1
|
McInnis JJ, LeComte MD, Reed LF, Torsney EE, Del Rio-Guerra R, Poynter ME, Spees JL. Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB R signaling after ischemic stroke. Exp Neurol 2025; 385:115125. [PMID: 39716588 PMCID: PMC11781953 DOI: 10.1016/j.expneurol.2024.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETBR) signaling. Using a genetic loss-of-function screen, we identified angiopoietin-2 (Ang-2) as a factor produced by reactive astrocytes in response to ET. In experiments with primary adult astrocytes stimulated by IRL1620, a specific ETBR agonist, we found that ERK1/2 and NFkB mediated the effects of ET on Ang-2 production. To determine astroglial Ang-2 levels in vivo, reactive astrocytes expressing the high affinity glutamate transporter (GLAST, EAAT1) were isolated by magnetic-activated cell sorting 3 days after stroke. Astrocytes obtained from the ipsilateral hemisphere expressed significantly more Ang-2 compared with astrocytes isolated from the contralateral hemisphere, or from cortices of sham-operated (control) mice. Notably, analysis of microglia sorted from CX3CR1-eGFP mice demonstrated increased cell surface expression of Tie-2, the Ang-2 receptor, on cells obtained from ipsilateral versus contralateral tissue. Addition of recombinant Ang-2 to astrocyte-conditioned medium significantly increased the number of SIM-A9 murine microglial cells cultured under hypoxic conditions (1 % oxygen for 48 h). In transgenic GFAP-CreER™-EDNRB-fl/fl mice with stroke, conditional knockout of astroglial ETBR significantly decreased the number of proliferating cells in the peri-infarct area with a microglial phenotype (Ki67+/CD11b+). Our results indicate that Ang-2, and possibly other paracrine effectors functioning downstream of astroglial ETBR signaling, are important mediators of microglial cell dynamics after stroke.
Collapse
Affiliation(s)
- John J McInnis
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Matthew D LeComte
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Leah F Reed
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Emily E Torsney
- Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Roxana Del Rio-Guerra
- Harry Hood Bassett Flow Cytometry and Cell Sorting Facility, University of Vermont, Burlington, VT 05401, USA
| | - Matthew E Poynter
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Jeffrey L Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
2
|
Schwarz D, Le Marois M, Sturm V, Peters AS, Longuespée R, Helm D, Schneider M, Eichmüller B, Hidmark AS, Fischer M, Kender Z, Schwab C, Hausser I, Weis J, Dihlmann S, Böckler D, Bendszus M, Heiland S, Herzig S, Nawroth PP, Szendroedi J, Fleming T. Exploring Structural and Molecular Features of Sciatic Nerve Lesions in Diabetic Neuropathy: Unveiling Pathogenic Pathways and Targets. Diabetes 2025; 74:65-74. [PMID: 39418320 DOI: 10.2337/db24-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Lesioned fascicles (LFs) in the sciatic nerves of individuals with diabetic neuropathy (DN) correlate with clinical symptom severity. This study aimed to characterize the structural and molecular composition of these lesions to better understand DN pathogenesis. Sciatic nerves from amputees with and without type 2 diabetes (T2D) were examined using ex vivo magnetic resonance neurography, in vitro imaging, and proteomic analysis. Lesions were only found in T2D donors and exhibited significant structural abnormalities, including axonal degeneration, demyelination, and impaired blood-nerve barrier (BNB). Although non-LFs from T2D donors showed activation of neuroprotective pathways, LFs lacked this response and instead displayed increased complement activation via the classical pathway. The detection of liver-derived acute-phase proteins suggests that BNB disruption facilitates harmful interorgan communication between the liver and nerves. These findings reveal key molecular mechanisms contributing to DN and highlight potential targets for therapeutic intervention. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maxime Le Marois
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas S Peters
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Vascular Biomaterial Bank Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- German Cancer Research Center (DKFZ) Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Eichmüller
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Asa S Hidmark
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
| | - Constantin Schwab
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, University Hospital, Aachen, Germany
| | - Susanne Dihlmann
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dittmar Böckler
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Fleming
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Kakuta Y, Miyagawa S, Matsumura S, Higa-Maegawa Y, Fukae S, Tanaka R, Nakazawa S, Yamanaka K, Kawamura T, Saito S, Miyagawa S, Nonomura N. Complement and complement regulatory protein in allogeneic and xenogeneic kidney transplantation. Transplant Rev (Orlando) 2025; 39:100885. [PMID: 39536474 DOI: 10.1016/j.trre.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Kidney transplantation is the most optimal treatment for patients with end-stage renal disease, offering significant improvements in patient outcomes over dialysis. However, the potential for immune rejection, where the recipient's immune system attacks the transplanted kidney, can compromise transplant success. The complement system, a key component of the immune response, plays a crucial role in both acute and chronic rejection, including T-cell- and antibody-mediated rejection. Understanding and controlling the complement system is essential for managing rejection and enhancing graft survival and overall success of kidney transplantation. In allogeneic transplantation, complement activation through various pathways contributes to graft damage and failure. Recent advancements in genetic engineering enable the development of transgenic pigs expressing human complement regulatory proteins, which display potential for reducing rejection in xenotransplantation. Despite these advances, the complex mechanisms of complement activation and regulation are not fully understood, necessitating further research. This review examines the role of the complement system in kidney transplantation, explores the latest developments in complement regulatory strategies, and discusses potential therapeutic approaches to improve transplant outcomes.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Japan.
