
Collapse
Affiliation(s)
- Sarah Jamison-Todd
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Worsaae K, Rouan A, Seaver E, Miyamoto N, Tilic E. Postembryonic development and male paedomorphosis in Osedax (Siboglinidae, Annelida). Front Neurosci 2024; 18:1369274. [PMID: 38562300 PMCID: PMC10984269 DOI: 10.3389/fnins.2024.1369274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Most species of the bone-devouring marine annelid, Osedax, display distinct sexual dimorphism with macroscopic sedentary females rooted in bones and free-living microscopic dwarf males. The paedomorphic male resembles the non-feeding metatrochophore larva in size, presence of eight pairs of chaetae, and a head ciliation potentially representing a residual prototroch. The male development may thus uniquely reiterate and validate the theoretical heterochrony process "progenesis", which suggests that an accelerated sexual maturation and early arrest of somatic growth can lead to a miniaturized and paedomorphic adult. In this study, we describe the postembryonic larval and juvenile organogenesis of Osedax japonicus to test for a potential synchronous arrest of somatic growth during male development. Five postembryonic stages could be distinguished, resembling day one to five in the larval development at 10°C: (0D) first cleavage of fertilized eggs (embryos undergo unequal spiral cleavage), (1D) pre-trochophore, with apical organ, (2D) early trochophore, + prototroch, brain, circumesophageal connectives and subesophageal commissure, (3D) trochophore, + telotroch, four ventral nerves, (4D) early metatrochophore, + protonephridia, dorsal and terminal sensory organs, (5D) metatrochophore, + two ventral paratrochs, mid-ventral nerve, posterior trunk commissure, two dorsal nerves; competent for metamorphosis. The larval development largely mirrors that of other lecithotrophic annelid larvae but does not show continuous chaetogenesis or full gut development. Additionally, O. japonicus larvae exhibit an unpaired, mid-dorsal, sensory organ. Female individuals shed their larval traits during metamorphosis and continue organogenesis (including circulatory system) and extensive growth for 2-3 weeks before developing oocytes. In contrast, males develop sperm within a day of metamorphosis and display a synchronous metamorphic arrest in neural and muscular development, retaining a large portion of larval features post metamorphosis. Our findings hereby substantiate male miniaturization in Osedax to be the outcome of an early and synchronous offset of somatic development, fitting the theoretical process "progenesis". This may be the first compelling morpho-developmental exemplification of a progenetic origin of a microscopic body plan. The presented morphological staging system will further serve as a framework for future examination of molecular patterns and pathways determining Osedax development.
Collapse
Affiliation(s)
- Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alice Rouan
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elaine Seaver
- The Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, United States
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Ekin Tilic
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
| |
Collapse
|
3
|
Goren HP. An investigation of the inter and intra post-mortem microstructural change seen in an experimental series of pigs exposed to a marine environment. J Forensic Leg Med 2023; 99:102588. [PMID: 37690184 DOI: 10.1016/j.jflm.2023.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
The identification of marine post-mortem microstructural change in human bone tissue is valuable in forensic casework as evidence of an individual's burial history. This study examined micro-tunneling in pig-bone tissue microstructure that had been submerged in a marine environment. The objective of the experiment was to assess total distribution of post-mortem microstructural change and degree of preservation within and between individual submerged pig skeletons. 14 juvenile pig carcasses were submerged in British Columbia at 92-300 m depths, between four to eight months. Seven pigs were individually submerged within caged platforms, seven were tied to open platforms. Six bones were selected from each carcass: first rib, radius, ulna, middle-rib, tibia, and femur. Two transverse thin sections were sampled at each bone mid-shaft (n = 148) and examined using circularly polarized transmitted light. The distribution of tunnels was assessed by measuring tunnel maximum ingress and diameter at 40 locations of the peripheral cortex. All element types were impacted by peripheral tunneling from the periosteum to the central cortex. Tunnels were observed as radiating, bifurcating with no remineralization boundary, isolated and in clusters. Tunnel diameters ranged between 2.00 μm and 12.8 μm, with a 3.7 μm mean. Ingress measurements ranged between 7.5 μm and 435.8 μm with a 93.0 μm mean. Distribution of post-mortem microstructural change across skeletal elements showed the averaged maximum ingress was deeper in the uncaged (99.6 μm), when compared to caged material (78.5 μm). The averaged tunnel ingress had statistically significant differences between uncaged and caged carcasses overall (p-value=0.02). Results of the study indicate microboring is present in marine submersed mammalian bone microstructure in as little as 134 days. This informs forensic investigators of the rate of skeletal destruction and of the narrow window for forensic recoveries, particularly in an enclosed environment. Furthermore, the presence of marine microboring in bone can assist forensic practitioners to histologically interpret the environmental history of a corpse.
Collapse
Affiliation(s)
- Haley P Goren
- Centre for Forensic Research, School of Criminology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| |
Collapse
|
4
|
Goffredi SK, Panossian B, Brzechffa C, Field N, King C, Moggioli G, Rouse GW, Martín-Durán JM, Henry LM. A dynamic epibiont community associated with the bone-eating polychaete genus Osedax. mBio 2023; 14:e0314022. [PMID: 37382438 PMCID: PMC10470745 DOI: 10.1128/mbio.03140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/08/2023] [Indexed: 06/30/2023] Open
Abstract
Osedax, the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of Osedax, which change over time as the whale carcass degrades on the sea floor. The Campylobacterales associated with seven species of Osedax, which comprise 67% of the bacterial community on the trunk, appear initially dominated by the genus Arcobacter (at early time points <24 mo), the Sulfurospirillum at intermediate stages (~50 mo), and the Sulfurimonas at later stages (>140 mo) of whale carcass decomposition. Metagenome analysis of the epibiont metabolic capabilities suggests potential for a transition from heterotrophy to autotrophy and differences in their capacity to metabolize oxygen, carbon, nitrogen, and sulfur. Compared to free-living relatives, the Osedax epibiont genomes were enriched in transposable elements, implicating genetic exchange on the host surface, and contained numerous secretions systems with eukaryotic-like protein (ELP) domains, suggesting a long evolutionary history with these enigmatic, yet widely distributed deep-sea worms. IMPORTANCE Symbiotic associations are widespread in nature and we can expect to find them in every type of ecological niche. In the last twenty years, the myriad of functions, interactions and species comprising microbe-host associations has fueled a surge of interest and appreciation for symbiosis. During this 14-year study, we reveal a dynamic population of bacterial epibionts, integrated into the epidermis of 7 species of a deep-sea worm group that feeds exclusively on the remains of marine mammals. The bacterial genomes provide clues of a long evolutionary history with these enigmatic worms. On the host surface, they exchange genes and appear to undergo ecological succession, as the whale carcass habitat degrades over time, similar to what is observed for some free-living communities. These, and other annelid worms are important keystone species for diverse deep-sea environments, yet the role of attached external bacteria in supporting host health has received relatively little attention.
