1
|
Ji L, Cui P, Zhou S, Qiu L, Huang H, Wang C, Wang J. Advances of Amifostine in Radiation Protection: Administration and Delivery. Mol Pharm 2023; 20:5383-5395. [PMID: 37747899 DOI: 10.1021/acs.molpharmaceut.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Amifostine (AMF, also known as WR-2721) is the only approved broad-spectrum small-molecule radiation protection agent that can combat hematopoietic damage caused by ionizing radiation and is used as an antitumor adjuvant and cell protector in cancer chemotherapy and radiotherapy. Amifostine is usually injected intravenously before chemotherapy or radiotherapy and has been used in the treatment of head and neck cancer. However, the inconvenient intravenous administration and its toxic side effects such as hypotension have severely limited its further application in clinic. In order to reduce the toxic and side effects, scientists are trying to develop a variety of drug administration methods and are devoted to developing a wide application of amifostine in radiation protection. This paper reviews the research progress of amifostine for radiation protection in recent years, discusses its mechanism of action, clinical application, and other aspects, with focus on summarizing the most widely studied amifostine injection administration and drug delivery systems, and explored the correlation between various administrations and drug efficacies.
Collapse
Affiliation(s)
- Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
2
|
Walker DM, Lazarova TI, Riesinger SW, Poirier MC, Messier T, Cunniff B, Walker VE. WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Front Oncol 2023; 13:1212604. [PMID: 37576902 PMCID: PMC10419174 DOI: 10.3389/fonc.2023.1212604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
The lack of anticancer agents that overcome innate/acquired drug resistance is the single biggest barrier to achieving a durable complete response to cancer therapy. To address this issue, a new drug family was developed for intracellular delivery of the bioactive aminothiol WR1065 by conjugating it to discrete thiol-PEG polymers: 4-star-PEG-S-S-WR1065 (4SP65) delivers four WR1065s/molecule and m-PEG6-S-S-WR1065 (1LP65) delivers one. Infrequently, WR1065 has exhibited anticancer effects when delivered via the FDA-approved cytoprotectant amifostine, which provides one WR1065/molecule extracellularly. The relative anticancer effectiveness of 4SP65, 1LP65, and amifostine was evaluated in a panel of 15 human cancer cell lines derived from seven tissues. Additional experiments assessed the capacity of 4SP65 co-treatments to potentiate the anticancer effectiveness and overcome drug resistance to cisplatin, a chemotherapeutic, or gefitinib, a tyrosine kinase inhibitor (TKI) targeting oncogenic EGFR mutations. The CyQUANT®-NF proliferation assay was used to assess cell viability after 48-h drug treatments, with the National Cancer Institute COMPARE methodology employed to characterize dose-response metrics. In normal human epithelial cells, 4SP65 or 1LP65 enhanced or inhibited cell growth but was not cytotoxic. In cancer cell lines, 4SP65 and 1LP65 induced dose-dependent cytostasis and cytolysis achieving 99% cell death at drug concentrations of 11.2 ± 1.2 µM and 126 ± 15.8 µM, respectively. Amifostine had limited cytostatic effects in 11/14 cancer cell lines and no cytolytic effects. Binary pairs of 4SP65 plus cisplatin or gefitinib increased the efficacy of each partner drug and surmounted resistance to cytolysis by cisplatin and gefitinib in relevant cancer cell lines. 4SP65 and 1LP65 were significantly more effective against TP53-mutant than TP53-wild-type cell lines, consistent with WR1065-mediated reactivation of mutant p53. Thus, 4SP65 and 1LP65 represent a unique prodrug family for innovative applications as broad-spectrum anticancer agents that target p53 and synergize with a chemotherapeutic and an EGFR-TKI to prevent or overcome drug resistance.