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Yoko Higa-Maegawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shota Fukae
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Ryo Tanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Kazuaki Yamanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
4
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
5
|
Wang L, Li RF, Guan XL, Liang SS, Gong P. Predictive value of soluble CD59 for poor 28-day neurological prognosis and all-cause mortality in patients after cardiopulmonary resuscitation: a prospective observatory study. J Intensive Care 2023; 11:3. [PMID: 36732841 PMCID: PMC9893612 DOI: 10.1186/s40560-023-00653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND sCD59, as a soluble form of CD59, is observed in multiple types of body fluids and correlated with the cell damage after ischemia/reperfusion injury. This study aims to observe the dynamic changes of serum sCD59 in patients after restoration of spontaneous circulation (ROSC) and explore the association of serum sCD59 with neurological prognosis and all-cause mortality in patients after ROSC. METHODS A total of 68 patients after ROSC were prospectively recruited and divided into survivors (n = 23) and non-survivors (n = 45) groups on the basis of 28-day survival. Twenty healthy volunteers were enrolled as controls. Serum sCD59 and other serum complement components, including sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, and pro-inflammatory mediators tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), neurological damage biomarkers neuron-specific enolase (NSE) and soluble protein 100β (S100β) were measured by enzyme linked immunosorbent assay on day 1, 3, and 7 after ROSC. Neurologic outcome was assessed using cerebral performance category scores, with poor neurologic outcome defined as 3-5 points. RESULTS In the first week after ROSC, serum levels of sCD59, sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, TNF-α, IL-6, NSE and S100β were significantly elevated in patients after ROSC compared to healthy volunteers, with a significant elevation in the non-survivors compared to survivors except serum C1q and MBL. Serum sCD59 levels were positively correlated with serum sC5b-9, TNF-α, IL-6, NSE, S100β, SOFA score and APACHE II score. Moreover, serum sCD59 on day 1, 3, and 7 after ROSC could be used for predicting poor 28-day neurological prognosis and all-cause mortality. Serum sCD59 on day 3 had highest AUCs for predicting poor 28-day neurological prognosis [0.862 (95% CI 0.678-0.960)] and 28-day all-cause mortality [0.891 (95% CI 0.769-0.962)]. In multivariate logistic regression analysis, the serum level of sCD59D1 was independently associated with poor 28-day neurological prognosis and all-cause mortality. CONCLUSIONS The elevated serum level of sCD59 was positively correlated with disease severity after ROSC. Moreover, serum sCD59 could have good predictive values for the poor 28-day neurological prognosis and all-cause mortality in patients after ROSC.