Collapse
Affiliation(s)
- Shana K. Goffredi
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Balig Panossian
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Camille Brzechffa
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Naomi Field
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, Monterey, California, USA
| | - Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Greg W. Rouse
- Scripps Oceanography, University of California, La Jolla, California, USA
| | - José M. Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Berman GH, Johnson SB, Seid CA, Vrijenhoek RC, Rouse GW. Range extensions of Pacific bone-eating worms (Annelida, Siboglinidae, Osedax). Biodivers Data J 2023; 11:e102803. [PMID: 38327359 PMCID: PMC10848615 DOI: 10.3897/bdj.11.e102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 02/09/2024] Open
Abstract
First described in 2004 off California, Osedax worms are now known from many of the world's oceans, ranging from 10 to over 4000 m in depth. Currently, little is known about species ranges, since most descriptions are from single localities. In this study, we used new sampling in the north-eastern Pacific and available GenBank data from off Japan and Brazil to report expanded ranges for five species: Osedaxfrankpressi, O.knutei, O.packardorum, O.roseus and O.talkovici. We also provided additional DNA sequences from previously reported localities for two species: Osedaxpriapus and O.randyi. To assess the distribution of each species, we used cytochrome c oxidase subunit I (COI) sequences to generate haplotype networks and assess connectivity amongst localities where sampling permitted. Osedaxfrankpressi, O.packardorum, O.priapus, O.roseus and O.talkovici all had one or more dominant COI haplotypes shared by individuals at multiple localities, suggesting high connectivity throughout some or all of their ranges. Low ΦST values amongst populations for O.packardorum, O.roseus and O.talkovici confirmed high levels of gene flow throughout their known ranges. High ΦST values for O.frankpressi between the eastern Pacific and the Brazilian Atlantic showed little gene flow, reflected by the haplotype network, which had distinct Pacific and Atlantic haplotype clusters. This study greatly expands the ranges and provides insights into the phylogeography for these nine species.
Collapse
Affiliation(s)
- Gabriella H. Berman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| | - Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, United States of AmericaMonterey Bay Aquarium Research InstituteMoss LandingUnited States of America
| | - Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| | - Robert C. Vrijenhoek
- Monterey Bay Aquarium Research Institute, Moss Landing, United States of AmericaMonterey Bay Aquarium Research InstituteMoss LandingUnited States of America
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| |
Collapse
|
6
|
Moggioli G, Panossian B, Sun Y, Thiel D, Martín-Zamora FM, Tran M, Clifford AM, Goffredi SK, Rimskaya-Korsakova N, Jékely G, Tresguerres M, Qian PY, Qiu JW, Rouse GW, Henry LM, Martín-Durán JM. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat Commun 2023; 14:2814. [PMID: 37198188 DOI: 10.1038/s41467-023-38521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.
Collapse
Affiliation(s)
- Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Balig Panossian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yanan Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Alexander M Clifford
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Nadezhda Rimskaya-Korsakova
- Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Erbertstr. 1, 07743, Jena, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
7
|
Bellin N, Calzolari M, Magoga G, Callegari E, Bonilauri P, Lelli D, Dottori M, Montagna M, Rossi V. Unsupervised machine learning and geometric morphometrics as tools for the identification of inter and intraspecific variations in the Anopheles Maculipennis complex. Acta Trop 2022; 233:106585. [PMID: 35787418 DOI: 10.1016/j.actatropica.2022.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
Geometric morphometric analysis was combined with two different unsupervised machine learning algorithms, UMAP and HDBSCAN, to visualize morphological differences in wing shape among and within four Anopheles sibling species (An. atroparvus, An. melanoon, An. maculipennis s.s. and An. daciae sp. inq.) of the Maculipennis complex in Northern Italy. Specifically, we evaluated: 1) wing shape variation among and within species; 2) the consistencies between groups of An. maculipennis s.s. and An. daciae sp. inq. identified based on COI sequences and wing shape variability; and 3) the spatial and temporal distribution of different morphotypes. UMAP detected at least 13 main patterns of variation in wing shape among the four analyzed species and mapped intraspecific morphological variations. The relationship between the most abundant COI haplotypes of An. daciae sp. inq. and shape ordination/variation was not significant. However, morphological variation within haplotypes was reported. HDBSCAN also recognized different clusters of morphotypes within An. daciae sp. inq. (12) and An. maculipennis s.s. (4). All morphotypes shared a similar pattern of variation in the subcostal vein, in the anal vein and in the radio-medial cross-vein of the wing. On the contrary, the marginal part of the wings remained unchanged in all clusters of both species. Any spatial-temporal significant difference was observed in the frequency of the identified morphotypes. Our study demonstrated that machine learning algorithms are a useful tool combined with geometric morphometrics and suggest to deepen the analysis of inter and intra specific shape variability to evaluate evolutionary constrains related to wing functionality.
Collapse
Affiliation(s)
- Nicolò Bellin
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A 43124 Parma, Italy.
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Giulia Magoga
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, 20133 Milan, Italy
| | - Emanuele Callegari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna ''B. Ubertini'' (IZSLER), Brescia, Italy
| | - Matteo Montagna
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, 20133 Milan, Italy
| | - Valeria Rossi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A 43124 Parma, Italy
| |
Collapse
|
8
|
Fossil microbial shark tooth decay documents in situ metabolism of enameloid proteins as nutrition source in deep water environments. Sci Rep 2020; 10:20979. [PMID: 33262401 PMCID: PMC7708646 DOI: 10.1038/s41598-020-77964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Alteration of organic remains during the transition from the bio- to lithosphere is affected strongly by biotic processes of microbes influencing the potential of dead matter to become fossilized or vanish ultimately. If fossilized, bones, cartilage, and tooth dentine often display traces of bioerosion caused by destructive microbes. The causal agents, however, usually remain ambiguous. Here we present a new type of tissue alteration in fossil deep-sea shark teeth with in situ preservation of the responsible organisms embedded in a delicate filmy substance identified as extrapolymeric matter. The invading microorganisms are arranged in nest- or chain-like patterns between fluorapatite bundles of the superficial enameloid. Chemical analysis of the bacteriomorph structures indicates replacement by a phyllosilicate, which enabled in situ preservation. Our results imply that bacteria invaded the hypermineralized tissue for harvesting intra-crystalline bound organic matter, which provided nutrient supply in a nutrient depleted deep-marine environment they inhabited. We document here for the first time in situ bacteria preservation in tooth enameloid, one of the hardest mineralized tissues developed by animals. This unambiguously verifies that microbes also colonize highly mineralized dental capping tissues with only minor organic content when nutrients are scarce as in deep-marine environments.
