1
|
Jia FF, Brew BJ. Neuropathogenesis of acute HIV: mechanisms, biomarkers, and therapeutic approaches. Curr Opin HIV AIDS 2025:01222929-990000000-00144. [PMID: 40110851 DOI: 10.1097/coh.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The neuropathogenesis of acute HIV leads to rapid central nervous system (CNS) involvement, characterized by early viral entry, immune activation, and the formation of viral reservoirs. Despite effective antiretroviral therapy (ART), these reservoirs persist, drive neuroinflammation and injury and lead to HIV-associated neurodegenerative disorders (HAND). This review provides an updated synthesis of the mechanisms in acute HIV neuropathogenesis, biomarkers of CNS injury and emerging therapeutic approaches. A deeper understanding of these mechanisms is critical for addressing persistent HAND in ART-treated individuals. RECENT FINDINGS Growing evidence now supports the principal role of infected CD4+ T cells in mediating HIV neuroinvasion alongside monocytes, resulting in seeding in perivascular macrophages, pericytes, and adjacent microglia and astrocytes. These reservoirs contribute to ongoing transcriptional activity and viral persistence despite antiretroviral therapy. Neuroinflammation, driven by activated microglia, astrocytes, inflammasomes, and neurotoxic viral proteins, disrupts neuronal homeostasis. Emerging therapies, including latency-reversing agents and transcription inhibitors, show promise in reducing neuroinflammation and reservoir activity. SUMMARY Understanding the mechanisms of HIV neuropathogenesis and reservoir persistence has significant implications for developing targeted therapies to mitigate HAND. Strategies to eliminate CNS reservoirs and reduce neuroinflammation should be prioritized to improve long-term cognitive outcomes in people with HIV.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Department of Neurology, St Vincent's Hospital, Darlinghurst
- Department of Neurology, Royal North Shore Hospital, St Leonards
| | - Bruce J Brew
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Departments of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent's Hospital, University of New South Wales and University of Notre Dame, Darlinghurst, Sydney NSW, Australia
| |
Collapse
|
2
|
Ulfhammer G, Yilmaz A, Mellgren Å, Tyrberg E, Sörstedt E, Hagberg L, Gostner J, Fuchs D, Zetterberg H, Nilsson S, Nyström K, Edén A, Gisslén M. Asymptomatic Cerebrospinal Fluid HIV-1 Escape: Incidence and Consequences. J Infect Dis 2025; 231:e429-e437. [PMID: 39531854 PMCID: PMC11841626 DOI: 10.1093/infdis/jiae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The incidence and clinical relevance of asymptomatic cerebrospinal fluid escape (CSFE) during antiretroviral therapy (ART) is uncertain. We examined the impact and incidence of asymptomatic CSFE in a Swedish HIV cohort. METHODS Neuroasymptomatic people with HIV (PWH) who have been on ART for at least 6 months with suppressed plasma viral load were followed longitudinally. CSFE was defined as either increased CSF HIV-1 RNA with concurrent plasma suppression or CSF HIV-1 RNA exceeding that in plasma when both were quantifiable. Paired CSF and plasma were analyzed for HIV-1 RNA, neopterin, neurofilament light protein (NfL), white blood cell (WBC) count, and albumin ratio. RESULTS Asymptomatic CSFE (cutoff 50 copies/mL) was found in 4 of 173 PWH (2%) and 5 of 449 samples (1%). The corresponding proportions were 8% of PWH and 4% for samples using a 20 copies/mL cutoff for CSF HIV-1 RNA. CSFE samples (cutoff 20 copies/mL) had a 25% higher geometric mean of CSF neopterin (P = .01) and 8% higher albumin ratio (P = .04) compared to samples without CSFE. No differences were observed in CSF NfL levels (P = .8). The odds ratio for increased CSF WBC (≥ 3 cells/μL) in samples with CSFE was 3.9 (P = .004), compared to samples without elevated CSF viral load. CONCLUSIONS Asymptomatic CSFE was identified in only 4 (2%) PWH, with no cases of continuous CSFE observed. Increased CSF HIV-1 RNA was associated with biomarkers of CNS immune activation and blood-brain barrier impairment, but not with biomarkers of neuronal injury.
Collapse
Affiliation(s)
- Gustaf Ulfhammer
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erika Tyrberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Sörstedt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Gostner
- Institute of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
3
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph SB, Swanstrom R, Price RW, Gisslén M. Changes in cerebrospinal fluid proteins across the spectrum of untreated and treated chronic HIV-1 infection. PLoS Pathog 2024; 20:e1012470. [PMID: 39316609 PMCID: PMC11469498 DOI: 10.1371/journal.ppat.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/11/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers contributed by uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of CSF proteins in HIV-associated dementia (HAD) and neurosymptomatic CSF escape (NSE). These reveal a complex but coherent picture of CSF protein changes with highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of systemic HIV-1 progression that included two common patterns, designated as lymphoid and myeloid patterns, related to principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will supplement this report to provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, advancing the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Paola Cinque
- Unit of Neurovirology, San Raffaele Hospital, Milan, Italy
- Unit of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Ameet Dravid
- HIV Medicine and Infectious Diseases, Poona Hospital and Research Centre, Pune, India
- Noble Hospital and Research Centre, Pune, India
- Ruby Hall Clinic, Pune, India
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dietmar Fuchs
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Johanna Gostner
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Kincer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah Beth Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
4
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph S, Swanstrom R, Price RW, Gisslén M. Changes in Cerebrospinal Fluid Proteins across the Spectrum of Untreated and Treated Chronic HIV-1 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592451. [PMID: 38746436 PMCID: PMC11092784 DOI: 10.1101/2024.05.03.592451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
|
5
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
6
|
Hagberg L, Gisslén M. Cohort profile: a longitudinal study of HIV infection in the central nervous system with focus on cerebrospinal fluid - the Gothenburg HIV CSF Study Cohort. BMJ Open 2023; 13:e070693. [PMID: 37197824 PMCID: PMC10193099 DOI: 10.1136/bmjopen-2022-070693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE In order to enable long-term follow-up of the natural course of HIV infection in the central nervous system, a longitudinal cohort study with repeated cerebrospinal fluid (CSF) analyses at intervals over time was initiated in 1985. When antiretrovirals against HIV were introduced in the late 1980s, short-term and long-term effects of various antiretroviral treatment (ART) regimens were added to the study. PARTICIPANTS All adult people living with HIV (PLWH) who were diagnosed at or referred to the Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden were asked to participate in the Gothenburg HIV CSF Study Cohort. PLWH with neurological symptoms or other clinical symptoms of HIV, as well as those with no symptoms of HIV infection, were included. Most participants were asymptomatic, which distinguishes this cohort from most other international HIV CSF studies. In addition, HIV-negative controls were recruited. These included people on HIV pre-exposure prophylaxis who served as lifestyle-matched controls to HIV-infected men who have sex with men. Since lumbar puncture (LP) is an invasive procedure, some PLHW only consented to participate in one examination. Furthermore, at the beginning of the study, several participants were lost to follow-up having died from AIDS. Of 662 PLWH where an initial LP was done, 415 agreed to continue with follow-up. Among the 415, 56 only gave permission to be followed with LP for less than 1 year, mainly to analyse the short-term effect of ART. The remaining 359 PLWH were followed up with repeated LP for periods ranging from >1 to 30 years. This group was defined as the 'longitudinal cohort'. So far, on 7 April 2022, 2650 LP and samplings of paired CSF/blood had been performed, providing a unique biobank. FINDINGS TO DATE A general finding during the 37-year study period was that HIV infection in the central nervous system, as mirrored by CSF findings, appears early in the infectious course of the disease and progresses slowly in the vast majority of untreated PLWH. Combination ART has been highly effective in reducing CSF viral counts, inflammation and markers of neural damage. Minor CSF signs of long-term sequels or residual inflammatory activity and CSF escape (viral CSF blips) have been observed during follow-up. The future course of these changes and their clinical impact require further studies. FUTURE PLANS PLWH today have a life expectancy close to that of non-infected people. Therefore, our cohort provides a unique opportunity to study the long-term effects of HIV infection in the central nervous system and the impact of ART and is an ongoing study.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Carlander C, Brännström J, Månsson F, Elvstam O, Albinsson P, Blom S, Mattsson L, Hovmöller S, Norrgren H, Mellgren Å, Svedhem V, Gisslén M, Sönnerborg A. Cohort profile: InfCareHIV, a prospective registry-based cohort study of people with diagnosed HIV in Sweden. BMJ Open 2023; 13:e069688. [PMID: 36931676 PMCID: PMC10030896 DOI: 10.1136/bmjopen-2022-069688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE The Swedish InfCareHIV cohort was established in 2003 to ensure equal and effective care of people living with HIV (PLHIV) and enable long-term follow-up. InfCareHIV functions equally as a decision support system as a quality registry, ensuring up-to-date data reported in real time. PARTICIPANTS InfCareHIV includes data on >99% of all people with diagnosed HIV in Sweden and up to now 13 029 have been included in the cohort. InfCareHIV includes data on HIV-related biomarkers and antiretroviral therapies (ART) and also on demographics, patient-reported outcome measures and patient-reported experience measures. FINDINGS TO DATE Sweden was in 2015 the first country to reach the UNAIDS (United Nations Programme on HIV/AIDS)/WHO's 90-90-90 goals. Late diagnosis of HIV infection was identified as a key problem in the Swedish HIV-epidemic, and low-level HIV viraemia while on ART associated with all-cause mortality. Increased HIV RNA load in the cerebrospinal fluid (CSF) despite suppression of the plasma viral load was found in 5% of PLHIV, a phenomenon referred to as 'CSF viral escape'. Dolutegravir-based treatment in PLHIV with pre-existing nucleoside reverse transcriptase inhibitor-mutations was non-inferior to protease inhibitor-based regimens. An increase of transmitted drug resistance was observed in the InfCareHIV cohort. Lower efficacy for protease inhibitors was not due to lower adherence to treatment. Incidence of type 2 diabetes and insulin resistance was high in the ageing HIV population. Despite ART, the risk of infection-related cancer as well as lung cancer was increased in PLHIV compared with HIV-negative. PLHIV were less likely successfully treated for cervical precancer and more likely to have human papillomavirus types not included in current HPV vaccines. Self-reported sexual satisfaction in PLHIV is improving and is higher in women than men. FUTURE PLANS InfCareHIV provides a unique base to study and further improve long-term treatment outcomes, comorbidity management and health-related quality of life in people with HIV in Sweden.