Collapse
Affiliation(s)
- Ling Wang
- grid.413458.f0000 0000 9330 9891Department of Neurology, The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, Guizhou China ,grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Rui-Fang Li
- grid.412645.00000 0004 1757 9434Department of Emergency, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao-Lan Guan
- grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Shuang-Shuang Liang
- grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Ping Gong
- grid.440218.b0000 0004 1759 7210Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province China
| |
Collapse
|
6
|
Jiang Q, Palombo V, Sherlock DN, Vailati-Riboni M, D’Andrea M, Yoon I, Loor JJ. Alterations in ileal transcriptomics during an intestinal barrier challenge in lactating Holstein cows fed a Saccharomyces cerevisiae fermentation product identify potential regulatory processes. J Anim Sci 2023; 101:skad277. [PMID: 37616596 PMCID: PMC10576520 DOI: 10.1093/jas/skad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ± 7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
7
|
Schreiner C, Powell TL, Palmer C, Jansson T. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res 2022; 92:1316-1324. [PMID: 35132128 PMCID: PMC9357234 DOI: 10.1038/s41390-022-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Emerging evidence from animal experiments indicate that factors secreted by the placenta are critical for normal fetal organ development. Our objective was to characterize the umbilical vein and artery proteome in preterm infants and identify proteins that decrease in the neonatal circulation following delivery. METHODS Cord blood at delivery and neonatal blood at 48-72 h of life was collected in 25 preterm infants. Plasma protein abundance was determined using the SomaLogic platform. RESULTS When comparing protein levels of umbilical venous to arterial cord blood, 434 proteins were significantly higher indicating placental secretion into the fetal circulation. Moreover, when comparing neonatal blood to umbilical vein levels, 142 proteins were significantly lower. These proteins included Endoplasmic reticulum resident protein 29, CD59, Fibroblast growth factor 2 and Dynactin subunit 2, which are involved in brain development and prevention of brain damage as well as Fibroblast growth factor 1 which prevents lung fibrosis. CONCLUSIONS The late second trimester human placenta secretes proteins into the fetal circulation which decrease following delivery. Many of these proteins are predicted to be important in the development of fetal organs. Further studies are needed to directly link placental proteins to organ development and poor outcomes in preterm infants. IMPACT Prematurity remains a leading cause of morbidity and mortality requiring the development of novel treatments. Emerging evidence from animal studies suggest that factors secreted from the placenta may be critical in the development of the fetus. We report that the preterm human placenta secretes an array of proteins into the fetal circulation. Some of these proteins are predicted to be involved in the development of the brain and the lung. When born prematurely, infants are deprived of these placental proteins, which may contribute to their poor outcomes.
Collapse
Affiliation(s)
- Cynthia Schreiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics at Renown Children's Hospital, Reno, NV, USA.
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
9
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
10
|
The innate immune system in diabetic retinopathy. Prog Retin Eye Res 2021; 84:100940. [PMID: 33429059 DOI: 10.1016/j.preteyeres.2021.100940] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of diabetes has been rising steadily in the past half-century, along with the burden of its associated complications, including diabetic retinopathy (DR). DR is currently the most common cause of vision loss in working-age adults in the United States. Historically, DR has been diagnosed and classified clinically based on what is visible by fundoscopy; that is vasculature alterations. However, recent technological advances have confirmed pathology of the neuroretina prior to any detectable vascular changes. These, coupled with molecular studies, and the positive impact of anti-inflammatory therapeutics in DR patients have highlighted the central involvement of the innate immune system. Reminiscent of the systemic impact of diabetes, immune dysregulation has become increasingly identified as a key element of the pathophysiology of DR by interfering with normal homeostatic systems. This review uses the growing body of literature across various model systems to demonstrate the clear involvement of all three pillars of the immune system: immune-competent cells, mediators, and the complement system. It also demonstrates how the relative contribution of each of these requires more extensive analysis, including in human tissues over the continuum of disease progression. Finally, although this review demonstrates how the complex interactions of the immune system pose many more questions than answers, the intimately connected nature of the three pillars of the immune system may also point to possible new targets to reverse or even halt reverse retinopathy.
Collapse
|
11
|
Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun 2020; 11:5196. [PMID: 33060592 PMCID: PMC7566513 DOI: 10.1038/s41467-020-19042-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes play essential roles in blood–brain barrier (BBB) integrity and dysfunction or degeneration of pericytes is implicated in a set of neurological disorders although the underlying mechanism remains largely unknown. However, the scarcity of material sources hinders the application of BBB models in vitro for pathophysiological studies. Additionally, whether pericytes can be used to treat neurological disorders remains to be elucidated. Here, we generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) through the intermediate stage of the cranial neural crest (CNC) and reveal that the cranial neural crest-derived pericyte-like cells (hPSC-CNC PCs) express typical pericyte markers including PDGFRβ, CD146, NG2, CD13, Caldesmon, and Vimentin, and display distinct contractile properties, vasculogenic potential and endothelial barrier function. More importantly, when transplanted into a murine model of transient middle cerebral artery occlusion (tMCAO) with BBB disruption, hPSC-CNC PCs efficiently promote neurological functional recovery in tMCAO mice by reconstructing the BBB integrity and preventing of neuronal apoptosis. Our results indicate that hPSC-CNC PCs may represent an ideal cell source for the treatment of BBB dysfunction-related disorders and help to model the human BBB in vitro for the study of the pathogenesis of such neurological diseases. Pericytes play an essential role in blood brain barrier (BBB) integrity. Here, the authors generate pericyte-like cells (PCs) from human pluripotent stem cells (hPSCs) which display functional properties and also promote BBB recovery in a mouse model of cerebral artery occlusion.