Collapse
|
9
|
Hewitt OH, Díez-Vives C, Taboada S. Microbial insights from Antarctic and Mediterranean shallow-water bone-eating worms. Polar Biol 2020. [DOI: 10.1007/s00300-020-02731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBone-eating worms of the genus Osedax (Annelida, Siboglinidae) form unique holobionts (functional entity comprising host and associated microbiota), highly adapted to inhabit bone tissue of marine vertebrates. These gutless worms have developed nutritional symbioses housing intracellular, horizontally acquired, heterotrophic bacteria hypothesised to harness nutrients from organic compounds, sequestered within the bone. Despite previous efforts, critical mechanisms mediating activity and acquisition of diverse bacterial assemblages remain unclear. Using 16S rRNA amplicon sequencing, we performed detailed taxonomic and predicted functional analyses shedding light on the microbial communities of two shallow-water Osedax species (Osedax deceptionensis and Osedax ‘mediterranea’) from contrasting habitats (Antarctic and Mediterranean Sea), in two tissue types (roots and palps). Comparative assessments between host species revealed distinct microbial assemblages whilst, within host species and body tissue, relative symbiont frequencies retained high variability. We reported relatively high abundances of microbes previously classified as primary endosymbionts, Ribotype 1 (order Oceanospirillales), and diverse likely secondary epibionts warranting further exploration as recurrent Osedax associates. Surprisingly, O. ‘mediterranea’ exhibited relatively low abundance of Oceanospirillales, but increased abundance of other potentially hydrocarbon degrading bacteria from the family Alteromonadaceae. We hypothesise the presence of functionally similar, non-Oceanospirillales primary endosymbionts within O. ‘mediterranea’. Functional metagenomic profiling (using 16S rRNA sequences) predicted broad metabolic capabilities, encompassing relatively large abundances of genes associated with amino acid metabolism. Comparative analyses between host body tissue communities highlighted several genes potentially providing critical functions to the Osedax host or that confer adaptations for intracellular life, housed within bone embedded host root tissues.
Collapse
|
10
|
McClain CR, Nunnally C, Dixon R, Rouse GW, Benfield M. Alligators in the abyss: The first experimental reptilian food fall in the deep ocean. PLoS One 2019; 14:e0225345. [PMID: 31860642 PMCID: PMC6924670 DOI: 10.1371/journal.pone.0225345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/01/2019] [Indexed: 11/18/2022] Open
Abstract
The high respiration rates of the deep-sea benthos cannot be sustained by known carbon supply pathways alone. Here, we investigate moderately-sized reptilian food falls as a potential alternative carbon pathway. Specifically, three individual carcasses of Alligator mississippiensis were deployed along the continental slope of the northern Gulf of Mexico at depths of ~2000m in early 2019. We posit the tough hide of alligators would impeded scavengers by limiting access to soft tissues of the alligator fall. However, the scavengers began consuming the food fall 43 hours post-deployment for one individual (198.2cm, 29.7kg), and the carcass of another individual (175.3 cm, 19.5kg) was completely devoid of soft tissue at 51 days post-deployment. A third individual (172.7cm, 18.5kg) was missing completely after 8 days, with only the deployment harness and weight remaining drug 8 meters away, suggesting a large elasmobranch scavenger. Additionally, bones recovered post-deployment reveal the first observations of the bone-eating Osedax in the Gulf of Mexico and are confirmed here as new to science. The findings of this study indicate the quick and successful utilization of terrestrial and aquatic-based carbon food sources in the deep marine environment, though outcome variability may be high.
Collapse
Affiliation(s)
- Craig Robert McClain
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Clifton Nunnally
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
| | - River Dixon
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Greg W. Rouse
- Scripps Oceanography, UC San Diego, La Jolla, CA, United States of America
| | - Mark Benfield
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
11
|
Fujiwara Y, Jimi N, Sumida PYG, Kawato M, Hiroshi Kitazato. New species of bone-eating worm Osedax from the abyssal South Atlantic Ocean (Annelida, Siboglinidae). Zookeys 2019:53-69. [PMID: 30651712 PMCID: PMC6333729 DOI: 10.3897/zookeys.814.28869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/28/2018] [Indexed: 11/12/2022] Open
Abstract
A new species of bone-eating annelid, Osedaxbraziliensis sp. n., found in a sunken whale carcass at a depth of 4,204 m at the base of the São Paulo Ridge in the South Atlantic Ocean off the Brazilian coast is described. The organism was retrieved using the human-occupied vehicle Shinkai 6500 during the QUELLE 2013 expedition. This is the 26th species of the genus and the first discovery from the South Atlantic Ocean, representing the deepest record of Osedax worldwide to date. This species morphologically resembles Osedaxfrankpressi but is distinguished by the presence of a yellow bump or patch behind the prostomium and its trunk length. Molecular phylogenetic analysis using three genetic markers (COI, 16S, and 18S) showed that O.braziliensis sp. n. is distinct from all other Osedax worms reported and is a sister species of O.frankpressi.
Collapse
Affiliation(s)
- Yoshihiro Fujiwara
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naoto Jimi
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| | - Paulo Y G Sumida
- Biological Oceanography Department, Oceanographic Institute - University of São Paulo, Praça do Oceanográfico, 191 - 05508-120, São Paulo-SP, Brazil
| | - Masaru Kawato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroshi Kitazato
- Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.,School of Marine Resources and Environment, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
12
|
Eilertsen MH, Kongsrud JA, Alvestad T, Stiller J, Rouse GW, Rapp HT. Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems. BMC Evol Biol 2017; 17:222. [PMID: 29089027 PMCID: PMC5664827 DOI: 10.1186/s12862-017-1065-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. RESULTS The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. CONCLUSION The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and evolutionary hypotheses to be tested as new data is produced.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biology, University of Bergen, Bergen, Norway.
- K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, Bergen, Norway.
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Tom Alvestad
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Josefin Stiller
- Scripps Institution of Oceanography, University of California San Diego, California, USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, California, USA
| | - Hans T Rapp
- Department of Biology, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, Bergen, Norway
- Uni Research, Uni Environment, Bergen, Norway
| |
Collapse
|
13
|
Smith CR, Amon DJ, Higgs ND, Glover AG, Young EL. Data are inadequate to test whale falls as chemosynthetic stepping-stones using network analysis: faunal overlaps do support a stepping-stone role. Proc Biol Sci 2017; 284:rspb.2017.1281. [PMID: 28954909 PMCID: PMC5627203 DOI: 10.1098/rspb.2017.1281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Craig R Smith
- Department of Oceanography, University of Hawai'i at Manoa, 1000 Pope Road, Honolulu, HI 96822, USA
| | - Diva J Amon
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Nicholas D Higgs
- Marine Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emily L Young
- Department of Oceanography, University of Hawai'i at Manoa, 1000 Pope Road, Honolulu, HI 96822, USA
| |
Collapse
|
14
|
Miyamoto N, Yoshida MA, Koga H, Fujiwara Y. Genetic mechanisms of bone digestion and nutrient absorption in the bone-eating worm Osedax japonicus inferred from transcriptome and gene expression analyses. BMC Evol Biol 2017; 17:17. [PMID: 28086748 PMCID: PMC5237233 DOI: 10.1186/s12862-016-0844-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone-eating worms of the genus Osedax (Annelida, Siboglinidae) have adapted to whale fall environments by acquiring a novel characteristic called the root, which branches and penetrates into sunken bones. The worms lack a digestive tract and mouth opening, and it has been suggested that Osedax degrade vertebrate bones and uptake nutrients through acidification and secretion of enzymes from the root. Symbiotic bacteria in the root tissue may have a crucial role in the metabolism of Osedax. However, the molecular mechanisms and cells responsible for bone digestion and nutrient uptake are still unclear, and information on the metabolic interaction between Osedax and symbiotic bacteria is limited. RESULTS We compared transcriptomes from three different RNA samples from the following tissues: trunk + palps, root + ovisac, and larva + male. A Pfam domain enrichment analysis revealed that protease- and transporter-related genes were enriched in the root + ovisac specific genes compared with the total transcriptome. Through targeted gene annotation we found gene family expansions resulting in a remarkably large number of matrix metalloproteinase (mmp) genes in the Osedax compared with other invertebrates. Twelve of these Osedax mmp genes were expressed in the root epidermal cells. Genes encoding various types of transporters, including amino acid, oligopeptide, bicarbonate, and sulfate/carboxylate transporters, were also expressed in root epidermal cells. In addition, amino acid and other metabolite transporter genes were expressed in bacteriocytes. These protease and transporter genes were first expressed in root tissues at the juvenile stage, when the root starts to develop. CONCLUSIONS The expression of various proteinase and transporter genes in the root epidermis supports the theory that the root epidermal cells are responsible for bone digestion and subsequent nutrient uptake. Expression of transporter genes in the host bacteriocytes suggests the presence of metabolic interaction between Osedax and symbiotic bacteria.