Collapse
Affiliation(s)
- Christina Carlander
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Johanna Brännström
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Fredrik Månsson
- Department of Clinical Sciences, Lund University, Infectious Diseases Research Unit, Malmo, Sweden
| | - Olof Elvstam
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Växjö Central Hospital, Växjö, Sweden
| | - Pernilla Albinsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Lena Mattsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sanne Hovmöller
- Department of Infectious Diseases, Sunderby Hospital, Lulea, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University Faculty of Science, Lund, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Veronica Svedhem
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenbrug, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Edén A, Rydberg F, Yilmaz A, Hagberg L, Gostner J, Nilsson S, Fuchs D, Gisslén M. Residual Central Nervous System Immune Activation Is Not Prevented by Antiretroviral Therapy Initiated During Early Chronic HIV Infection. Open Forum Infect Dis 2023; 10:ofad064. [PMID: 36861089 PMCID: PMC9969734 DOI: 10.1093/ofid/ofad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Background Antiretroviral therapy (ART) initiated during acute infection can potentially impact the central nervous system (CNS) reservoir, but the differential long-term effects of ART initiation during early or late chronic infection are unknown. Methods We included neuroasymptomatic people with human immunodeficiency virus (HIV) with suppressive ART initiated during chronic (>1 year since transmission) HIV with archived cerebrospinal fluid (CSF) and serum samples after 1 and/or ≥3 years of ART from a cohort study. CSF and serum neopterin was measured using a commercial immunoassay (BRAHMS, Germany). Results In total, 185 people with HIV (median, 79 [interquartile range, 55-128] months on ART) were included. A significant inverse correlation was found between CD4+ T-cell count and CSF neopterin only at baseline (r = -0.28, P = .002), but not after 1 (r = -0.026, P = .8) or ≥3 (r -0.063, P = .5) years of ART. No significant differences were seen in CSF or serum neopterin concentrations between different pretreatment CD4+ T-cell strata after 1 or ≥3 (median, 6.6) years of ART. Conclusions In people with HIV initiating ART during chronic infection, occurrence of residual CNS immune activation was not correlated with pretreatment immune status, even when treatment was initiated at high CD4+ T-cell counts, suggesting that the CNS reservoir, once established, is not differentially affected by the timing of ART initiation during chronic infection.
Collapse
Affiliation(s)
- Arvid Edén
- Correspondence: Arvid Edén, MD, PhD, Department of Infectious Diseases, Sahlgrenska University Hospital/Ostra, Journalvagen 10, SE-416 50, Gothenburg, Sweden ()
| | - Frida Rydberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Gostner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
9
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
10
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Anesten B, Zetterberg H, Nilsson S, Brew BJ, Fuchs D, Price RW, Gisslén M, Yilmaz A. Effect of antiretroviral treatment on blood-brain barrier integrity in HIV-1 infection. BMC Neurol 2021; 21:494. [PMID: 34937542 PMCID: PMC8693475 DOI: 10.1186/s12883-021-02527-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background Blood-brain barrier (BBB) injury is prevalent in patients with HIV-associated dementia (HAD) and is a frequent feature of HIV encephalitis. Signs of BBB damage are also sometimes found in neuroasymptomatic HIV-infected individuals without antiretroviral therapy (ART). The aim of this study was to investigate the integrity of the BBB before and after initiation of ART in both neuroasymptomatic HIV infection and in patients with HAD. Methods We determined BBB integrity by measuring cerebrospinal fluid (CSF)/plasma albumin ratios in archived CSF samples prior to and after initiation of ART in longitudinally-followed neuroasymptomatic HIV-1-infected individuals and patients with HAD. We also analyzed HIV RNA in blood and CSF, IgG Index, CSF WBC counts, and CSF concentrations of β2-micoglobulin, neopterin, and neurofilament light chain protein (NfL). Results We included 159 HIV-infected participants; 82 neuroasymptomatic individuals and 77 with HAD. All neuroasymptomatic individuals (82/82), and 10/77 individuals with HAD, were longitudinally followed with a median (interquartile range, IQR) follow-up of 758 (230–1752) days for the neuroasymptomatic individuals, and a median (IQR) follow-up of 241 (50–994) days for the individuals with HAD. Twelve percent (10/82) of the neuroasymptomatic individuals and 80% (8/10) of the longitudinally-followed individuals with HAD had elevated albumin ratios at baseline. At the last follow-up, 9% (7/82) of the neuroasymptomatic individuals and 20% (2/10) of the individuals with HAD had elevated albumin ratios. ART significantly decreased albumin ratios in both neuroasymptomatic individuals and in patients with HAD. Conclusion These findings indicate that ART improves and possibly normalizes BBB integrity in both neuroasymptomatic HIV-infected individuals and in patients with HAD.
Collapse
Affiliation(s)
- Birgitta Anesten
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-415 50, Gothenburg, Sweden. .,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Disease, Hong Kong, China
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Bruce J Brew
- Department of Neurology, St.Vincent's Hospital, Sydney, NSW, Australia.,Department of HIV Medicine and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-415 50, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-415 50, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021; 10:cells10102739. [PMID: 34685718 PMCID: PMC8534645 DOI: 10.3390/cells10102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The sirtuins (SIRTs) are a family of enzymes from the group of NAD+-dependent deacetylases. Through the reaction of splitting the acetyl group of various transcription factors and histones they regulate many processes in the organism. The activity of sirtuins is linked to metabolic control, oxidative stress, inflammation and apoptosis, and they also affect the course of viral infections. For this reason, they may participate in the pathogenesis and development of many diseases, but little is known about their role in the course of human immunodeficiency virus (HIV) infection, which is the subject of this review. In the course of HIV infection, comorbidities such as: neurodegenerative disorders, obesity, insulin resistance and diabetes, lipid disorders and cardiovascular diseases, renal and bone diseases developed more frequently and faster compared to the general population. The role of sirtuins in the development of accompanying diseases in the course of HIV infection may also be interesting. There is still a lack of detailed information on this subject. The role of sirtuins, especially SIRT1, SIRT3, SIRT6, are indicated to be of great importance in the course of HIV infection and the development of the abovementioned comorbidities.
Collapse
|
13
|
De Scheerder MA, Van Hecke C, Zetterberg H, Fuchs D, De Langhe N, Rutsaert S, Vrancken B, Trypsteen W, Noppe Y, Van Der Gucht B, Pelgrom J, Van Wanzeele F, Palmer S, Lemey P, Gisslén M, Vandekerckhove L. Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. J Antimicrob Chemother 2021; 75:1311-1320. [PMID: 32053203 DOI: 10.1093/jac/dkaa003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Validated biomarkers to evaluate HIV-1 cure strategies are currently lacking, therefore requiring analytical treatment interruption (ATI) in study participants. Little is known about the safety of ATI and its long-term impact on patient health. OBJECTIVES ATI safety was assessed and potential biomarkers predicting viral rebound were evaluated. METHODS PBMCs, plasma and CSF were collected from 11 HIV-1-positive individuals at four different timepoints during ATI (NCT02641756). Total and integrated HIV-1 DNA, cell-associated (CA) HIV-1 RNA transcripts and restriction factor (RF) expression were measured by PCR-based assays. Markers of neuroinflammation and neuronal injury [neurofilament light chain (NFL) and YKL-40 protein] were measured in CSF. Additionally, neopterin, tryptophan and kynurenine were measured, both in plasma and CSF, as markers of immune activation. RESULTS Total HIV-1 DNA, integrated HIV-1 DNA and CA viral RNA transcripts did not differ pre- and post-ATI. Similarly, no significant NFL or YKL-40 increases in CSF were observed between baseline and viral rebound. Furthermore, markers of immune activation did not increase during ATI. Interestingly, the RFs SLFN11 and APOBEC3G increased after ATI before viral rebound. Similarly, Tat-Rev transcripts were increased preceding viral rebound after interruption. CONCLUSIONS ATI did not increase viral reservoir size and it did not reveal signs of increased neuronal injury or inflammation, suggesting that these well-monitored ATIs are safe. Elevation of Tat-Rev transcription and induced expression of the RFs SLFN11 and APOBEC3G after ATI, prior to viral rebound, indicates that these factors could be used as potential biomarkers predicting viral rebound.