Collapse
|
12
|
Soluble terminal complement activation fragment sC5b-9: a new serum biomarker for traumatic brain injury? Eur J Trauma Emerg Surg 2020; 47:1491-1497. [DOI: 10.1007/s00068-020-01407-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
|
13
|
Carlisi M, Mancuso S, Caimi G, Siragusa S. Thrombotic risk in paroxysmal nocturnal hemoglobinuria-like (PNH-like) phenotype. Clin Hemorheol Microcirc 2020; 79:491-503. [PMID: 32116238 DOI: 10.3233/ch-190735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system is an essential component of the innate immune defence that, if overly activated, may damage organs and tissues. For this reason, there is a fine complement regulatory system. The complement modulation system includes two proteins with important regulatory activity, CD55 or decay accelerating factor (DAF) and CD59 or membrane inhibitor of reactive lysis (MIRL).The paroxysmal nocturnal hemoglobinuria (PNH) is a clonal and non-neoplastic disease characterized by intravascular haemolysis, occurrence of thrombosis and bone marrow failure.In clinical practice, in opposition to PNH, a variety of pathological conditions have been observed with an acquired and non-genetic deficiency of the regulatory proteins CD55 and CD59. This abnormal, non-clonal, reduced expression of complement regulatory proteins configures what we may define as PNH-like phenotype.Similarly to PNH, even in the PNH-like phenotype diseases there has been a greater exposure to the mediated complement cellular lysis and, a likely increased risk of thromboembolic events.Therefore, the knowledge of the potential roles of the complement system becomes necessary for a deeper understanding of several pathological conditions and for an improved clinical management of the patients.
Collapse
Affiliation(s)
- Melania Carlisi
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Salvatrice Mancuso
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Gregorio Caimi
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Sergio Siragusa
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Hu H, Hone EA, Provencher EAP, Sprowls SA, Farooqi I, Corbin DR, Sarkar SN, Hollander JM, Lockman PR, Simpkins JW, Ren X. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep 2020; 10:3233. [PMID: 32094435 PMCID: PMC7040038 DOI: 10.1038/s41598-020-59997-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction occurs in cerebrovascular diseases and neurodegenerative disorders such as stroke. Opening of the BBB during a stroke has a negative impact on acute outcomes. We have recently demonstrated that miR-34a regulates the BBB by targeting cytochrome c (CYC) in vitro. To investigate the role of miR-34a in a stroke, we purified primary cerebrovascular endothelial cells (pCECs) from mouse brains following 1 h transient middle cerebral artery occlusion (tMCAO) and measured real-time PCR to detect miR-34a levels. We demonstrate that the miR-34a levels are elevated in pCECs from tMCAO mice at the time point of BBB opening following 1 h tMCAO and reperfusion. Interestingly, knockout of miR-34a significantly reduces BBB permeability, alleviates disruption of tight junctions, and improves stroke outcomes compared to wild-type (WT) controls. CYC is decreased in the ischemic hemispheres and pCECs from WT but not in miR-34a−/− mice following stroke reperfusion. We further confirmed CYC is a target of miR-34a by a dural luciferase reporter gene assay in vitro. Our study provides the first description of miR-34a affecting stroke outcomes and may lead to discovery of new mechanisms and treatments for cerebrovascular and neurodegenerative diseases such as stroke.