Collapse
Affiliation(s)
- Dale M. Walker
- The Burlington HC Research Group, Inc., Jericho, VT, United States
| | | | | | - Miriam C. Poirier
- Carcinogen–DNA Interactions Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terri Messier
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Katsila T, Chasapi SA, Gomez Tamayo JC, Chalikiopoulou C, Siapi E, Moros G, Zoumpoulakis P, Spyroulias GA, Kardamakis D. Three-Dimensional Cell Metabolomics Deciphers the Anti-Angiogenic Properties of the Radioprotectant Amifostine. Cancers (Basel) 2021; 13:cancers13122877. [PMID: 34207535 PMCID: PMC8230228 DOI: 10.3390/cancers13122877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer and inflammation share aberrant angiogenesis as a hallmark, and, thus, anti-angiogenetic strategies remain of key interest. Amifostine, which is already a drug on the market, may be of further benefit to patients also in the context of drug repurposing. To shed light on the anti-angiogenic properties of amifostine during human adult angiogenesis and grasp the early events of angiogenesis, we employed 3D cell untargeted metabolomics by liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy in the presence of vascular endothelial growth factor-A or deferoxamine (pro-angiogenic factors that exhibit distinct angiogenesis induction profiles). Our findings reveal mechanism-specific inhibitory profiles of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients. Abstract Aberrant angiogenesis is a hallmark for cancer and inflammation, a key notion in drug repurposing efforts. To delineate the anti-angiogenic properties of amifostine in a human adult angiogenesis model via 3D cell metabolomics and upon a stimulant-specific manner, a 3D cellular angiogenesis assay that recapitulates cell physiology and drug action was coupled to untargeted metabolomics by liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. The early events of angiogenesis upon its most prominent stimulants (vascular endothelial growth factor-A or deferoxamine) were addressed by cell sprouting measurements. Data analyses consisted of a series of supervised and unsupervised methods as well as univariate and multivariate approaches to shed light on mechanism-specific inhibitory profiles. The 3D untargeted cell metabolomes were found to grasp the early events of angiogenesis. Evident of an initial and sharp response, the metabolites identified primarily span amino acids, sphingolipids, and nucleotides. Profiles were pathway or stimulant specific. The amifostine inhibition profile was rather similar to that of sunitinib, yet distinct, considering that the latter is a kinase inhibitor. Amifostine inhibited both. The 3D cell metabolomics shed light on the anti-angiogenic effects of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients.
Collapse
Affiliation(s)
- Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece;
- Correspondence: ; Tel.: +30-210-727-3752
| | - Styliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (G.A.S.)
| | | | - Constantina Chalikiopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Giorgos Moros
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.C.); (E.S.); (G.M.); (P.Z.)
| | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece;
| |
Collapse
|
4
|
Song S, Mai Y, Shi H, Liao B, Wang F. Design, Synthesis, Biological Evaluation and Inhibition Mechanism of 3-/4-Alkoxy Phenylethylidenethiosemicarbazides as New, Potent and Safe Tyrosinase Inhibitors. Chem Pharm Bull (Tokyo) 2020; 68:369-379. [DOI: 10.1248/cpb.c19-00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Senchuan Song
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Yuliang Mai
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Huahong Shi
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Bing Liao
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Fei Wang
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| |
Collapse
|
5
|
Rohilla S, Dureja H, Chawla V. Cytoprotective Agents to Avoid Chemotherapy Induced Sideeffects on Normal Cells: A Review. Curr Cancer Drug Targets 2019; 19:765-781. [PMID: 30914026 DOI: 10.2174/1568009619666190326120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/16/2023]
Abstract
Anticancer agents play a vital role in the cure of patients suffering from malignancy. Though, the chemotherapeutic agents are associated with various adverse effects which produce significant toxic symptoms in the patients. But this therapy affects both the malignant and normal cells and leads to constricted therapeutic index of antimalignant drugs which adversely impacts the quality of patients’ life. Due to these adversities, sufficient dose of drug is not delivered to patients leading to delay in treatment or improper treatment. Chemoprotective agents have been developed either to minimize or to mitigate the toxicity allied with chemotherapeutic agents. Without any concession in the therapeutic efficacy of anticancer drugs, they provide organ specific guard to normal tissues.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmaceutics, Hindu College of Pharmacy, Sonepat- 131001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Vinay Chawla
- Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot-151203, India
| |
Collapse
|
6
|
Banerjee S, Selim M, Saha A, Mukherjea KK. Radiation induced DNA damage and its protection by a gadolinium(III) complex: Spectroscopic, molecular docking and gel electrophoretic studies. Int J Biol Macromol 2019; 127:520-528. [PMID: 30633933 DOI: 10.1016/j.ijbiomac.2019.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
The current work describes the efficacy of an artificially synthesized Gd(III) complex as a potential radioprotecting molecule. The work involves utilization of spectroscopic and electrophoretic techniques to investigate the radioprotecting behavior of the Gd(III) complex. Spectroscopic studies revealed that the complex interacted strongly with DNA while molecular docking studies suggested groove binding through H-bond formation and other non-covalent interactions. The Gd(III) complex was found to impart 94% and 91% protection to irradiatively damaged DNA at radiation doses of 20 and 25 Gy respectively. The protection is believed to occur via radical scavenging mechanism and the antioxidant behavior of the complex suggested a strong radical scavenging property.