Collapse
Affiliation(s)
- Marie-Angélique De Scheerder
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Clarissa Van Hecke
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Austria
| | - Nele De Langhe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bram Vrancken
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bea Van Der Gucht
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jolanda Pelgrom
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip Van Wanzeele
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales 2145, Australia
| | - Philippe Lemey
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Wallinsgatan 6, Mölndal, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, 11 Region Västra Götaland, Gothenburg, Sweden
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Gisslen M, Keating SM, Spudich S, Arechiga V, Stephenson S, Zetterberg H, Di Germanio C, Blennow K, Fuchs D, Hagberg L, Norris PJ, Peterson J, Shacklett BL, Yiannoutsos CT, Price RW. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One 2021; 16:e0250987. [PMID: 33983973 PMCID: PMC8118251 DOI: 10.1371/journal.pone.0250987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To characterize the evolution of central nervous system (CNS) inflammation in HIV-1 infection applying a panel of cerebrospinal fluid (CSF) inflammatory biomarkers to grouped subjects representing a broad spectrum of systemic HIV-1 immune suppression, CNS injury and viral control. METHODS This is a cross-sectional analysis of archived CSF and blood samples, assessing concentrations of 10 functionally diverse soluble inflammatory biomarkers by immunoassays in 143 HIV-1-infected subjects divided into 8 groups: untreated primary HIV-1 infection (PHI); four untreated groups defined by their blood CD4+ T lymphocyte counts; untreated patients presenting with subacute HIV-associated dementia (HAD); antiretroviral-treated subjects with ≥1 years of plasma viral suppression; and untreated elite controllers. Twenty HIV-1-uninfected controls were included for comparison. Background biomarkers included blood CD4+ and CD8+ T lymphocytes, CSF and blood HIV-1 RNA, CSF white blood cell (WBC) count, CSF/blood albumin ratio, CSF neurofilament light chain (NfL), and CSF t-tau. FINDINGS HIV-1 infection was associated with a broad compartmentalized CSF inflammatory response that developed early in its course and changed with systemic disease progression, development of neurological injury, and viral suppression. CSF inflammation in untreated individuals without overt HAD exhibited at least two overall patterns of inflammation as blood CD4+ T lymphocytes decreased: one that peaked at 200-350 blood CD4+ T cells/μL and associated with lymphocytic CSF inflammation and HIV-1 RNA concentrations; and a second that steadily increased through the full range of CD4+ T cell decline and associated with macrophage responses and increasing CNS injury. Subacute HAD was distinguished by a third inflammatory profile with increased blood-brain barrier permeability and robust combined lymphocytic and macrophage CSF inflammation. Suppression of CSF and blood HIV-1 infections by antiretroviral treatment and elite viral control were associated with reduced CSF inflammation, though not fully to levels found in HIV-1 seronegative controls.
Collapse
Affiliation(s)
- Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila M. Keating
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Victor Arechiga
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sophie Stephenson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Clara Di Germanio
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philip J. Norris
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Julia Peterson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California Davis, Davis CA, United States of America
| | - Constantin T. Yiannoutsos
- Department of Biostatistics, Indiana University R.M. Fairbanks School of Public Health, Indianapolis, IN, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hagberg L, Price RW, Zetterberg H, Fuchs D, Gisslén M. Herpes zoster in HIV-1 infection: The role of CSF pleocytosis in secondary CSF escape and discordance. PLoS One 2020; 15:e0236162. [PMID: 32697807 PMCID: PMC7375594 DOI: 10.1371/journal.pone.0236162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
HIV cerebrospinal fluid (CSF) escape is defined by a concentration of HIV-1 RNA in CSF above the lower limit of quantification of the employed assay and equal to or greater than the plasma HIV-1 RNA level in the presence of treatment-related plasma viral suppression, while CSF discordance is similarly defined by equal or higher CSF than plasma HIV-1 RNA in untreated individuals. During secondary CSF escape or discordance, disproportionate CSF HIV-1 RNA develops in relation to another infection in addition to HIV-1. We performed a retrospective review of people living with HIV receiving clinical care at Sahlgrenska Infectious Diseases Clinic in Gothenburg, Sweden who developed uncomplicated herpes zoster (HZ) and underwent a research lumbar puncture (LP) within the ensuing 150 days. Based on treatment status and the relationship between CSF and plasma HIV-1 RNA concentrations, they were divided into 4 groups: i) antiretroviral treated with CSF escape (N = 4), ii) treated without CSF escape (N = 5), iii) untreated with CSF discordance (N = 8), and iv) untreated without CSF discordance (N = 8). We augmented these with two additional cases of secondary CSF escape related to neuroborreliosis and HSV-2 encephalitis and analyzed these two non-HZ cases for factors contributing to CSF HIV-1 RNA concentrations. HIV-1 CSF escape and discordance were associated with higher CSF white blood cell (WBC) counts than their non-escape (P = 0.0087) and non-discordant (P = 0.0017) counterparts, and the CSF WBC counts correlated with the CSF HIV-1 RNA levels in both the treated (P = 0.0047) and untreated (P = 0.002) group pairs. Moreover, the CSF WBC counts correlated with the CSF:plasma HIV-1 RNA ratios of the entire group of 27 subjects (P = <0.0001) indicating a strong effect of the CSF WBC count on the relation of the CSF to plasma HIV-1 RNA concentrations across the entire sample set. The inflammatory response to HZ and its augmenting effect on CSF HIV-1 RNA was found up to 5 months after the HZ outbreak in the cross-sectional sample and, was present for one year after HZ in one individual followed longitudinally. We suggest that HZ provides a ‘model’ of secondary CSF escape and discordance. Likely, the inflammatory response to HZ pathology provoked local HIV-1 production by enhanced trafficking or activation of HIV-1-infected CD4+ T lymphocytes. Whereas treatment and other systemic factors determined the plasma HIV-1 RNA concentrations, in this setting the CSF WBC counts established the relation of the CSF HIV-1 RNA levels to this plasma set-point.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment. Curr Top Behav Neurosci 2020; 50:3-39. [PMID: 32040843 DOI: 10.1007/7854_2019_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) affect approximately half of people living with HIV despite viral suppression with antiretroviral therapies and represent a major cause of morbidity. HAND affects activities of daily living including driving, using the Internet and, importantly, maintaining drug adherence. Whilst viral suppression with antiretroviral therapies (ART) has reduced the incidence of severe dementia, mild neurocognitive impairments continue to remain prevalent. The neuropathogenesis of HAND in the context of viral suppression remains ill-defined, but underlying neuroinflammation is likely central and driven by a combination of chronic intermittent low-level replication of whole virus or viral components, latent HIV infection, peripheral inflammation possibly from a disturbed gut microbiome or chronic cellular dysfunction in the central nervous system. HAND is optimally diagnosed by clinical assessment with imaging and neuropsychological testing, which can be difficult to perform in resource-limited settings. Thus, the identification of biomarkers of disease is a key focus of the field. In this chapter, recent advances in the pathogenesis of HAND and biomarkers that may aid its diagnosis and treatment will be discussed.
Collapse
|
17
|
High Plasma Soluble CD163 During Infancy Is a Marker for Neurocognitive Outcomes in Early-Treated HIV-Infected Children. J Acquir Immune Defic Syndr 2019; 81:102-109. [PMID: 30768490 DOI: 10.1097/qai.0000000000001979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocyte activation may contribute to neuronal injury in aviremic HIV-infected adults; data are lacking in children. We examined the relation between monocyte activation markers and early and long-term neurodevelopmental outcomes in early-treated HIV-infected children. SETTING Prospective study of infant and child neurodevelopmental outcomes nested within a randomized clinical trial (NCT00428116) and extended cohort study in Kenya. METHODS HIV-infected infants (N = 67) initiated antiretroviral therapy (ART) at age <5 months. Plasma soluble (s) CD163 (sCD163), sCD14, and neopterin were measured before ART (entry) and 6 months later. Milestone attainment was ascertained monthly during 24 months, and neuropsychological tests were performed at 5.8-8.2 years after initiation of ART (N = 27). The relationship between neurodevelopment and sCD163, sCD14, and neopterin at entry and 6 months after ART was assessed using Cox proportional hazards models and linear regression. RESULTS Infants with high entry sCD163 had unexpected earlier attainment of supported sitting (5 vs 6 months; P = 0.006) and supported walking (10 vs 12 months; P = 0.02) with trends in adjusted analysis. Infants with high 6-month post-ART sCD163 attained speech later (17 vs 15 months; P = 0.006; adjusted hazard ratio, 0.47; P = 0.02), threw toys later (18 vs 17 months; P = 0.01; adjusted hazard ratio, 0.53; P = 0.04), and at median 6.8 years after ART, had worse neuropsychological test scores (adj. mean Z-score differences, cognition, -0.42; P = 0.07; short-term memory, -0.52; P = 0.08; nonverbal test performance, -0.39, P = 0.05). CONCLUSIONS Before ART, monocyte activation may reflect transient neuroprotective mechanisms in infants. After ART and viral suppression, monocyte activation may predict worse short- and long-term neurodevelopment outcomes.