Collapse
Affiliation(s)
- Heng Hu
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Experimental Stroke Core, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Emily A Hone
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Edward A P Provencher
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutic Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Imran Farooqi
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Deborah R Corbin
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Saumyendra N Sarkar
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - John M Hollander
- Human Performance, School of Medicine, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutic Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - James W Simpkins
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Experimental Stroke Core, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Xuefang Ren
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA. .,Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA. .,Human Performance, School of Medicine, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
15
|
Wang Y, Su Y, Lai W, Huang X, Chu K, Brown J, Hong G. Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress. Inflammation 2019; 43:310-325. [DOI: 10.1007/s10753-019-01121-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
17
|
Parker SE, Hanton AM, Stefanou SN, Noakes PG, Woodruff TM, Lee JD. Revisiting the role of the innate immune complement system in ALS. Neurobiol Dis 2019; 127:223-232. [DOI: 10.1016/j.nbd.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
|
18
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
|
20
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
The role of complement activation in rhabdomyolysis-induced acute kidney injury. PLoS One 2018; 13:e0192361. [PMID: 29466390 PMCID: PMC5821337 DOI: 10.1371/journal.pone.0192361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rhabdomyolysis (RM) may cause kidney damage and results primarily in acute kidney injury (AKI). Complement is implicated in the pathogenesis of renal diseases and ischemia-reperfusion injury (IRI), but the role of complement, especially its activation pathway(s) and its effect in RM-induced AKI, is not clear. This study established a rat model of AKI induced by RM via intramuscular treatment with glycerol. Cobra venom factor (CVF) was administered via tail vein injection to deplete complement 12 h prior to intramuscular injection of glycerol. We found that the complement components, including complement 3 (C3), C1q, MBL-A, factor B(fB), C5a, C5b-9, and CD59, were significantly increased in rat kidneys after intramuscular glycerol administration. However, the levels of serum BUN and Cr, renal tubular injury scores, and the number of TUNEL-positive cells decreased significantly in the CVF+AKI group. These results suggest that complement plays an important role in RM-induced AKI and that complement depletion may improve renal function and decrease renal tissue damage by reducing the inflammatory response and apoptosis.
Collapse
|
22
|
Alawieh A, Tomlinson S. Injury site-specific targeting of complement inhibitors for treating stroke. Immunol Rev 2017; 274:270-280. [PMID: 27782326 DOI: 10.1111/imr.12470] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cumulative evidence indicates a role for the complement system in both pathology and recovery after ischemic stroke. Here, we review the current understanding of the dual role of complement in poststroke injury and recovery, and discuss the challenges of anti-complement therapies. Most complement directed therapeutics currently under investigation or development systemically inhibit the complement system, but since complement is important for immune surveillance and is involved in various homeostatic activities, there are potential risks associated with systemic inhibition. Depending on the target within the complement pathway, other concerns are high concentrations of inhibitor required, low efficacy and poor bioavailability. To overcome these limitations, approaches to target complement inhibitors to specific sites have been investigated. Here, we discuss targeting strategies, with a focus on strategies developed in our lab, to specifically localize complement inhibition to sites of tissue injury and complement activation, and in particular to the postischemic brain. We discuss various injury site-specific targeted complement inhibitors as potential therapeutic agents for the treatment of ischemic stroke treatment, as well as their use as investigative tools for probing complement-dependent pathophysiological processes.
Collapse
Affiliation(s)
- Ali Alawieh
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA.,Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
23
|
Abstract
The complement system is a major component of innate immunity and a potent driver of inflammation. It has key roles in host defense against pathogens but can also contribute to pathology by driving inflammation and cell damage in diverse diseases. Complement has emerged as an important factor in the pathogenesis of numerous diseases of the CNS and PNS, including infectious, autoimmune and degenerative disorders, and is increasingly implicated in neuropsychiatric disease. Establishing the roles and relevance of complement in disease pathogenesis has become ever more important in recent years as new drugs targeting the complement system have reached the clinic, and the potential for using complement analytes as disease biomarkers has been recognized. In this brief review, the author summarizes the evidence implicating complement in these diseases and outlines ways in which this new understanding can be used to aid diagnosis and improve outcome.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- a Institute of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF144XN, UK
| |
Collapse
|
24
|
Brennan FH, Lee JD, Ruitenberg MJ, Woodruff TM. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Semin Immunol 2016; 28:292-308. [PMID: 27049459 DOI: 10.1016/j.smim.2016.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia; Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
25
|
Andresen L, Theodorou K, Grünewald S, Czech-Zechmeister B, Könnecke B, Lühder F, Trendelenburg G. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLoS One 2016; 11:e0148428. [PMID: 26849209 PMCID: PMC4746129 DOI: 10.1371/journal.pone.0148428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/17/2016] [Indexed: 11/30/2022] Open
Abstract
Toll-like receptors (TLRs) are central sensors for the inflammatory response in ischemia-reperfusion injury. We therefore investigated whether TLR4 inhibition could be used to treat stroke in a standard model of focal cerebral ischemia. Anti-TLR4/MD2-antibody (mAb clone MTS510) blocked TLR4-induced cell activation in vitro, as reported previously. Here, different routes of MTS510 application in vivo were used to study the effects on stroke outcome up to 2d after occlusion of the middle cerebral artery (MCAO) for 45min in adult male C57Bl/6 wild-type mice. Improved neurological performance, reduced infarct volumes, and reduced brain swelling showed that intravascular application of MTS510 had a protective effect in the model of 45min MCAO. Evaluation of potential long-term adverse effects of anti-TLR4-mAb-treament revealed no significant deleterious effect on infarct volumes nor neurological deficit after 14d of reperfusion in a mild model of stroke (15min MCAO). Interestingly, inhibition of TLR4 resulted in an altered adaptive immune response at 48 hours after reperfusion. We conclude that blocking TLR4 by the use of specific mAb is a promising strategy for stroke therapy. However, long-term studies with increased functional sensitivity, larger sampling sizes and use of other species are required before a clinical use could be envisaged.