Collapse
Affiliation(s)
- Norio Miyamoto
- Japan Agency for Marine-Earth Science and Techonology, Yokosuka, Kanagawa, Japan.
| | - Masa-Aki Yoshida
- National Institute of Genetics, Mishima, Shizuoka, Japan.,Postodoctral research fellow, Japanese Society for Promotion of Science, Tokyo, Japan
| | - Hiroyuki Koga
- Postodoctral research fellow, Japanese Society for Promotion of Science, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Fujiwara
- Japan Agency for Marine-Earth Science and Techonology, Yokosuka, Kanagawa, Japan
| |
Collapse
|
15
|
Worsaae K, Rimskaya-Korsakova NN, Rouse GW. Neural reconstruction of bone-eating Osedax spp. (Annelida) and evolution of the siboglinid nervous system. BMC Evol Biol 2016; 16:83. [PMID: 27080383 PMCID: PMC4832464 DOI: 10.1186/s12862-016-0639-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female's trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids. RESULTS The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments. CONCLUSIONS Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group.
Collapse
Affiliation(s)
- Katrine Worsaae
- />Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark
| | | | - Greg W. Rouse
- />Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0202 USA
| |
Collapse
|
16
|
Danise S, Higgs ND. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 2016; 11:20150072. [PMID: 25878047 DOI: 10.1098/rsbl.2015.0072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic-Cenozoic origin (approx. 50-100 Myr).
Collapse
Affiliation(s)
- Silvia Danise
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK Department of Geology, University of Georgia, 210 Field Street, 30602 Athens, GA, USA
| | - Nicholas D Higgs
- Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
17
|
Taboada S, Riesgo A, Bas M, Arnedo MA, Cristobo J, Rouse GW, Avila C. Bone-Eating Worms Spread: Insights into Shallow-Water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean Waters. PLoS One 2015; 10:e0140341. [PMID: 26581105 PMCID: PMC4651350 DOI: 10.1371/journal.pone.0140341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Osedax, commonly known as bone-eating worms, are unusual marine annelids belonging to Siboglinidae and represent a remarkable example of evolutionary adaptation to a specialized habitat, namely sunken vertebrate bones. Usually, females of these animals live anchored inside bone owing to a ramified root system from an ovisac, and obtain nutrition via symbiosis with Oceanospirillales gamma-proteobacteria. Since their discovery, 26 Osedax operational taxonomic units (OTUs) have been reported from a wide bathymetric range in the Pacific, the North Atlantic, and the Southern Ocean. Using experimentally deployed and naturally occurring bones we report here the presence of Osedax deceptionensis at very shallow-waters in Deception Island (type locality; Antarctica) and at moderate depths near South Georgia Island (Subantarctic). We present molecular evidence in a new phylogenetic analysis based on five concatenated genes (28S rDNA, Histone H3, 18S rDNA, 16S rDNA, and cytochrome c oxidase I-COI-), using Maximum Likelihood and Bayesian inference, supporting the placement of O. deceptionensis as a separate lineage (Clade VI) although its position still remains uncertain. This phylogenetic analysis includes a new unnamed species (O. 'mediterranea') recently discovered in the shallow-water Mediterranean Sea belonging to Osedax Clade I. A timeframe of the diversification of Osedax inferred using a Bayesian framework further suggests that Osedax diverged from other siboglinids during the Middle Cretaceous (ca. 108 Ma) and also indicates that the most recent common ancestor of Osedax extant lineages dates to the Late Cretaceous (ca. 74.8 Ma) concomitantly with large marine reptiles and teleost fishes. We also provide a phylogenetic framework that assigns newly-sequenced Osedax endosymbionts of O. deceptionensis and O. 'mediterranea' to ribospecies Rs1. Molecular analysis for O. deceptionensis also includes a COI-based haplotype network indicating that individuals from Deception Island and the South Georgia Island (ca. 1,600 km apart) are clearly the same species, confirming the well-developed dispersal capabilities reported in other congeneric taxa. In addition, we include a complete description of living features and morphological characters (including scanning and transmission electron microscopy) of O. deceptionensis, a species originally described from a single mature female, and compare it to information available for other congeneric OTUs.
Collapse
Affiliation(s)
- Sergi Taboada
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | - Ana Riesgo
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Maria Bas
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel A. Arnedo
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Javier Cristobo
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografía (IEO), Gijón, Spain
| | - Greg W. Rouse
- Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Conxita Avila
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Summers M, Pleijel F, Rouse GW. Whale falls, multiple colonisations of the deep, and the phylogeny of Hesionidae (Annelida). INVERTEBR SYST 2015. [DOI: 10.1071/is14055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phylogenetic relationships within Hesionidae Grube, 1850 are assessed via maximum parsimony and maximum likelihood analyses of mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and nuclear (18S rRNA, and 28S rRNA) data. The analyses are based on 42 hesionid species; six of these being new species that are described here. The new species, all from deep (>200 m depth) benthic environments (including whale falls) in the eastern Pacific, are Gyptis shannonae, sp. nov., Neogyptis julii, sp. nov., Sirsoe sirikos, sp. nov., Vrijenhoekia ketea, sp. nov., Vrijenhoekia falenothiras, sp. nov., and Vrijenhoekia ahabi, sp. nov. The molecular divergence among the new members of Vrijenhoekia is pronounced enough to consider them cryptic species, even though we cannot distinguish among them morphologically. Our results also showed that the subfamily Hesioninae Grube, 1850, as traditionally delineated, was paraphyletic. We thus restrict Hesioninae to include only Hesionini Grube, 1850 and refer the remaining members to Psamathinae Pleijel, 1998. The present study increases the number of hesionid species associated with whale falls from one to six and markedly increases the number of described deep-sea hesionid taxa. There appear to have been multiple colonisations of the deep sea from shallow waters by hesionids, though further sampling is warranted.