Collapse
|
18
|
Hermansson L, Yilmaz A, Price RW, Nilsson S, McCallister S, Makadzange T, Das M, Zetterberg H, Blennow K, Gisslen M. Plasma concentration of neurofilament light chain protein decreases after switching from tenofovir disoproxil fumarate to tenofovir alafenamide fumarate. PLoS One 2019; 14:e0226276. [PMID: 31826005 PMCID: PMC6905536 DOI: 10.1371/journal.pone.0226276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background Because tenofovir alafenamide (TAF) leads to significantly lower plasma tenofovir concentrations than tenofovir disoproxil fumarate (TDF) and is a stronger substrate for P-glycoprotein (P-gp) than TDF, TAF could lead to decreased central nervous system (CNS) tenofovir exposure than TDF. We aimed to determine if switching from TDF to TAF increases the risk of neuronal injury, by quantifying plasma levels of neurofilament light protein (NfL), a sensitive marker of neuronal injury in HIV CNS infection. Methods Plasma NfL concentration was measured at baseline, week 24, and week 84 in stored plasma samples from 416 participants (272 switching to elvitegravir (E)/cobicistat (C)/emtricitabine (F)/TAF and 144 continuing E/C/F/TDF) enrolled in the randomized, active-controlled, multicenter, open-label, noninferiority Gilead GS-US-292-0109 trial. Results While plasma NfL levels in both groups were within the normal range, we found a small but significant decrease in the E/C/F/TAF arm after 84 weeks from a geometric mean of 9.3 to 8.8 pg/mL (5.4% decline, 95% CI 2.0–8.4, p = 0.002). This change was significantly different (p = 0.001) from that of the E/C/F/TDF arm, in which plasma NfL concentration changed from 9.7 pg/mL at baseline to 10.2 pg/mL at week 84 (5.8% increase, 95% CI -0.8–12.9, p = 0.085). This increase is in line with what could be expected in normal ageing. Plasma NfL concentrations significantly correlated with age. No correlation was found between plasma NfL and serum creatinine. Conclusions We found no biomarker evidence of CNS injury when switching from TDF to TAF. It is unclear whether the small decrease in plasma NfL found after switch to TAF is of any clinical relevance, particularly with plasma NfL levels in both arms remaining within the limits found in HIV-negative controls. These results indicate that switching from TDF to TAF appears safe with regard to neuronal injury.
Collapse
Affiliation(s)
- Linn Hermansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, United States of America
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott McCallister
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Tariro Makadzange
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Moupali Das
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, UCL, London, United Kingdom
| | - Kaj Blennow
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
19
|
Sokolova IV, Szucs A, Sanna PP. Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 2019; 1724:146431. [PMID: 31491420 PMCID: PMC6939992 DOI: 10.1016/j.brainres.2019.146431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.
Collapse
Affiliation(s)
- Irina V Sokolova
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States
| | - Attila Szucs
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States; University of California, San Diego, BioCircuits Institute, 9500 Gilman Drive, La Jolla, CA 92039-0328, United States; MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Lóránd University, Budapest, Hungary
| | - Pietro Paolo Sanna
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States.
| |
Collapse
|
20
|
Abstract
: Given the challenges of life-long adherence to suppressive HIV antiretroviral therapy (ART) and possibilities of comorbidities, such as HIV association neurocognitive disorder, HIV remission and eradication are desirable goals for people living with HIV. In some individuals, there is evidence that HIV persists and replicates in the CNS, impacting the success of HIV remission interventions. This article addresses the role of HIV CNS latency on HIV eradication, examines the effects of early ART, latency-modifying agents, antibody-based and T-cell enhancing therapies on the CNS as well as ART interruption in remission studies. We propose the integration of CNS monitoring into such studies in order to clarify the short-term and long-term neurological safety of experimental agents and treatment interruption, and to better characterize their effects on HIV CNS persistence.
Collapse
|
21
|
Gisslén M, Hunt PW. Antiretroviral Treatment of Acute HIV Infection Normalizes Levels of Cerebrospinal Fluid Markers of Central Nervous System (CNS) Inflammation: A Consequence of a Reduced CNS Reservoir? J Infect Dis 2019; 220:1867-1869. [PMID: 30668742 PMCID: PMC6833976 DOI: 10.1093/infdis/jiz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Magnus Gisslén
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
22
|
Yilmaz A, Mellgren Å, Fuchs D, Nilsson S, Blennow K, Zetterberg H, Gisslén M. Switching from a regimen containing abacavir/lamivudine or emtricitabine/tenofovir disoproxil fumarate to emtricitabine/tenofovir alafenamide fumarate does not affect central nervous system HIV-1 infection. Infect Dis (Lond) 2019; 51:838-846. [PMID: 31556765 DOI: 10.1080/23744235.2019.1670352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Despite suppressive antiretroviral therapy (ART), many HIV-infected individuals have low-level persistent immune activation in the central nervous system (CNS). There have been concerns regarding the CNS efficacy of tenofovir alafenamide fumarate (TAF) because of its low cerebrospinal fluid (CSF) concentrations and because it is a substrate of the active efflux transporter P-glycoprotein. Our aim was to investigate whether switching from emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) or abacavir (ABC)/lamivudine (3TC) to FTC/TAF would lead to changes in residual intrathecal immune activation, viral load, or neurocognitive function. Methods: Twenty HIV-1-infected neuro-asymptomatic adults (11 on ABC/3TC and 9 on FTC/TDF) were included in this prospective study. At baseline, all participants changed their nucleoside analogues to FTC/TAF without any other changes in their ART regimen. We performed lumbar punctures, venipunctures, and neurocognitive testing at baseline and after three and 12 months. Results: During follow-up, there were no significant changes in CSF or plasma HIV RNA, CSF neopterin, CSF β2-microglobulin, IgG index, albumin ratio, CSF NFL, or neurocognitive function in assessed by Cogstate in any of the groups. Conclusion: This small pilot study indicates that switching to FTC/TAF from ABC/3TC or FTC/TDF has neither a positive, nor a negative effect on the HIV infection in the CNS.
Collapse
Affiliation(s)
- Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital , Gothenburg, Sweden
| | - Åsa Mellgren
- Clinic of Infectious Diseases, Södra Älvsborg Hospital , Borås , Sweden
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University , Innsbruck , Austria
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology , Gothenburg , Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg , Gothenburg , Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Molndal , Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg , Gothenburg , Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Molndal , Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square , London , UK.,UK Dementia Research Institute at UCL , London , UK
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital , Gothenburg, Sweden
| |
Collapse
|
23
|
Bandera A, Taramasso L, Bozzi G, Muscatello A, Robinson JA, Burdo TH, Gori A. HIV-Associated Neurocognitive Impairment in the Modern ART Era: Are We Close to Discovering Reliable Biomarkers in the Setting of Virological Suppression? Front Aging Neurosci 2019; 11:187. [PMID: 31427955 PMCID: PMC6687760 DOI: 10.3389/fnagi.2019.00187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
The prevalence of the most severe forms of HIV-associated neurocognitive disorders (HAND) is decreasing due to worldwide availability and high efficacy of antiretroviral treatment (ART). However, several grades of HIV-related cognitive impairment persist with effective ART and remain a clinical concern for people with HIV (PWH). The pathogenesis of these cognitive impairments has yet to be fully understood and probably multifactorial. In PWH with undetectable peripheral HIV-RNA, the presence of viral escapes in cerebrospinal fluid (CSF) might explain a proportion of cases, but not all. Many other mechanisms have been hypothesized to be involved in disease progression, in order to identify possible therapeutic targets. As potential indicators of disease staging and progression, numerous biomarkers have been used to characterize and implicate chronic inflammation in the pathogenesis of neuronal injuries, such as certain phenotypes of activated monocytes/macrophages, in the context of persistent immune activation. Despite none of them being disease-specific, the correlation of several CSF cellular biomarkers to HIV-induced neuronal damage has been investigated. Furthermore, recent studies have been evaluating specific microRNA (miRNA) profiles in the CSF of PWH with neurocognitive impairment (NCI). The aim of the present study is to review the body of evidence on different biomarkers use in research and clinical settings, focusing on PWH on ART with undetectable plasma HIV-RNA.