Collapse
Affiliation(s)
- Lena Andresen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Sarah Grünewald
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Birte Könnecke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, Göttingen, Germany
| | - George Trendelenburg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
26
|
Hu H, Doll DN, Sun J, Lewis SE, Wimsatt JH, Kessler MJ, Simpkins JW, Ren X. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity. Aging Dis 2016; 7:14-27. [PMID: 26816660 DOI: 10.14336/ad.2015.0906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/06/2015] [Indexed: 02/05/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for stroke severity in experimental stroke animal models and may have translational significance for clinical stroke patients - targeting endothelial mitochondria may be a clinically useful approach for stroke therapy.
Collapse
Affiliation(s)
- Heng Hu
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | | | | | | | | | - Matthew J Kessler
- 4 Office of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - James W Simpkins
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | - Xuefang Ren
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| |
Collapse
|
27
|
Krey L, Lühder F, Kusch K, Czech-Zechmeister B, Könnecke B, Fleming Outeiro T, Trendelenburg G. Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219598 PMCID: PMC4671131 DOI: 10.1038/jcbfm.2015.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sirtuin-2 (Sirt2) is a member of the NAD(+)-dependent protein deacetylase family. Various members of the sirtuin class have been found to be involved in processes related to longevity, regulation of inflammation, and neuroprotection. Induction of Sirt2 mRNA was found in the whole hemisphere after experimental stroke in a recent screening approach. Moreover, Sirt2 protein is highly expressed in myelin-rich brain regions after stroke. To examine the effects of Sirt2 on ischemic stroke, we induced transient focal cerebral ischemia in adult male Sirt2-knockout and wild-type mice. Two stroke models with different occlusion times were applied: a severe ischemia (45 minutes of middle cerebral artery occlusion (MCAO)) and a mild one (15 minutes of MCAO), which was used to focus on subcortical infarcts. Neurological deficit was determined at 48 hours after 45 minutes of MCAO, and up to 7 days after induction of 15 minutes of cerebral ischemia. In contrast to recent data on Sirt1, Sirt2(-/-) mice showed less neurological deficits in both models of experimental stroke, with the strongest manifestation after 48 hours of reperfusion. However, we did not observe a significant difference of stroke volumes or inflammatory cell count between Sirt2-deficient and wild-type mice. Thus we postulate that Sirt2 mediates myelin-dependent neuronal dysfunction during the early phase after ischemic stroke.
Collapse
Affiliation(s)
- Lea Krey
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Birte Könnecke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany
| | - George Trendelenburg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Alawieh A, Elvington A, Tomlinson S. Complement in the Homeostatic and Ischemic Brain. Front Immunol 2015; 6:417. [PMID: 26322048 PMCID: PMC4533015 DOI: 10.3389/fimmu.2015.00417] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022] Open
Abstract
The complement system is a component of the immune system involved in both recognition and response to pathogens, and it is implicated in an increasing number of homeostatic and disease processes. It is well documented that reperfusion of ischemic tissue results in complement activation and an inflammatory response that causes post-reperfusion injury. This occurs following cerebral ischemia and reperfusion and triggers secondary damage that extends beyond the initial infarcted area, an outcome that has rationalized the use of complement inhibitors as candidate therapeutics after stroke. In the central nervous system, however, recent studies have revealed that complement also has essential roles in synaptic pruning, neurogenesis, and neuronal migration. In the context of recovery after stroke, these apparent divergent functions of complement may account for findings that the protective effect of complement inhibition in the acute phase after stroke is not always maintained in the subacute and chronic phases. The development of effective stroke therapies based on modulation of the complement system will require a detailed understanding of complement-dependent processes in both early neurodegenerative events and delayed neuro-reparatory processes. Here, we review the role of complement in normal brain physiology, the events initiating complement activation after cerebral ischemia-reperfusion injury, and the contribution of complement to both injury and recovery. We also discuss how the design of future experiments may better characterize the dual role of complement in recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ali Alawieh
- Neuroscience Institute, Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Ralph H. Johnson Veteran Affairs Medical Center, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
29
|
Herrmann P, Cowing JA, Cristante E, Liyanage SE, Ribeiro J, Duran Y, Abelleira Hervas L, Carvalho LS, Bainbridge JWB, Luhmann UFO, Ali RR. Cd59a deficiency in mice leads to preferential innate immune activation in the retinal pigment epithelium-choroid with age. Neurobiol Aging 2015; 36:2637-48. [PMID: 26234657 DOI: 10.1016/j.neurobiolaging.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
Abstract