Collapse
|
19
|
A dwarf male reversal in bone-eating worms. Curr Biol 2014; 25:236-241. [PMID: 25496962 DOI: 10.1016/j.cub.2014.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
Abstract
Darwin hypothesized that sexes in a species should be similar unless sexual selection, fecundity selection, or resource partitioning has driven them apart. Male dwarfism has evolved multiple times in a range of animals, raising questions about factors that drive such extreme size dimorphism. Ghiselin noted that dwarf males are more common among smaller marine animals, and especially among sedentary and sessile species living at low densities, where mates are difficult to find, or in deep-sea environments with limited energy sources. These benefits of male dwarfism apply well to Osedax (Annelida: Siboglinidae), bone-eating marine worms. Osedax males, notable for extreme sexual size dimorphism (SSD), are developmentally arrested larvae that produce sperm from yolk reserves. Harems of dwarf males reside in the lumen of the tube surrounding a female. Herein, we describe Osedax priapus n. sp., a species that deviates remarkably by producing males that anchor into, and feed on, bone via symbiont-containing "roots," just like female Osedax. Phylogenetic analyses revealed O. priapus n. sp. as a derived species, and the absence of dwarf males represents a character reversal for this genus. Some dwarf male features are retained due to functional and morphological constraints. Since O. priapus n. sp. males are anchored in bone, they possess an extensible trunk that allows them to roam across the bone to contact and inseminate females. Evolutionary and ecological implications of a loss of male dwarfism are discussed.
Collapse
|
20
|
Smith CR, Glover AG, Treude T, Higgs ND, Amon DJ. Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:571-596. [PMID: 25251277 DOI: 10.1146/annurev-marine-010213-135144] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whale falls produce remarkable organic- and sulfide-rich habitat islands at the seafloor. The past decade has seen a dramatic increase in studies of modern and fossil whale remains, yielding exciting new insights into whale-fall ecosystems. Giant body sizes and especially high bone-lipid content allow great-whale carcasses to support a sequence of heterotrophic and chemosynthetic microbial assemblages in the energy-poor deep sea. Deep-sea metazoan communities at whale falls pass through a series of overlapping successional stages that vary with carcass size, water depth, and environmental conditions. These metazoan communities contain many new species and evolutionary novelties, including bone-eating worms and snails and a diversity of grazers on sulfur bacteria. Molecular and paleoecological studies suggest that whale falls have served as hot spots of adaptive radiation for a specialized fauna; they have also provided evolutionary stepping stones for vent and seep mussels and could have facilitated speciation in other vent/seep taxa.
Collapse
Affiliation(s)
- Craig R Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822; ,
| | | | | | | | | |
Collapse
|
21
|
Danise S, Twitchett RJ, Matts K. Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nat Commun 2014; 5:4789. [PMID: 25205249 PMCID: PMC4175577 DOI: 10.1038/ncomms5789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/24/2014] [Indexed: 11/09/2022] Open
Abstract
After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities.
Collapse
Affiliation(s)
- Silvia Danise
- Centre for Research in Earth Sciences, School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK
| | - Richard J Twitchett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Katie Matts
- Centre for Research in Earth Sciences, School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK
| |
Collapse
|
22
|
Amon DJ, Wiklund H, Dahlgren TG, Copley JT, Smith CR, Jamieson AJ, Glover AG. Molecular taxonomy ofOsedax(Annelida: Siboglinidae) in the Southern Ocean. ZOOL SCR 2014. [DOI: 10.1111/zsc.12057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diva J. Amon
- Ocean and Earth Science; National Oceanography Centre; Southampton; University of Southampton; Waterfront Campus Southampton SO14 3ZH UK
| | - Helena Wiklund
- Life Sciences Department; The Natural History Museum; Cromwell Road London SW7 5BD UK
| | | | - Jonathan T. Copley
- Ocean and Earth Science; National Oceanography Centre; Southampton; University of Southampton; Waterfront Campus Southampton SO14 3ZH UK
| | - Craig R. Smith
- Department of Oceanography; University of Hawai'i at Manoa; 1000 Pope Road Honolulu HI 96822 USA
| | - Alan J. Jamieson
- Oceanlab; University of Aberdeen; Institute of Biological and Environmental Sciences; Main Street Newburgh Aberdeenshire AB41 6AA UK
| | - Adrian G. Glover
- Life Sciences Department; The Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
23
|
Katz S, Rouse GW. The reproductive system of Osedax (Annelida, Siboglinidae): ovary structure, sperm ultrastructure, and fertilization mode. INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2013; 132:368-385. [PMID: 25632219 PMCID: PMC4285288 DOI: 10.1111/ivb.12037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Osedax is a genus of siboglinid annelids in which the females live on dead vertebrate bones on the seafloor. These females have a posterior end that lies within the bone and contains the ovarian tissue, as well as the "roots" involved with bone degradation and nutrition. The males are microscopic and live as "harems" in the lumen of the gelatinous tube that surrounds the female trunk, well away from the ovary. Females are known to spawn fertilized primary oocytes, suggesting internal fertilization. However, little is known about sperm transfer, sperm storage, or the location of fertilization, and the morphology of the female reproductive system has not been described and compared with the reproductive systems of other siboglinids. A 3D-reconstruction of the ovisac of Osedax showed ovarian tissue with multiple lobes and mature oocytes stored in a "uterus" before being released through the single oviduct. The oviduct emerges as a gonopore on the trunk and travels along the trunk to finally open to the seawater as a thin cylindrical tube among the crown of palps. Light and transmission electron microscopy of mature Osedax sperm revealed elongate heads consisting of a nucleus with helical grooves occupied by mitochondria. In contrast to other Siboglinidae, Osedax sperm are not packaged into spermatophores or spermatozeugmata, and Osedax females lack a discrete region for sperm storage. Transmission electron microscopy and fluorescence microscopy allowed detection of sperm associated with ovarian tissue of the female ovisac of four different Osedax species. This provides the first evidence for the site of internal fertilization in Osedax. A heart body was found in the circulatory system, as seen in other siboglinids and some other annelids. The possible presence of nephridia in the anterior ovisac region was also documented. These morphological features provide new insights for comparing the regionalization of Osedax females in relation to other siboglinids.