Collapse
Affiliation(s)
- Alessandra Bandera
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Infectious Diseases Clinic, Department of Health Sciences, School of Medical and Pharmaceutical Sciences, Policlinico Hospital San Martino, University of Genova (DISSAL), Genova, Italy
| | - Giorgio Bozzi
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Andrea Gori
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
24
|
Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H, Macatangay BJ, Lalama CM, Rinaldo C, Collier AC, Godfrey C, Eron JJ, McMahon D, Jacobs JL, Koontz D, Hogg E, Vecchio A, Mellors JW. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest 2019; 129:3339-3346. [PMID: 31305262 PMCID: PMC6668666 DOI: 10.1172/jci127413] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDPersistence of HIV in sanctuary sites despite antiretroviral therapy (ART) presents a barrier to HIV remission and may affect neurocognitive function. We assessed HIV persistence in cerebrospinal fluid (CSF) and associations with inflammation and neurocognitive performance during long-term ART.METHODSParticipants enrolled in the AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321) underwent concurrent lumbar puncture, phlebotomy, and neurocognitive assessment. Cell-associated HIV DNA and HIV RNA (CA-DNA, CA-RNA) were measured by quantitative PCR (qPCR). in peripheral blood mononuclear cells (PBMCs) and in cell pellets from CSF. In CSF supernatant and blood plasma, cell-free HIV RNA was quantified by qPCR with single copy sensitivity, and inflammatory biomarkers were measured by enzyme immunoassay.RESULTSSixty-nine participants (97% male, median age 50 years, CD4 696 cells/mm3, plasma HIV RNA <100 copies/mL) were assessed after a median 8.6 years of ART. In CSF, cell-free RNA was detected in 4%, CA-RNA in 9%, and CA-DNA in 48% of participants (median level 2.1 copies/103 cells). Detection of cell-free CSF HIV RNA was associated with higher plasma HIV RNA (P = 0.007). CSF inflammatory biomarkers did not correlate with HIV persistence measures. Detection of CSF CA-DNA HIV was associated with worse neurocognitive outcomes including global deficit score (P = 0.005), even after adjusting for age and nadir CD4 count.CONCLUSIONHIV-infected cells persist in CSF in almost half of individuals on long-term ART, and their detection is associated with poorer neurocognitive performance.FUNDINGThis observational study, AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321), was supported by the National Institutes of Health (NIAID and NIMH).
Collapse
Affiliation(s)
| | - Kevin R. Robertson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J. Bosch
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hanna Mar
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | - Joseph J. Eron
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Dianna Koontz
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evelyn Hogg
- Social & Scientific Systems, Silver Spring, Maryland, USA
| | - Alyssa Vecchio
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
25
|
Zhang F, Yang J, Ji Y, Sun M, Shen J, Sun J, Wang J, Liu L, Shen Y, Zhang R, Chen J, Lu H. Gut Microbiota Dysbiosis Is Not Independently Associated With Neurocognitive Impairment in People Living With HIV. Front Microbiol 2019; 9:3352. [PMID: 30761121 PMCID: PMC6362426 DOI: 10.3389/fmicb.2018.03352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota dysbiosis, which has been linked to many neurological diseases, is common in HIV infection. However, its role in the pathogenesis of neurocognitive impairment is still not established. In this study, a total of 85 HIV infected subjects, naïve to antiretroviral therapy, were classified into two groups—those with HIV-associated neurological diseases (HAND) and those without, using the Montreal Cognitive Assessment (MoCA) test. Fecal samples were collected from all subjects and microbiota were analyzed by 16S rRNA amplicon sequencing. Subjects with HAND were older (P < 0.001), with lower levels of education (P = 0.002), lower CD4 T-cell counts (P = 0.032), and greater heterosexual preference (P < 0.001), than those without HAND. Gut microbiota from subjects with HAND showed significantly lower α-diversity compared to gut microbiota from subjects without HAND (Shannon index, P = 0.003). To exclude confounding bias, 25 subjects from each group, with comparable age, gender, CD4 T-cell count, educational level and sexual preference were further analyzed. The two groups showed comparable α-diversity (for SOB index, Shannon index, Simpson index, ACE index, and Chao index, all with P-value > 0.05) and β-diversity (ANOSIM statistic = 0.010, P = 0.231). There were no significant differences in microbiota composition between the two groups after the correction for a false discovery rate. Consistently, microbiota from the two groups presented similar predictive functional profiles. Gut microbiota dysbiosis is not independently associated with neurocognitive impairment in people living with HIV.
Collapse
Affiliation(s)
- Fengdi Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyang Yang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yongjia Ji
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiayin Shen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianjun Sun
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Hermansson L, Yilmaz A, Axelsson M, Blennow K, Fuchs D, Hagberg L, Lycke J, Zetterberg H, Gisslén M. Cerebrospinal fluid levels of glial marker YKL-40 strongly associated with axonal injury in HIV infection. J Neuroinflammation 2019; 16:16. [PMID: 30678707 PMCID: PMC6345016 DOI: 10.1186/s12974-019-1404-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND HIV-1 infects the central nervous system (CNS) shortly after transmission. This leads to a chronic intrathecal immune activation. YKL-40, a biomarker that mainly reflects activation of astroglial cells, has not been thoroughly investigated in relation to HIV. The objective of our study was to characterize cerebrospinal fluid (CSF) YKL-40 in chronic HIV infection, with and without antiretroviral treatment (ART). METHODS YKL-40, neopterin, and the axonal marker neurofilament light protein (NFL) were analyzed with ELISA in archived CSF samples from 120 HIV-infected individuals (85 untreated neuroasymptomatic patients, 7 with HIV-associated dementia, and 28 on effective ART) and 39 HIV-negative controls. RESULTS CSF YKL-40 was significantly higher in patients with HIV-associated dementia compared to all other groups. It was also higher in untreated neuroasymptomatic individuals with CD4 cell count < 350 compared to controls. Significant correlations were found between CSF YKL-40 and age (r = 0.38, p < 0.001), CD4 (r = - 0.36, p < 0.001), plasma HIV RNA (r = 0.35, p < 0.001), CSF HIV RNA (r = 0.35, p < 0.001), CSF neopterin (r = 0.40, p < 0.001), albumin ratio (r = 0.44, p < 0.001), and CSF NFL (r = 0.71, p < 0.001). Age, CD4 cell count, albumin ratio, and CSF HIV RNA were found as independent predictors of CSF YKL-40 concentrations in multivariable analysis. In addition, CSF YKL-40 was revealed as a strong independent predictor of CSF NFL together with age, CSF neopterin, and CD4 cell count. CONCLUSIONS CSF YKL-40 is a promising biomarker candidate for understanding the pathogenesis of HIV in the CNS. The strong correlation between CSF YKL-40 and NFL suggests a pathogenic association between astroglial activation and axonal injury, and implies its utility in assessing the prognostic value of YKL-40.
Collapse
Affiliation(s)
- Linn Hermansson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Neurology, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Neurology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neurology, University College London, London, UK
| | - Magnus Gisslén
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Gisslén M, Heslegrave A, Veleva E, Yilmaz A, Andersson LM, Hagberg L, Spudich S, Fuchs D, Price RW, Zetterberg H. CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e512. [PMID: 30568991 PMCID: PMC6278890 DOI: 10.1212/nxi.0000000000000512] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Objective To explore changes in CSF sTREM2 concentrations in the evolving course of HIV-1 infection. Methods In this retrospective cross-sectional study, we measured concentrations of the macrophage/microglial activation marker sTREM2 in CSF samples from 121 HIV-1-infected adults and 11 HIV-negative controls and examined their correlations with other CSF and blood biomarkers of infection, inflammation, and neuronal injury. Results CSF sTREM2 increased with systemic and CNS HIV-1 disease severity, with the highest levels found in patients with HIV-associated dementia (HAD). In untreated HIV-1-infected patients without an HAD diagnosis, levels of CSF sTREM2 increased with decreasing CD4+ T-cell counts. CSF concentrations of both sTREM2 and the neuronal injury marker neurofilament light protein (NFL) were significantly associated with age. CSF sTREM2 levels were also independently correlated with CSF NFL. Notably, this association was also observed in HIV-negative controls with normal CSF NFL. HIV-infected patients on suppressive antiretroviral treatment had CSF sTREM2 levels comparable to healthy controls. Conclusions Elevations in CSF sTREM2 levels, an indicator of macrophage/microglial activation, are a common feature of untreated HIV-1 infection that increases with CD4+ T-cell loss and reaches highest levels in HAD. The strong and independent association between CSF sTREM2 and CSF NFL suggests a linkage between microglial activation and neuronal injury in HIV-1 infection. CSF sTREM2 has the potential of being a useful biomarker of innate CNS immune activation in different stages of untreated and treated HIV-1 infection.
Collapse
Affiliation(s)
- Magnus Gisslén
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Amanda Heslegrave
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Elena Veleva
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Serena Spudich
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Dietmar Fuchs
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Richard W Price
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
28
|
HIV Cerebrospinal Fluid Escape and Neurocognitive Pathology in the Era of Combined Antiretroviral Therapy: What Lies Beneath the Tip of the Iceberg in Sub-Saharan Africa? Brain Sci 2018; 8:brainsci8100190. [PMID: 30347806 PMCID: PMC6211092 DOI: 10.3390/brainsci8100190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Neurocognitive impairment remains an important HIV-associated comorbidity despite combination antiretroviral therapy (ART). Since the advent of ART, the spectrum of HIV-associated neurocognitive disorder (HAND) has shifted from the most severe form to milder forms. Independent replication of HIV in the central nervous system despite ART, so-called cerebrospinal fluid (CSF) escape is now recognised in the context of individuals with a reconstituted immune system. This review describes the global prevalence and clinical spectrum of CSF escape, it role in the pathogenesis of HAND and current advances in the diagnosis and management. It highlights gaps in knowledge in sub-Saharan Africa where the HIV burden is greatest and discusses the implications for this region in the context of the global HIV treatment scale up.