Dysregulation of the complement system has been implicated in the pathogenesis of age-related macular degeneration. To investigate consequences of altered complement regulation in the eye with age, we examined Cd59a complement regulator deficient (Cd59a(-/-)) mice between 4 and 15 months. In vivo imaging revealed an increased age-related accumulation of autofluorescent spots in Cd59a(-/-) mice, a feature that reflects accumulation of subretinal macrophages and/or microglia. Despite this activation of myeloid cells in the eye, Cd59a(-/-) mice showed normal retinal histology and function as well as normal choroidal microvasculature. With age, they revealed increased expression of activators of the alternative complement pathway (C3, Cfb, Cfd), in particular in the retinal pigment epithelium (RPE)-choroid but less in the retina. This molecular response was not altered by moderately-enhanced light exposure. Cd59a deficiency therefore leads to a preferential age-related dysregulation of the complement system in the RPE-choroid, that alone or in combination with light as a trigger, is not sufficient to cause choroidal vascular changes or retinal degeneration and dysfunction. This data emphasizes the particular vulnerability of the RPE-choroidal complex to dysregulation of the alternative complement pathway during aging.
Collapse
Affiliation(s)
- Philipp Herrmann
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Jill A Cowing
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Enrico Cristante
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | | | - Joana Ribeiro
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Yanai Duran
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | | | - Livia S Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - James W B Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, UK
| | | | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, UK
| |
Collapse
|
30
|
Gan Z, Wang B, Zhou W, Lu Y, Zhu W, Tang J, Jian J, Wu Z. Molecular and functional characterization of CD59 from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2015; 44:50-59. [PMID: 25661843 DOI: 10.1016/j.fsi.2015.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
CD59, the major inhibitor of membrane attack complex, plays a crucial role in regulation of complement activation. In this paper, a CD59 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD59) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for complement-inhibitory activity were detected in the deduced amino acid sequence of On-CD59. In healthy Nile tilapia, the On-CD59 transcripts could be detected in all the examined tissues, with the most abundant expression in the brain. When immunized with inactivated S. agalactiae, there was a clear time-dependent expression pattern of On-CD59 in the skin, brain, head kidney, thymus and spleen, with quite different kinetic expressions. The assays for the complement-inhibitory activity suggested that recombinant On-CD59 protein had a species-selective inhibition of complement. Moreover, our works showed that recombinant On-CD59 protein may possess both binding activities to PGN and LTA and inhibiting activity of S. agalactiae. These findings indicated that On-CD59 may play important roles in the immune response to S. agalactiae in Nile tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Wei Zhou
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China.
| | - Weiwei Zhu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - JiChang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| |
Collapse
|
31
|
Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 2015; 46:1681-9. [PMID: 25922503 DOI: 10.1161/strokeaha.115.009099] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The blood-brain barrier (BBB) is a selectively permeable cerebrovascular endothelial barrier that maintains homeostasis between the periphery and the central nervous system. BBB disruption is a consequence of ischemic stroke and BBB permeability can be altered by infection/inflammation, but the complex cellular and molecular changes that result in this BBB alteration need to be elucidated to determine mechanisms. METHODS Infection mimic (lipopolysaccharide) challenge on infarct volume, BBB permeability, infiltrated neutrophils, and functional outcomes after murine transient middle cerebral artery occlusion in vivo; mitochondrial evaluation of cerebrovascular endothelial cells challenged by lipopolysaccharide in vitro; pharmacological inhibition of mitochondria on BBB permeability in vitro and in vivo; the effects of mitochondrial inhibitor on BBB permeability, infarct volume, and functional outcomes after transient middle cerebral artery occlusion. RESULTS We report here that lipopolysaccharide worsens ischemic stroke outcome and increases BBB permeability after transient middle cerebral artery occlusion in mice. Furthermore, we elucidate a novel mechanism that compromised mitochondrial function accounts for increased BBB permeability as evidenced by: lipopolysaccharide-induced reductions in oxidative phosphorylation and subunit expression of respiratory chain complexes in cerebrovascular endothelial cells, a compromised BBB permeability induced by pharmacological inhibition of mitochondrial function in cerebrovascular endothelial cells in vitro and in an in vivo animal model, and worsened stroke outcomes in transient middle cerebral artery occlusion mice after inhibition of mitochondrial function. CONCLUSIONS We concluded that mitochondria are key players in BBB permeability. These novel findings suggest a potential new therapeutic strategy for ischemic stroke by endothelial cell mitochondrial regulation.