Collapse
Affiliation(s)
| | - Md Selim
- Department of Chemistry, Vivekananda College, Thakurpukur, Kolkata 700063, India
| | - Abhijit Saha
- UGC-DAE-CSR, Kolkata Centre, Bidhannagar, Kolkata 700098, India
| | - Kalyan K Mukherjea
- Department of Chemistry, Jadavpur University, Kolkata 700032, India; Department of Chemistry, Aliah University, Newtown, Kolkata 700160, India.
| |
Collapse
|
7
|
Dynamic Rearrangement of Cell States Detected by Systematic Screening of Sequential Anticancer Treatments. Cell Rep 2017; 20:2784-2791. [DOI: 10.1016/j.celrep.2017.08.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
|
8
|
Pandit JJ, Allen C, Little E, Formenti F, Harris AL, Robbins PA. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans. Pharmaceuticals (Basel) 2015; 8:186-95. [PMID: 25894815 PMCID: PMC4491655 DOI: 10.3390/ph8020186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 11/26/2022] Open
Abstract
Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.
Collapse
Affiliation(s)
- Jaideep J Pandit
- Nuffield Department of Anaesthetics, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Caroline Allen
- Nuffield Department of Anaesthetics, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Evelyn Little
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Federico Formenti
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Adrian L Harris
- Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DU, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
9
|
Simic MR, Stankovic M, Mandic BM, Tesevic VV, Savic VM. Synthesis of novel tetrahydrobenzazepine derivatives and their cytoprotective effect on human lymphocytes. Arch Pharm (Weinheim) 2015; 348:100-12. [PMID: 25664628 DOI: 10.1002/ardp.201400350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 11/08/2022]
Abstract
Cytoprotective compounds such as amifostine play an important role in chemo- and radiotherapy due to their ability to reduce the side effects of these treatments. Our work was initiated with the intention to design, synthesise and test a new class of heterocyclic compounds that would have an antioxidative profile with the potential to be further developed as cytoprotective agents. The design was based on the privileged tetrahydrobenzazepine scaffold found in many natural products with a wide range of biological properties. This structure was further functionalised with moieties known to possess antioxidative features such as tertiary amine and styrene double bond. A series of eight tetrahydrobenzazepine derivatives of isoquinoline, 3,4-dihydro-β-carboline and pyridine were synthesised employing the Heck reaction as a key transformation. Some of the prepared compounds were tested for their in vitro effects on chromosome aberrations in peripheral human lymphocytes using the cytochalasin-B blocked micronucleus (MN) assay. Three tetrahydrobenzoazepine derivatives showed significant cytoprotective properties, comparable or even better to those of the radioprotective agent amifostine.
Collapse
Affiliation(s)
- Milena R Simic
- Faculty of Pharmacy, Department of Organic Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
10
|
Etebari M, Jafarian-Dehkordi A, Lame V. Evaluation of protective effect of amifostine on dacarbazine induced genotoxicity. Res Pharm Sci 2015; 10:68-74. [PMID: 26430459 PMCID: PMC4578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Anticancer therapy with alkylating agents has been used for many years. Dacarbazine (DTIC) as an alkylating agent is used alone or in combination with other chemotherapy drugs. In order to inhibit the formation of secondary cancers resulting from chemotherapy with DTIC, preventional strategies is necessary. The present study was undertaken to evaluate the genoprotective effect of amifostine on the genotoxic effects of DTIC in cell culture condition. To determine the optimum genotoxic concentration of DTIC, HepG2 cells were incubated with various DTIC concentrations including 5, 10 and 20 μg/ml for 2 h and the genotoxic effects were evaluated by the comet assay. The result of this part of the study showed that incubation of HepG2 cells with DTIC at 5 μg/ml was sufficient to produce genotoxic effect. In order to determine the protective effects of amifostine on genotoxicity induced by DTIC, HepG2 cells were incubated with different concentrations of amifostine (2, 3 and 5 mg/ml) for 1 h which was followed by incubation with DTIC at 5 μg/ml for 2 h. One hour incubation of cells with different concentrations of amifostine before incubation with DITC indicated that at least 5 mg/ml concentration of amifostine can prevent genotoxic effects induced by DTIC on HepG2 cells under described condition. In conclusion amifostine could prevent DNA damage induced by DTIC on HepG2 cells.