Collapse
|
29
|
Persistent central nervous system immune activation following more than 10 years of effective HIV antiretroviral treatment. AIDS 2018; 32:2171-2178. [PMID: 30005007 DOI: 10.1097/qad.0000000000001950] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Low-grade immune activation is common in people living with HIV (PLHIV), despite long-term viral suppression by antiretroviral therapy (ART). The clinical significance of this activation remains unclear. The aim of this study was to examine residual intrathecal immune activation in relation to signs of neuronal injury and neurocognitive impairment in PLHIV who had been virally suppressed on ART for more than 10 years. DESIGN/METHODS Twenty neuroasymptomatic PLHIV on suppressive ART for a median of 13.2 years were retrospectively identified from the longitudinal prospective Gothenburg HIV cerebrospinal fluid (CSF) study. HIV-RNA, neopterin, and neurofilament light protein (NFL) levels were measured in paired plasma and CSF samples. Pretreatment samples were available for 14 patients. Cognitive function was assessed by CogState at follow-up. RESULTS CSF neopterin decreased from a median (IQR) of 17.8 (10.6-29.7) to 6.1 (4.6-8.0) nmol/l during treatment (P < 0.001). In 11 out of 20 participants (55%), CSF neopterin levels were above the upper normal reference limit (5.8 nmol/l) at follow-up. Age-adjusted CSF NFL decreased to within-normal levels from a median of (IQR) 1179 (557-2707) to 415 (292-610) ng/l (P < 0.001). No significant correlations were found between CSF neopterin and CSF NFL or neurocognitive performance. CONCLUSION Although CSF neopterin decreased significantly, more than 50% of the patients had CSF concentrations above the upper normal reference value despite more than 10 years of suppressive ART. We found no correlation between CSF neopterin, CSF NFL or neurocognitive performance at follow-up, indicating that low-grade immune activation during suppressive ART may be clinically benign.
Collapse
|
30
|
Farhadian SF, Mehta SS, Zografou C, Robertson K, Price RW, Pappalardo J, Chiarella J, Hafler DA, Spudich SS. Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight 2018; 3:121718. [PMID: 30232286 PMCID: PMC6237230 DOI: 10.1172/jci.insight.121718] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Central nervous system (CNS) immune activation is an important driver of neuronal injury during several neurodegenerative and neuroinflammatory diseases. During HIV infection, CNS immune activation is associated with high rates of neurocognitive impairment, even during sustained long-term suppressive antiretroviral therapy (ART). However, the cellular subsets that drive immune activation and neuronal damage in the CNS during HIV infection and other neurological conditions remain unknown, in part because CNS cells are difficult to access in living humans. Using single-cell RNA sequencing (scRNA-seq) on cerebrospinal fluid (CSF) and blood from adults with and without HIV, we identified a rare (<5% of cells) subset of myeloid cells that are found only in CSF and that present a gene expression signature that overlaps significantly with neurodegenerative disease-associated microglia. This highlights the power of scRNA-seq of CSF to identify rare CNS immune cell subsets that may perpetuate neuronal injury during HIV infection and other conditions.
Collapse
Affiliation(s)
- Shelli F. Farhadian
- Department of Medicine, Section of Infectious Diseases
- Department of Neurology
| | | | - Chrysoula Zografou
- Department of Neurology
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin Robertson
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jenna Pappalardo
- Yale Center for Genome Analysis, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - David A. Hafler
- Department of Neurology
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disorders (HAND) are common in patients with HIV disease, even during suppressive combination antiretroviral therapy (cART). This review article addresses the pathogenesis of HAND, focusing on important findings from the last 5 years. RECENT FINDINGS While HIV-associated dementia is now rare in settings with cART availability, mild forms of HAND are increasing in prevalence. Biomarkers of cellular injury, such as neurofilament light chain and neopterin, can detect early stages of neuroinflammation associated with HIV infection and are increased even in asymptomatic individuals with chronic HIV infection. Several recent studies form a growing body of evidence that HIV can infect and replicate in monocytes and that blocking monocyte activity can potentially improve neurological outcomes in HIV. Early cART may also prevent HAND. Understanding the multifactorial causes of CNS infection and inflammation is critical to devising treatment and preventive strategies for HAND.
Collapse
Affiliation(s)
- Shelli Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 367 Cedar Street, ESH Building A, Rm 311, New Haven, CT, 06510, USA.
| | - Payal Patel
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Serena Spudich
- Department of Neurology, Division of Neurological Infections and Global Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Ceccarelli G, Brenchley JM, Cavallari EN, Scheri GC, Fratino M, Pinacchio C, Schietroma I, Fard SN, Scagnolari C, Mezzaroma I, Vullo V, d'Ettorre G. Impact of High-Dose Multi-Strain Probiotic Supplementation on Neurocognitive Performance and Central Nervous System Immune Activation of HIV-1 Infected Individuals. Nutrients 2017; 9:nu9111269. [PMID: 29160817 PMCID: PMC5707741 DOI: 10.3390/nu9111269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Gut microbiota has metabolic activity which influences mucosal homeostasis, local and systemic immune responses, and other anatomical systems (i.e., brain). The effects of dysbiosis are still poorly studied in Human Immunodeficiency Virus-1 (HIV-1) positive subjects and insufficient data are available on the impairment of the gut-brain axis, despite neurocognitive disorders being commonly diagnosed in these patients. This study evaluated the impact of a probiotic supplementation strategy on intrathecal immune activation and cognitive performance in combined antiretroviral therapy (cART) treated HIV-1 infected subjects. Methods: Thirty-five HIV-1 infected individuals were included in this study. At baseline (T0) a battery of tests was administered, to evaluate neurocognitive function and a lumbar puncture was performed to determine neopterin concentration in cerebrospinal fluid (CSF), as a marker of Central Nervous System (CNS) immune activation. Subsequently, a subgroup of participants underwent a 6-month course of multi-strain probiotics supplementation; this intervention group was evaluated, after probiotic treatment, with a second lumbar puncture and with repeated neurocognitive tests. Results: At T0, all participants showed impaired results in at least one neurocognitive test and elevated neopterin concentrations in CSF. After supplementation with probiotics (T6), the interventional group presented a significant decrease in neopterin concentration and a significant improvement in several neurocognitive tests. In contrast, no significant modifications were observed in the neurocognitive performance of controls between T0 and T6. The CNS Penetration Effectiveness Score of antiretroviral therapy did not show an influence from any of the investigated variables. Conclusions: Multi-strain probiotic supplementation seems to exert a positive effect on neuroinflammation and neurocognitive impairment in HIV-1 infected subjects, but large trials are needed to support the concept that modulation of the gut microbiota can provide specific neurological benefits in these patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Jason M Brenchley
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Eugenio Nelson Cavallari
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Giuseppe Corano Scheri
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Mariangela Fratino
- Department of Neurology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Ivan Schietroma
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Saeid Najafi Fard
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Ivano Mezzaroma
- Department of Clinical Medicine, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, University of Rome "Sapienza", Rome (Italy) and Azienda Policlinico Umberto I, 00161 Rome, Italy.
| |
Collapse
|
33
|
Abstract
Combination antiretroviral treatment is associated with clear benefits in HIV-positive subjects, and is also effective in the central nervous system (CNS), meaning HIV-associated dementia is now an uncommon event. Nevertheless, a significant number of patients show symptoms of neurocognitive impairment which may negatively affect their quality of life. Although several risk factors for HIV-associated neurocognitive disorders have been identified, there is no clear recommendation for their prevention and management. In this review, the penetration of drugs into the cerebrospinal fluid/CNS is discussed as well as the viral and clinical consequences associated with higher/lower compartmental exposure. We also review the potential interventions according to the currently identified underlying mechanisms, including persistent CNS immune activation, legacy effects, low-level viral replication and escape, co-morbidities, and antiretroviral-associated direct and indirect 'neurotoxicity'. Adjunctive therapies and interventions (including neuro-rehabilitation) are then briefly discussed. The treatment of HIV infection in the CNS is a complex area of therapeutics requiring multidisciplinary interventions and further study.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, c/o Ospedale Amedeo di Savoia, C.so Svizzera 164, 10159, Torino, Italy.
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, c/o Ospedale Amedeo di Savoia, C.so Svizzera 164, 10159, Torino, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, c/o Ospedale Amedeo di Savoia, C.so Svizzera 164, 10159, Torino, Italy
| |
Collapse
|
34
|
Motta I, Allice T, Romito A, Ferrara M, Ecclesia S, Imperiale D, Ghisetti V, Di Perri G, Bonora S, Calcagno A. Cerebrospinal fluid viral load and neopterin in HIV-positive patients with undetectable viraemia. Antivir Ther 2017; 22:539-543. [PMID: 28198350 DOI: 10.3851/imp3140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) HIV RNA is commonly used as a marker of compartmental antiviral activity in HIV-positive patients. Undetectable CSF HIV RNA levels have been associated with low CSF neopterin levels and better neurocognitive performances. The aim of this study was to analyse the prevalence and predictors of non-detectable CSF HIV RNA using a commercial assay. METHODS In adult HIV-positive HAART-treated patients with confirmed plasma HIV RNA <50 copies/ml, CSF HIV RNA (with Roche Amplicor Assay) and neopterin were measured. RESULTS 112 adult patients were included. Plasma and CSF HIV RNA were non-detectable (target not detected [TND]) in 29 (25.9%) and 36 (32.1%) patients, respectively. CSF TND was observed more frequently in patients with plasma TND (P=0.005, OR=3.87). CSF neopterin levels were associated with age (rho =0.333, P=0.002) and current (rho= -0.272, P=0.015) and nadir (rho =-0.240, P=0.038) CD4+ T-lymphocytes; the lowest CSF neopterin concentration was observed in patients with CSF TND versus other viral load strata (0.62 mg/dl versus 0.78 mg/dl; P=0.048). CONCLUSIONS Efficaciously treated HIV-positive patients with detectable plasma HIV RNA might imperfectly control CSF viral replication. Prospective studies addressing the management and neurocognitive consequences of CSF low-level viraemia are warranted.