Collapse
Affiliation(s)
- Sigrid Katz
- Scripps Institution of Oceanography, University of California San DiegoLa Jolla, California, 92093-0202, USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San DiegoLa Jolla, California, 92093-0202, USA
| |
Collapse
|
24
|
Genomic versatility and functional variation between two dominant heterotrophic symbionts of deep-sea Osedax worms. ISME JOURNAL 2013; 8:908-24. [PMID: 24225886 DOI: 10.1038/ismej.2013.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
An unusual symbiosis, first observed at ~3000 m depth in the Monterey Submarine Canyon, involves gutless marine polychaetes of the genus Osedax and intracellular endosymbionts belonging to the order Oceanospirillales. Ecologically, these worms and their microbial symbionts have a substantial role in the cycling of carbon from deep-sea whale fall carcasses. Microheterogeneity exists among the Osedax symbionts examined so far, and in the present study the genomes of the two dominant symbionts, Rs1 and Rs2, were sequenced. The genomes revealed heterotrophic versatility in carbon, phosphate and iron uptake, strategies for intracellular survival, evidence for an independent existence, and numerous potential virulence capabilities. The presence of specific permeases and peptidases (of glycine, proline and hydroxyproline), and numerous peptide transporters, suggests the use of degraded proteins, likely originating from collagenous bone matter, by the Osedax symbionts. (13)C tracer experiments confirmed the assimilation of glycine/proline, as well as monosaccharides, by Osedax. The Rs1 and Rs2 symbionts are genomically distinct in carbon and sulfur metabolism, respiration, and cell wall composition, among others. Differences between Rs1 and Rs2 and phylogenetic analysis of chemotaxis-related genes within individuals of symbiont Rs1 revealed the influence of the relative age of the whale fall environment and support possible local niche adaptation of 'free-living' lifestages. Future genomic examinations of other horizontally-propogated intracellular symbionts will likely enhance our understanding of the contribution of intraspecific symbiont diversity to the ecological diversification of the intact association, as well as the maintenance of host diversity.
Collapse
|
25
|
Are organic falls bridging reduced environments in the deep sea? - results from colonization experiments in the Gulf of Cádiz. PLoS One 2013; 8:e76688. [PMID: 24098550 PMCID: PMC3788751 DOI: 10.1371/journal.pone.0076688] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
Organic falls create localised patches of organic enrichment and disturbance where enhanced degradation is mediated by diversified microbial assemblages and specialized fauna. The view of organic falls as “stepping stones” for the colonization of deep-sea reducing environments has been often loosely used, but much remains to be proven concerning their capability to bridge dispersal among such environments. Aiming the clarification of this issue, we used an experimental approach to answer the following questions: Are relatively small organic falls in the deep sea capable of sustaining taxonomically and trophically diverse assemblages over demographically relevant temporal scales? Are there important depth- or site-related sources of variability for the composition and structure of these assemblages? Is the proximity of other reducing environments influential for their colonization? We analysed the taxonomical and trophic diversity patterns and partitioning (α- and β-diversity) of the macrofaunal assemblages recruited in small colonization devices with organic and inorganic substrata after 1-2 years of deployment on mud volcanoes of the Gulf of Cádiz. Our results show that small organic falls can sustain highly diverse and trophically coherent assemblages for time periods allowing growth to reproductive maturity, and successive generations of dominant species. The composition and structure of the assemblages showed variability consistent with their biogeographic and bathymetric contexts. However, the proximity of cold seeps had limited influence on the similarity between the assemblages of these two habitats and organic falls sustained a distinctive fauna with dominant substrate-specific taxa. We conclude that it is unlikely that small organic falls may regularly ensure population connectivity among cold seeps and vents. They may be a recurrent source of evolutionary candidates for the colonization of such ecosystems. However, there may be a critical size of organic fall to create the necessary intense and persistent reducing conditions for sustaining typical chemosymbiotic vent and seep organisms.
Collapse
|
26
|
Glover AG, Wiklund H, Taboada S, Avila C, Cristobo J, Smith CR, Kemp KM, Jamieson AJ, Dahlgren TG. Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proc Biol Sci 2013; 280:20131390. [PMID: 23945684 PMCID: PMC3757972 DOI: 10.1098/rspb.2013.1390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the results from the first experimental study of the fate of whale and wood remains on the Antarctic seafloor. Using a baited free-vehicle lander design, we show that whale-falls in the Antarctic are heavily infested by at least two new species of bone-eating worm, Osedax antarcticus sp. nov. and Osedax deceptionensis sp. nov. In stark contrast, wood remains are remarkably well preserved with the absence of typical wood-eating fauna such as the xylophagainid bivalves. The combined whale-fall and wood-fall experiment provides support to the hypothesis that the Antarctic circumpolar current is a barrier to the larvae of deep-water species that are broadly distributed in other ocean basins. Since humans first started exploring the Antarctic, wood has been deposited on the seafloor in the form of shipwrecks and waste; our data suggest that this anthropogenic wood may be exceptionally well preserved. Alongside the new species descriptions, we conducted a comprehensive phylogenetic analyses of Osedax, suggesting the clade is most closely related to the frenulate tubeworms, not the vestimentiferans as previous reported.
Collapse
Affiliation(s)
- Adrian G Glover
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Tresguerres M, Katz S, Rouse GW. How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proc Biol Sci 2013; 280:20130625. [PMID: 23760644 DOI: 10.1098/rspb.2013.0625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osedax are gutless siboglinid worms that thrive on vertebrate bones lying on the ocean floor, mainly those of whales. The posterior body of female Osedax penetrates into the bone forming extensions known as 'roots', which host heterotrophic symbiotic bacteria in bacteriocytes beneath the epidermis. The Osedax root epithelium presumably absorbs bone collagen and/or lipids, which are metabolized by the symbiotic bacteria that in turn serve for Osedax's nutrition. Here, we show that Osedax roots express extremely high amounts of vacuolar-H(+)-ATPase (VHA), which is located in the apical membrane and in cytoplasmic vesicles of root and ovisac epithelial cells. The enzyme carbonic anhydrase (CA), which catalyses the hydration of CO2 into H(+) and HCO3(-), is also expressed in roots and throughout Osedax body. These results suggest Osedax roots have massive acid-secreting capacity via VHA, fuelled by H(+) derived from the CA-catalysed hydration of CO2 produced by aerobic metabolism. We propose the secreted acid dissolves the bone carbonate matrix to then allow the absorption of bone-derived nutrients across the skin. In an exciting example of convergent evolution, this model for acid secretion is remarkably similar to mammalian osteoclast cells. However, while osteoclasts dissolve bone for repairing and remodelling, the Osedax root epithelium secretes acid to dissolve foreign bone to access nutrients.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 93092-0202, USA.
| | | | | |
Collapse
|
29
|
Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biol 2013. [DOI: 10.1007/s00300-013-1326-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Postembryonic development of the bone-eating worm Osedax japonicus. Naturwissenschaften 2013; 100:285-9. [PMID: 23443811 DOI: 10.1007/s00114-013-1024-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Bone-eating worms of the genus Osedax exclusively inhabit sunken vertebrate bones on the seafloor. The unique lifestyle and morphology of Osedax spp. have received much scientific attention, but the whole process of their development has not been observed. We herein report the postembryonic development and settlement of Osedax japonicus Fujikura et al. (Zool Sci 23:733-740, 2006). Fertilised eggs were spawned into the mucus of a female, and the larvae swam out from the mucus at the trochophore stage. Larvae survived for 10 days under laboratory conditions. The larvae settled on bones, elongated their bodies and crawled around on the bones. Then they secreted mucus to create a tube and the palps started to develop. The palps of O. japonicus arose from the prostomium, whereas the anterior appendages of other siboglinids arose from the peristomium. The recruitment of dwarf males was induced by rearing larvae with adult females. Females started to spawn eggs 6 weeks after settlement.