Collapse
Affiliation(s)
- M. Etebari
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding author: M. Etebari Tel: 0098 31 37922634, Fax: 0098 31 36680011
| | - A. Jafarian-Dehkordi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - V. Lame
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
11
|
Lemmo W. Potential interactions of prescription and over‐the‐counter medications having antioxidant capabilities with radiation and chemotherapy. Int J Cancer 2014; 137:2525-33. [DOI: 10.1002/ijc.29208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Walter Lemmo
- LEMMO Integrated Cancer Care Inc.Vancouver Canada
| |
Collapse
|
12
|
Amifostine protects vascularity and improves union in a model of irradiated mandibular fracture healing. Plast Reconstr Surg 2014; 132:1542-1549. [PMID: 24281582 DOI: 10.1097/prs.0b013e3182a80766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pathologic fractures of the mandible can be devastating to cancer patients and are due in large part to the pernicious effects of irradiation on bone vascularity. The authors' aim was to ascertain whether amifostine, a radioprotective drug, will preserve vascularity and improve bone healing in a murine model of irradiated mandibular fracture repair. METHODS Rats were randomized into three groups: nonirradiated fracture (n = 9), irradiation/fracture (n = 5), and amifostine/irradiation/fracture (n = 7). Animals in the irradiation groups underwent a human equivalent dose of radiation directed at the left hemimandible. Animals treated in the amifostine group received amifostine concomitantly with radiation. All animals underwent unilateral left mandibular osteotomy with external fixation set to a 2.1-mm fracture gap. Fracture healing was allowed for 40 days before perfusion with Microfil. Vascular radiomorphometrics were quantified with micro-computed tomography. RESULTS When compared with the irradiated/fractured group, amifostine treatment more than doubled the rate of fracture unions to 57 percent. Amifostine treatment also resulted in an increase in vessel number (123 percent; p < 0.05) and a corresponding decrease in vessel separation (55.5 percent; p < 0.05) there was no statistical difference in the vascularity metrics between the amifostine/irradiation/fracture group and the nonirradiated/fracture group. CONCLUSIONS Amifostine prophylaxis during radiation maintains mandibular vascularity at levels observed in nonirradiated fracture specimens, corresponding to improved unions. These results set the stage for clinical exploration of this targeted therapy alone and in combination with other treatments, to mitigate the effects of irradiation on bone healing and fracture repair.
Collapse
|
13
|
Zhu K, Jiao H, Li S, Cao H, Galson DL, Zhao Z, Zhao X, Lai Y, Fan J, Im HJ, Chen D, Xiao G. ATF4 promotes bone angiogenesis by increasing VEGF expression and release in the bone environment. J Bone Miner Res 2013; 28:1870-1884. [PMID: 23649506 PMCID: PMC4394202 DOI: 10.1002/jbmr.1958] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 11/11/2022]
Abstract
Activating transcription factor 4 (ATF4) is a critical transcription factor for bone remodeling; however, its role in bone angiogenesis has not been established. Here we show that ablation of the Atf4 gene expression in mice severely impaired skeletal vasculature and reduced microvascular density of the bone associated with dramatically decreased expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in osteoblasts located on bone surfaces. Results from in vivo studies revealed that hypoxia/reoxygenation induction of HIF-1α and VEGF expression leading to bone angiogenesis, a key adaptive response to hypoxic conditions, was severely compromised in mice lacking the Atf4 gene. Loss of ATF4 completely prevented endothelial sprouting from embryonic metatarsals, which was restored by addition of recombinant human VEGF protein. In vitro studies revealed that ATF4 promotion of HIF-1α and VEGF expression in osteoblasts was highly dependent upon the presence of hypoxia. ATF4 interacted with HIF-1α in hypoxic osteoblasts, and loss of ATF4 increased HIF-1α ubiquitination and reduced its protein stability without affecting HIF-1α mRNA stability and protein translation. Loss of ATF4 increased the binding of HIF-1α to prolyl hydroxylases, the enzymes that hydroxylate HIF-1a protein and promote its proteasomal degradation via the pVHL pathway. Furthermore, parathyroid hormone-related protein (PTHrP) and receptor activator of NF-κB ligand (RANKL), both well-known activators of osteoclasts, increased release of VEGF from the bone matrix and promoted angiogenesis through the protein kinase C- and ATF4-dependent activation of osteoclast differentiation and bone resorption. Thus, ATF4 is a new key regulator of the HIF/VEGF axis in osteoblasts in response to hypoxia and of VEGF release from bone matrix, two critical steps for bone angiogenesis.