Collapse
Affiliation(s)
- Ilaria Motta
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Tiziano Allice
- Laboratory of Microbiology and Molecular Biology, Ospedale Amedeo di Savoia, ASL TO2, Torino, Italy
| | - Alessandra Romito
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL TO2, Torino, Italy
| | - Micol Ferrara
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sara Ecclesia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Valeria Ghisetti
- Laboratory of Microbiology and Molecular Biology, Ospedale Amedeo di Savoia, ASL TO2, Torino, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
35
|
Abstract
OBJECTIVE Resting CD4 T cells have been recognized as the major cell reservoir of latent HIV-1 during antiretroviral therapy (ART). Using an simian immunodeficiency virus (SIV)/macaque model for AIDS and HIV-related neurocognitive disorders we assessed the contribution of the brain to viral latency and reactivation. DESIGN Pigtailed macaques were dual inoculated with SIVDeltaB670 and SIV17E-Fr and treated with an efficacious central nervous system-penetrant ART. After 500 days of viral suppression animals were treated with two cycles of latency reversing agents and increases in viral transcripts were examined. METHODS Longitudinal plasma and cerebrospinal fluid (CSF) viral loads were analyzed by quantitative and digital droplet PCR. After necropsy, viral transcripts in organs were analyzed by PCR, in-situ hybridization, and phylogenetic genotyping based on env V1 loop sequences. Markers for neuronal damage and CSF activation were measured by ELISA. RESULTS Increases in activation markers and plasma and CSF viral loads were observed in one animal treated with latency reversing agents, despite ongoing ART. SIV transcripts were identified in occipital cortex macrophages by in-situ hybridization and CD68 staining. The most abundant SIV genotype in CSF was unique and expanded independent from viruses found in the periphery. CONCLUSION The central nervous system harbors latent SIV genomes after long-term viral suppression by ART, indicating that the brain represents a potential viral reservoir and should be seriously considered during AIDS cure strategies.
Collapse
|
36
|
Anesten B, Yilmaz A, Hagberg L, Zetterberg H, Nilsson S, Brew BJ, Fuchs D, Price RW, Gisslén M. Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e300. [PMID: 27868081 PMCID: PMC5104266 DOI: 10.1212/nxi.0000000000000300] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
Abstract
Objective: Although blood–brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). Results: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. Conclusions: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals.
Collapse
Affiliation(s)
- Birgitta Anesten
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Henrik Zetterberg
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Staffan Nilsson
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Bruce J Brew
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Dietmar Fuchs
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Richard W Price
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine (B.A., A.Y., L.H., M.G.), and Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology (H.Z.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Mathematical Sciences (S.N.), Chalmers University of Technology, Gothenburg, Sweden; Departments of Neurology and HIV Medicine (B.J.B.), St Vincent's Hospital and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia; Division of Biological Chemistry (D.F.), Biocenter, Innsbruck Medical University, Innsbruck, Austria; and Department of Neurology (R.W.P.), University of California San Francisco
| |
Collapse
|
37
|
Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 2016; 11:226-33. [PMID: 26760827 DOI: 10.1097/coh.0000000000000243] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. RECENT FINDINGS In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. SUMMARY More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.
Collapse
|
38
|
Edén A, Nilsson S, Hagberg L, Fuchs D, Zetterberg H, Svennerholm B, Gisslén M. Asymptomatic Cerebrospinal Fluid HIV-1 Viral Blips and Viral Escape During Antiretroviral Therapy: A Longitudinal Study. J Infect Dis 2016; 214:1822-1825. [PMID: 27683820 DOI: 10.1093/infdis/jiw454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/20/2016] [Indexed: 11/14/2022] Open
Abstract
We examined longitudinal cerebrospinal fluid (CSF) samples (median, 5 samples/patients; interquartile range [IQR], 3-8 samples/patient) in 75 neurologically asymptomatic human immunodeficiency virus (HIV)-infected patients receiving antiretroviral therapy. Twenty-seven patients (36%) had ≥1 CSF HIV RNA load of >20 copies/mL (23% had ≥1 load of >50 copies/mL), with a median HIV RNA load of 50 copies/mL (IQR, 32-77 copies/mL). In plasma, 42 subjects (52%) and 22 subjects (29%) had an HIV RNA load of >20 and >50 copies/mL, respectively. Two subjects had an increasing virus load in consecutive CSF samples, representing possible CSF escape. Of 418 samples, 9% had a CSF HIV RNA load of >20 copies/mL (5% had a load of >50 copies/mL) and 19% had a plasma HIV RNA load of >20 copies/mL (8% had a load of >50 copies/mL). A CSF-associated virus load of >20 copies/mL was associated with higher CSF level of neopterin. In conclusion, CSF escape was rare, and increased CSF HIV RNA loads usually represented CSF virus load blips.
Collapse
Affiliation(s)
- Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | | | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Austria
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Bo Svennerholm
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| |
Collapse
|
39
|
Scagnolari C, Corano Scheri G, Selvaggi C, Schietroma I, Najafi Fard S, Mastrangelo A, Giustini N, Serafino S, Pinacchio C, Pavone P, Fanello G, Ceccarelli G, Vullo V, d'Ettorre G. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study. Int J Mol Sci 2016; 17:ijms17101639. [PMID: 27689995 PMCID: PMC5085672 DOI: 10.3390/ijms17101639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy.
| | - Giuseppe Corano Scheri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Carla Selvaggi
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy.
| | - Ivan Schietroma
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Saeid Najafi Fard
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Andrea Mastrangelo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Noemi Giustini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Sara Serafino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Claudia Pinacchio
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Paolo Pavone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Gianfranco Fanello
- Department of Emergency Surgery, Emergency Endoscopic Unit, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| |
Collapse
|
40
|
Krut JJ, Price RW, Zetterberg H, Fuchs D, Hagberg L, Yilmaz A, Cinque P, Nilsson S, Gisslén M. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau). Virulence 2016; 8:599-604. [PMID: 27435879 DOI: 10.1080/21505594.2016.1212155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. METHODS With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4+ T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). RESULTS P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). CONCLUSIONS P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.
Collapse
Affiliation(s)
- Jan J Krut
- a Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Richard W Price
- b Department of Neurology , University of California San Francisco , San Francisco , CA , USA
| | - Henrik Zetterberg
- c Department of Psychiatry and Neurochemistry , Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg , Gothenburg , Sweden.,d UCL Institute of Neurology , London , UK
| | - Dietmar Fuchs
- e Division of Biological Chemistry , Biocenter, Innsbruck Medical University , Innsbruck , Austria
| | - Lars Hagberg
- a Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Aylin Yilmaz
- a Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Paola Cinque
- f Clinic of Infectious Diseases , San Raffaele Hospital , Milan , Italy
| | - Staffan Nilsson
- g Department of Mathematical Sciences , Chalmers University of Technology , Gothenburg , Sweden
| | - Magnus Gisslén
- a Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
41
|
Haubenberger D, Clifford DB. Clinical Trials in Neurovirology: Successes, Challenges, and Pitfalls. Neurotherapeutics 2016; 13:571-81. [PMID: 27194073 PMCID: PMC4965408 DOI: 10.1007/s13311-016-0440-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clinical trials in neurovirology illustrate the special challenges confronting investigators planning to study these conditions, as well as the contributions of successful trials in establishing appropriate management for these devastating diseases. This article reviews key examples of progress in neurovirology that have been spurred by clinical trials, emphasizing human herpes virus encephalitis, HIV, and JC virus. Clinical trials in the setting of neurovirological diseases are characterized by specific challenges, which may include small sample sizes, clinical presentations from life-threatening conditions to chronic courses of disease, regional and temporally restricted outbreaks scenarios, and the unavailability of validated diagnostic tests that can be rapidly deployed at the bedside. This review aims to highlight these methodological challenges and pitfalls in designing and executing clinical neurovirology trials, as well as to outline innovative trial designs, which could be useful in addressing common challenges.