Collapse
|
31
|
Audzijonyte A, Krylova EM, Sahling H, Vrijenhoek RC. Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments. SYST BIODIVERS 2012. [DOI: 10.1080/14772000.2012.744112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asta Audzijonyte
- a Monterey Bay Aquarium Research Institute , 7700 Sandholdt Road, Moss Landing , CA , 95039 , USA
| | - Elena M. Krylova
- b P.P. Shirshov Institute of Oceanology , Russian Academy of Sciences , Nachimovskyi prospect 36, 117997 , Moscow , Russia
| | - Heiko Sahling
- c MARUM – Center for Marine Environment Sciences and Faculty of Geosciences , University of Bremen , Klagenfurter Str., 28359 , Bremen , Germany
| | - Robert C. Vrijenhoek
- a Monterey Bay Aquarium Research Institute , 7700 Sandholdt Road, Moss Landing , CA , 95039 , USA
| |
Collapse
|
32
|
Yáñez-Rivera B, Carrera-Parra LF. Reestablishment of Notopygos megalops McIntosh, description of N. caribea sp. n. from the Greater Caribbean and barcoding of "amphiamerican" Notopygos species (Annelida, Amphinomidae). Zookeys 2012; 223:69-84. [PMID: 23459182 PMCID: PMC3501236 DOI: 10.3897/zookeys.223.3561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022] Open
Abstract
The species of the genus Notopygos Grube, 1855 are characterized by an ovate body, a prominent caruncle with three lobes, dendritic branchiae, and double dorsal cirri. Twenty-two species belonging to Notopygos have been described, mostly from the Indo-Pacific region. In America, few species are frequently recorded: Notopygos crinita Grube, 1855 from St. Helena Island (Atlantic) and Notopygos ornata Grube and Ørsted in Grube 1857 from Costa Rica (Pacific). Notopygos crinita is a widely distributed species in the Western Atlantic with additional reports in the Mediterranean Sea (as a questionable alien species) and in the Pacific Ocean. However, only the genus features have been considered, consequently some records could be misidentifications. During a revision of materials from collections and the barcode project, 'Mexican Barcode of Life, MEXBOL', we found specimens of Notopygos megalops and an undescribed species from reef zones in the Caribbean; the former had been considered a junior synonym of Notopygos crinita. Herein, Notopygos megalops is reestablished and Notopygos caribeasp. n. is described. A morphological and DNA barcode approach was used to explain the records of Notopygos ornata in the Atlantic and to show the differences with the new species, since both species share features such as complex pigmentation patterns, and circular projections in the median lobe of the caruncle.
Collapse
Affiliation(s)
- Beatriz Yáñez-Rivera
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Joel Montes Camarena s/n, Ap. Postal 811, 82000, Mazatlán, Sinaloa, Mexico
| | - Luis Fernando Carrera-Parra
- El Colegio de la Frontera Sur, Unidad Chetumal, Depto. Ecología Acuática, Av. Centenario km 5.5, 77014, Chetumal, Quintana Roo, Mexico
| |
Collapse
|
33
|
Salathé RM, Vrijenhoek RC. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae). BMC Evol Biol 2012; 12:189. [PMID: 23006795 PMCID: PMC3551747 DOI: 10.1186/1471-2148-12-189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. RESULTS Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. CONCLUSIONS Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals.
Collapse
Affiliation(s)
- Rahel M Salathé
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | | |
Collapse
|
34
|
Huusgaard RS, Vismann B, Kühl M, Macnaugton M, Colmander V, Rouse GW, Glover AG, Dahlgren T, Worsaae K. The potent respiratory system of Osedax mucofloris (Siboglinidae, Annelida)--a prerequisite for the origin of bone-eating Osedax? PLoS One 2012; 7:e35975. [PMID: 22558289 PMCID: PMC3338503 DOI: 10.1371/journal.pone.0035975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts.
Collapse
Affiliation(s)
- Randi S. Huusgaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Bent Vismann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, Department of Environmental Science, University of Technology Sydney, Sydney, Australia
| | - Martin Macnaugton
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Veronica Colmander
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States of America
| | - Adrian G. Glover
- Zoology Department, The Natural History Museum, London, United Kingdom
| | | | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- * E-mail:
| |
Collapse
|
35
|
Verna C, Ramette A, Wiklund H, Dahlgren TG, Glover AG, Gaill F, Dubilier N. High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 2011; 12:2355-70. [PMID: 21966925 DOI: 10.1111/j.1462-2920.2010.02299.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osedax worms are whale-fall specialists that infiltrate whale bones with their root tissues. These are filled with endosymbiotic bacteria hypothesized to provide their hosts with nutrition by extracting organic compounds from the whale bones. We investigated the diversity and distribution of symbiotic bacteria in Osedax mucofloris from shallow-water whale-falls in the North Atlantic using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH). We observed a higher diversity of endosymbionts than previously described from other Osedax species. Endosymbiont sequences fell into eight phylogenetically distinct clusters (with 91.4-98.9% similarity between clusters), and considerable microdiversity within clusters (99.5-99.7% similarity) was observed. Statistical tests revealed a highly significant effect of the host individual on endosymbiont diversity and distribution, with 68% of the variability between clusters and 40% of the variability within clusters explained by this effect. FISH analyses showed that most host individuals were dominated by endosymbionts from a single cluster, with endosymbionts from less abundant clusters generally confined to peripheral root tissues. The observed diversity and distribution patterns indicate that the endosymbionts are transmitted horizontally from the environment with repeated infection events occurring as the host root tissues grow into the whale bones.
Collapse
Affiliation(s)
- Caroline Verna
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Higgs ND, Glover AG, Dahlgren TG, Little CTS. Bone-boring worms: characterizing the morphology, rate, and method of bioerosion by Osedax mucofloris (Annelida, Siboglinidae). THE BIOLOGICAL BULLETIN 2011; 221:307-316. [PMID: 22186919 DOI: 10.1086/bblv221n3p307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Osedax worms possess unique "root" tissues that they use to bore into bones on the seafloor, but details of the boring pattern and processes are poorly understood. Here we use X-ray micro-computed tomography to investigate the borings of Osedax mucofloris in bones of the minke whale (Balaenoptera acutorostrata), quantitatively detailing their morphological characteristics for the first time. Comparative thin-sections of the borings reveal how the bone is eroded at the sub-millimeter level. On the basis of these results we hypothesize a model of boring that is dependent on the density and microstructure of the bone. We also present evidence of acidic mucopolysaccharides in the mucus of the root tissue, and hypothesize that this plays an important role in the boring mechanism. We discuss the utility of these new data in evaluating Osedax trace fossils and their relevance for O. mucofloris ecology. Measured rates of bone erosion (6% per year) and evidence of enhanced sulfide release from the borings indicate that Osedax worms are important habitat modifiers in whale-fall communities.