Collapse
Affiliation(s)
- Ke Zhu
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Hongli Jiao
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Shuai Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huiling Cao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240
| | - Deborah L. Galson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xi Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yumei Lai
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15240
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
14
|
Induction of cellular antioxidant defense by amifostine improves ventilator-induced lung injury. Crit Care Med 2012; 39:2711-21. [PMID: 21765345 DOI: 10.1097/ccm.0b013e3182284a5f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To test the hypothesis that preconditioning animals with amifostine improves ventilator-induced lung injury via induction of antioxidant defense enzymes. Mechanical ventilation at high tidal volume induces reactive oxygen species production and oxidative stress in the lung, which plays a major role in the pathogenesis of ventilator-induced lung injury. Amifostine attenuates oxidative stress and improves lipopolysaccharide-induced lung injury by acting as a direct scavenger of reactive oxygen and nitrogen species. This study tested effects of chronic amifostine administration on parameters of oxidative stress, lung barrier function, and inflammation associated with ventilator-induced lung injury. DESIGN Randomized and controlled laboratory investigation in mice and cell culture. SETTING University laboratory. SUBJECTS C57BL/6J mice. INTERVENTIONS Mice received once-daily dosing with amifostine (10-100 mg/kg, intraperitoneal injection) 3 days consecutively before high tidal volume ventilation (30 mL/kg, 4 hrs) at day 4. Pulmonary endothelial cell cultures were exposed to pathologic cyclic stretching (18% equibiaxial stretch) and thrombin in a previously verified two-hit model of in vitro ventilator-induced lung injury. MEASUREMENTS AND MAIN RESULTS Three-day amifostine preconditioning before high tidal volume attenuated high tidal volume-induced protein and cell accumulation in the alveolar space judged by bronchoalveolar lavage fluid analysis, decreased Evans Blue dye extravasation into the lung parenchyma, decreased biochemical parameters of high tidal volume-induced tissue oxidative stress, and inhibited high tidal volume-induced activation of redox-sensitive stress kinases and nuclear factor-kappa B inflammatory cascade. These protective effects of amifostine were associated with increased superoxide dismutase 2 expression and increased superoxide dismutase and catalase enzymatic activities in the animal and endothelial cell culture models of ventilator-induced lung injury. CONCLUSIONS Amifostine preconditioning activates lung tissue antioxidant cell defense mechanisms and may be a promising strategy for alleviation of ventilator-induced lung injury in critically ill patients subjected to extended mechanical ventilation.
Collapse
|
15
|
Kıray S, Onalan G, Karabay G, Zeyneloglu H, Kuscu E. Antioxidant prophylaxis for cellular injury in ovarian surface epithelium resulting from CO₂ pneumoperitoneum in a laparoscopic rat model. Arch Gynecol Obstet 2011; 284:765-72. [PMID: 21617921 DOI: 10.1007/s00404-011-1933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/05/2011] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Selective cytoprotective functions of vitamin E, N-acetyl-L: -cysteine, and amifostine have been used as a preventer of ischemia injury by expelling the free oxygen radicals leading to stabilization of the cellular membranes. The purpose of this experimental study was to investigate the oxidative stress related to cellular injury in ovarian surface epithelium and the effect of prophylaxis with an anti-oxidant using laparoscopic rat model. DESIGN Laparoscopic rat model. MATERIALS AND METHODS Randomly allocated 40 Wistar Albino female rats have been used for the pneumoperitoneum model which was constituted to fix the intraabdominal pressure on 5 mmHg for 60 min. The antioxidants, vitamin E and NAC were given to rats 3 days before the operation and were applied for 30 days; amifostine was applied 30 min before the operation until after for 7 days. After abdominal desufflation, over biopsies were made on the 13th min, 24th h, and 7th and 30th days. By using of transmission electron microscopy, the damage on cells and organels were assessed and graded. RESULTS In ovarian surface epithelium, the apical surface specializations were affected in all groups except Vit E group:The microvilli were irregular and coarse and had disappeared in some places. Some cells were separated from the epithelium. In addition, mitochondria degeneration was observed in all group except Vit E. CONCLUSIONS In the early period of laparoscopy, reversible cellular damage occurs and this damage can be prevented by vitamin E.
Collapse
Affiliation(s)
- Sule Kıray
- Department of Obstetrics and Gynecology, Baskent University School of Medicine, Kubilay Sok no: 36 Maltepe, 06570 Ankara, Turkey
| | | | | | | | | |
Collapse
|
16
|
Grek CL, Townsend DM, Tew KD. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. Pharmacol Ther 2010; 129:172-84. [PMID: 20951732 DOI: 10.1016/j.pharmthera.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|