Collapse
Affiliation(s)
- Dietrich Haubenberger
- Clinical Trials Unit, Office of the Clinical Director, NINDS Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, Rm 6-5700, Bethesda, MD, 20892, USA.
| | - David B Clifford
- Departments of Neurology and Medicine, Washington University in St Louis, Box 8111, 660 S Euclid Ave, Saint Louis, MO, 63110, USA
| |
Collapse
|
42
|
Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS 2016; 30:1533-42. [PMID: 26990631 DOI: 10.1097/qad.0000000000001096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate differences in soluble inflammatory markers between chronically HIV-infected men and women, with or without cognitive impairment, and in response to treatment. DESIGN Soluble biomarkers were measured in cryopreserved plasma and cerebrospinal fluid (CSF) of 60 treatment-naïve individuals (25 men and 35 women) with chronic HIV infection and 18 HIV-uninfected controls (9 men and 9 women) from Thailand. Following enrollment, participants began combination antiretroviral therapy and were evaluated for expression of these markers after 48 weeks. METHODS Plasma and CSF levels of 19 soluble biomarkers (IFN-γ, TNFα, TNF-RII, IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-15, MCP-1, t-Tau, IP-10, neopterin, IFNα, I-FABP, and sCD14) were measured using either a multiparameter or standard ELISA assay. RESULTS Prior to combination antiretroviral therapy, women with impaired cognition had elevated levels of neopterin and TNF-RII compared with women with normal cognition in both the plasma and CSF; however, levels did not differ between cognitively impaired or normal men. In a secondary outcome-hypothesis generating analysis, sex differences were also pronounced in plasma levels of MCP-1, IL-10, I-FABP, and sCD14 in response to treatment. Neopterin, IP-10, TNFα, TNF-RII, IFNα, MCP-1, IL-8, I-FABP, and sCD14 plasma levels remained elevated following 48 weeks of therapy in both sexes compared with uninfected controls. CONCLUSION We provide evidence of sustained immune activation after 48 weeks of treatment and identify possible sex differences in biomarkers previously linked to cognitive impairment, chronic inflammation, and gut integrity that may contribute to immunological differences between sexes in relationship to disease progression and response to therapy.
Collapse
|
43
|
Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment. PLoS One 2016; 11:e0157160. [PMID: 27295036 PMCID: PMC4905676 DOI: 10.1371/journal.pone.0157160] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). Design and Methods We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Results Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001) but not in the NCN group (r = -0.13; p = 0.3). Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06). Conclusions Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies.
Collapse
|
44
|
Jespersen S, Pedersen KK, Anesten B, Zetterberg H, Fuchs D, Gisslén M, Hagberg L, Trøseid M, Nielsen SD. Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study. BMC Infect Dis 2016; 16:176. [PMID: 27103116 PMCID: PMC4839160 DOI: 10.1186/s12879-016-1510-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Background HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. Methods We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. Results LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. Conclusions In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality.
Collapse
Affiliation(s)
- Sofie Jespersen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK 2100, Copenhagen Ø, Denmark
| | - Karin Kæreby Pedersen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK 2100, Copenhagen Ø, Denmark
| | - Birgitta Anesten
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marius Trøseid
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
45
|
Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage. Curr Opin HIV AIDS 2015; 10:35-42. [PMID: 25415420 DOI: 10.1097/coh.0000000000000118] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. RECENT FINDINGS Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. SUMMARY Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.
Collapse
|
46
|
Calcagno A, Atzori C, Romito A, Vai D, Audagnotto S, Stella ML, Montrucchio C, Imperiale D, Di Perri G, Bonora S. Blood brain barrier impairment is associated with cerebrospinal fluid markers of neuronal damage in HIV-positive patients. J Neurovirol 2015; 22:88-92. [PMID: 26246357 DOI: 10.1007/s13365-015-0371-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/22/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Blood brain barrier impairment occurs early in the course of infection by HIV and it may persist in a subset of patients despite effective antiretroviral treatment. We tested the hypothesis that HIV-positive patients with dysfunctional blood brain barrier may have altered biomarkers of neuronal damage. In adult HIV-positive highly active antiretroviral treatment (HAART)-treated patients (without central nervous system infections and undergoing lumbar punctures for clinical reasons) cerebrospinal fluid albumin to serum ratios (CSAR), total tau, phosphorylated tau, 1-42 beta amyloid, and neopterin were measured. In 101 adult patients, cerebrospinal fluid-to-serum albumin ratios were 4.8 (3.7-6.1) with 12 patients (11.9%) presenting age-defined impaired blood brain barrier. A significant correlation was observed between CSAR and total tau (p = 0.005), phosphorylated tau (p = 0.008), and 1-42 beta amyloid (p = 0.040). Patients with impaired blood brain barrier showed significantly higher total tau (201.6 vs. 87.3 pg/mL, p = 0.010), phosphorylated tau (35.3 vs. 32.1 ng/mL, p = 0.035), and 1-42 beta amyloid (1134 vs. 830 pg/mL, p = 0.045). Despite effective antiretroviral treatment, blood brain barrier impairment persists in some HIV-positive patients: it is associated with markers of neuronal damage and it was not associated with CSF neopterin concentrations.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy.
| | - C Atzori
- Unit of neurology, Ospedale Maria Vittoria, ASLTO2, Torino, Italy
| | - A Romito
- Laboratory of Immunology, Ospedale Maria Vittoria, ASLTO2, Torino, Italy
| | - D Vai
- Unit of neurology, Ospedale Maria Vittoria, ASLTO2, Torino, Italy
| | - S Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy
| | - M L Stella
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy
| | - C Montrucchio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy
| | - D Imperiale
- Unit of neurology, Ospedale Maria Vittoria, ASLTO2, Torino, Italy
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Ospedale Amedeo di Savoia, C.so Svizzera 164, 10149, Torino, Italy
| |
Collapse
|
47
|
Mäkitalo S, Mellgren Å, Borgh E, Kilander L, Skillbäck T, Zetterberg H, Gisslén M. The cerebrospinal fluid biomarker profile in an HIV-infected subject with Alzheimer's disease. AIDS Res Ther 2015; 12:23. [PMID: 26175795 PMCID: PMC4501274 DOI: 10.1186/s12981-015-0063-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/19/2015] [Indexed: 11/10/2022] Open
Abstract
It is a challenge to differentiate between HIV-associated neurocognitive disorders (HAND) and other types of neurocognitive disease in the ageing HIV-infected population. Here we describe a 63 year old HIV-infected woman who had a history, neuropsychological test result, and PET examination consistent with characteristic Alzheimer’s disease (AD). The cerebrospinal fluid (CSF) biomarker profile was analogous to the profile typically found in AD in HIV-negative patients with increased t-tau and p-tau, a decreased level of Aβ42 and normal levels of CSF neurofilament light protein and sAPPα and sAPPβ, distinctly different from findings in HIV-associated dementia (HAD). Assessment of CSF biomarkers may be a valuable tool for clinicians to distinguish between HAD and AD.
Collapse
|
48
|
Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet 2015; 53:891-906. [PMID: 25200312 DOI: 10.1007/s40262-014-0171-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HIV-positive patients may be effectively treated with highly active antiretroviral therapy and such a strategy is associated with striking immune recovery and viral load reduction to very low levels. Despite undeniable results, the central nervous system (CNS) is commonly affected during the course of HIV infection, with neurocognitive disorders being as prevalent as 20-50 % of treated subjects. This review discusses the pathophysiology of CNS infection by HIV and the barriers to efficacious control of such a mechanism, including the available data on compartmental drug penetration and on pharmacokinetic/pharmacodynamic relationships. In the reviewed articles, a high variability in drug transfer to the CNS is highlighted with several mechanisms as well as methodological issues potentially influencing the observed results. Nevirapine and zidovudine showed the highest cerebrospinal fluid (CSF) to plasma ratios, although target concentrations are currently unknown for the CNS. The use of the composite CSF concentration effectiveness score has been associated with better virological outcomes (lower HIV RNA) but has been inconsistently associated with neurocognitive outcomes. These findings support the CNS effectiveness of commonly used highly antiretroviral therapies. The use of antiretroviral drugs with increased CSF penetration and/or effectiveness in treating or preventing neurocognitive disorders however needs to be assessed in well-designed prospective studies.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, c/o Ospedale Amedeo di Savoia, C.so Svizzera 164, 10159, Torino, Italy,
| | | | | |
Collapse
|
49
|
Abstract
HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis.
Collapse
|
50
|
Beck SE, Queen SE, Witwer KW, Metcalf Pate KA, Mangus LM, Gama L, Adams RJ, Clements JE, Christine Zink M, Mankowski JL. Paving the path to HIV neurotherapy: Predicting SIV CNS disease. Eur J Pharmacol 2015; 759:303-12. [PMID: 25818747 DOI: 10.1016/j.ejphar.2015.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
HIV-induced damage to the CNS remains a major challenge for over 30 million people in the world despite the successes of combined antiretroviral therapy in limiting viral replication. Predicting development and progression of HIV-associated CNS disease is crucial because prevention and early intervention could be more effective than attempts to promote repair. The SIV/macaque model is the premier platform to study HIV neuropathogenesis, including discovery of predictive factors such as neuroprotective host genes and both blood and CSF biomarkers that precede and predict development of SIV CNS disease. This report details the role of macaque MHC class I genes, longitudinal alterations in biomarkers in the circulation, and expression of inflammatory and neuronal damage markers in CSF using samples from SIV-inoculated pigtailed macaques collected during acute, asymptomatic, and terminal stages of infection.
Collapse
Affiliation(s)
- Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|