Collapse
|
37
|
Rouse GW, Goffredi SK, Johnson SB, Vrijenhoek RC. Not whale-fall specialists, Osedax worms also consume fishbones. Biol Lett 2011; 7:736-9. [PMID: 21490008 DOI: 10.1098/rsbl.2011.0202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine annelid worms of the genus Osedax exploit sunken vertebrate bones for food. To date, the named species occur on whale or other mammalian bones, and it is argued that Osedax is a whale-fall specialist. To assess whether extant Osedax species could obtain nutrition from non-mammalian resources, we deployed teleost bones and calcified shark cartilage at approximately 1000 m depth for five months. Although the evidence from shark cartilage was inconclusive, the teleost bones hosted three species of Osedax, each of which also lives off whalebones. This suggests that rather than being a whale-fall specialist, Osedax has exploited and continues to exploit a variety of food sources. The ability of Osedax to colonize and to grow on fishbone lends credibility to a hypothesis that it might have split from its siboglinid relatives to assume the bone-eating lifestyle during the Cretaceous, well before the origin of marine mammals.
Collapse
Affiliation(s)
- Greg W Rouse
- Scripps Institution of Oceanography, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
38
|
Katz S, Klepal W, Bright M. The Osedax trophosome: organization and ultrastructure. THE BIOLOGICAL BULLETIN 2011; 220:128-139. [PMID: 21551449 DOI: 10.1086/bblv220n2p128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The polychaete family Siboglinidae, which is currently construed as comprising the Frenulata, Monilifera (composed of Sclerolinum), Vestimentifera, and Osedax, has become known for its specialized symbiont-housing organ called the trophosome. This organ replaced the digestive system of the worms and is located in the elongated trunk region in Frenulata, Sclerolinum, and Vestimentifera. Currently two types of trophosomes have been described: in the taxa Frenulata and Sclerolinum the bacteriocytes originate from endoderm, and in Vestimentifera they originate from mesoderm. In Osedax, a trophosome was described as lacking (Rouse et al., 2004), but bacteriocytes are located in Osedax's characteristic root tissue. Here, we argue for a consistent name for the symbiont-housing tissue, namely trophosome, as in other siboglinids. In this study we provide morphological evidence that in Osedax the bacteriocytes are derived from somatic mesoderm. We show that the trophosome in Osedax is an apolar tissue composed of bacteriocytes and nonsymbiotic cells. As in vestimentiferans, a specific cell cycle was identified; however, in this case it is directed from the posterior to the anterior end of the worms instead of from the center toward the periphery. Comparison of all siboglinid trophosomes and re-evaluation of their body regions allows us to discuss whether the trophosomes are homologous and to hypothesize about the organization of the last common ancestor of Siboglinidae.
Collapse
Affiliation(s)
- Sigrid Katz
- Department of Marine Biology, Faculty of Life Sciences, University of Vienna, Austria
| | | | | |
Collapse
|
39
|
Hilário A, Capa M, Dahlgren TG, Halanych KM, Little CTS, Thornhill DJ, Verna C, Glover AG. New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS One 2011; 6:e16309. [PMID: 21339826 PMCID: PMC3038861 DOI: 10.1371/journal.pone.0016309] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ana Hilário
- Centro de Estudos do Ambiente e do Mar and Departamento de Biologia, University of Aveiro, Aveiro, Portugal
| | | | | | - Kenneth M. Halanych
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | | | - Daniel J. Thornhill
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Caroline Verna
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Adrian G. Glover
- Zoology Department, The Natural History Museum, London, United Kingdom
| |
Collapse
|
40
|
Kiel S, Kahl WA, Goedert JL. Osedax borings in fossil marine bird bones. Naturwissenschaften 2010; 98:51-5. [PMID: 21103978 PMCID: PMC3018246 DOI: 10.1007/s00114-010-0740-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 11/26/2022]
Abstract
The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth’s history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.
Collapse
Affiliation(s)
- Steffen Kiel
- Geowissenschaftliches Zentrum der Universität Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany.
| | | | | |
Collapse
|
41
|
Capa M, Bybee DR, Bybee SM. Establishing species and species boundaries in Sabellastarte Krøyer, 1856 (Annelida: Sabellidae): an integrative approach. ORG DIVERS EVOL 2010. [DOI: 10.1007/s13127-010-0033-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Johnson SB, Warén A, Lee RW, Kano Y, Kaim A, Davis A, Strong EE, Vrijenhoek RC. Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habits. THE BIOLOGICAL BULLETIN 2010; 219:166-177. [PMID: 20972261 DOI: 10.1086/bblv219n2p166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Rubyspira, a new genus of deep-sea snails (Gastropoda: Abyssochrysoidea) with two living species, derives its nutrition from decomposing whalebones. Molecular phylogenetic and morphological evidence places the new genus in an exclusively deep-sea assemblage that includes several close relatives previously known as fossils associated with Cretaceous cold seeps, plesiosaur bones, and Eocene whalebones. The ability to exploit a variety of marine reducing environments may have contributed to the evolutionary longevity of this gastropod lineage.
Collapse
Affiliation(s)
- S B Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Katz S, Klepal W, Bright M. The skin of Osedax (Siboglinidae, Annelida): an ultrastructural investigation of its epidermis. J Morphol 2010; 271:1272-80. [PMID: 20672365 DOI: 10.1002/jmor.10873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The symbiotic polychaetes of the genus Osedax living on the bones of whale carcasses have become known as bone-eating worms. It is believed that whale bones are the source of nutrition for those gutless worms and that fatty acids are produced by their symbionts and transferred to the host. However, the symbionts are of the heterotrophic group Oceanospirillales and as such are not able to synthesize organic carbon de novo. Also, they are not housed in close contact to the bone material. We studied the ultrastructure of the integument overlying the symbiont housing trophosome in the ovisac region and the roots region and of the symbiont-free trunk region of Osedax to investigate the host's possible contribution in feeding for the whole symbiosis. The epidermis differs conspicuously between the three regions investigated and clearly points to being correlated with different functions carried out by those regions. The ultrastructure of the integument of the root region changed towards the ovisac region and corresponds with the change of the ultrastructure observed in the Osedax trophosome. We suggest that the epidermis in the root region is tightly linked to bone degradation and nutrient uptake. The trunk region possess two types of unicellular gland cells, at least one of which seems to be involved in secretion of the gelatinous tube of adult Osedax females.
Collapse
Affiliation(s)
- Sigrid Katz
- Department of Marine Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
44
|
Fossil traces of the bone-eating worm Osedax in early Oligocene whale bones. Proc Natl Acad Sci U S A 2010; 107:8656-9. [PMID: 20424110 DOI: 10.1073/pnas.1002014107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osedax is a recently discovered group of siboglinid annelids that consume bones on the seafloor and whose evolutionary origins have been linked with Cretaceous marine reptiles or to the post-Cretaceous rise of whales. Here we present whale bones from early Oligocene bathyal sediments exposed in Washington State, which show traces similar to those made by Osedax today. The geologic age of these trace fossils ( approximately 30 million years) coincides with the first major radiation of whales, consistent with the hypothesis of an evolutionary link between Osedax and its main food source, although older fossils should certainly be studied. Osedax has been destroying bones for most of the evolutionary history of whales and the possible significance of this "Osedax effect" in relation to the quality and quantity of their fossils is only now recognized.
Collapse
|
45
|
Biodiversity: Weird worms. Nature 2009. [DOI: 10.1038/462254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|