Collapse
Affiliation(s)
- Danielle N Doll
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Heng Hu
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Jiahong Sun
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Sara E Lewis
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - James W Simpkins
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown
| | - Xuefang Ren
- From the Department of Neurobiology and Anatomy (D.N.D.), Experimental Stroke Core, Center for Basic and Translational Stroke Research (H.H., S.E.L., J.W.S., X.R.), and Department of Physiology and Pharmacology (H.H., J.S., S.E.L., J.W.S., X.R.), West Virginia University, Morgantown.
| |
Collapse
|
32
|
Abstract
The severe clinical symptoms of inherited CD59 deficiency confirm the importance of CD59 as essential complement regulatory protein for protection of cells against complement attack, in particular protection of hematopoietic cells and human neuronal tissue. Targeted complement inhibition might become a treatment option as suggested by a case report. The easy diagnostic approach by flow cytometry and the advent of a new treatment option should increase the awareness of this rare differential diagnosis and lead to further studies on their pathophysiology.
Collapse
|
33
|
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014; 8:380. [PMID: 25426028 PMCID: PMC4224073 DOI: 10.3389/fncel.2014.00380] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Experimental and Clinical Sciences, University of Chieti Pescara, Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| |
Collapse
|
34
|
Muller AJ, Marks JD. Hypoxic ischemic brain injury: Potential therapeutic interventions for the future. Neoreviews 2014; 15:e177-e186. [PMID: 25177211 DOI: 10.1542/neo.15-5-e177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perinatal hypoxic-ischemic brain injury is a common problem with potentially devastating impact on neurodevelopmental outcomes. While therapeutic hypothermia, the first available treatment for this disease, reduces the risk of death or major neurodevelopmental disability, the risk of major neurologic morbidity following HI remains significant. Basic research has identified cellular mechanisms that mediate neuronal death. This article reviews the cellular processes induced that lead to brain injury following HI, and identify treatments currently under investigation for potential translation to clinical trials.
Collapse
Affiliation(s)
- Aaron J Muller
- Department of Pediatrics, University of Chicago 900 East 57th Street Chicago IL 60637
| | - Jeremy D Marks
- Department of Neurology, University of Chicago 900 East 57th Street Chicago IL 60637
| |
Collapse
|
35
|
Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J Autoimmun 2014; 53:67-77. [PMID: 24698947 DOI: 10.1016/j.jaut.2014.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
Spinal cord pathology with inflammatory, demyelinating lesions spanning three or more vertebral segments is a characteristic feature of neuromyelitis optica (NMO). NMO pathogenesis is thought to involve binding of immunoglobulin G anti-aquaporin-4 autoantibodies (NMO-IgG) to astrocytes, causing complement-dependent cytotoxicity (CDC) and secondary inflammation, demyelination and neuron loss. We investigated the involvement of CD59, a glycophosphoinositol (GPI)-anchored membrane protein on astrocytes that inhibits formation of the terminal C5b-9 membrane attack complex. CD59 inhibition by a neutralizing monoclonal antibody greatly increased NMO-IgG-dependent CDC in murine astrocyte cultures and ex vivo spinal cord slice cultures. Greatly increased NMO pathology was also found in spinal cord slice cultures from CD59 knockout mice, and in vivo following intracerebral injection of NMO-IgG and human complement. Intrathecal injection (at L5-L6) of small amounts of NMO-IgG and human complement in CD59-deficient mice produced robust, longitudinally extensive white matter lesions in lumbar spinal cord. Pathology was most severe at day 2 after injection, showing loss of AQP4 and GFAP, C5b-9 deposition, microglial activation, granulocyte infiltration, and demyelination. Hind limb motor function was remarkably impaired as well. There was partial remyelination and recovery of motor function by day 5. Our results implicate CD59 as an important modulator of the immune response in NMO, and provide a novel animal model of NMO that closely recapitulates human NMO pathology. Up-regulation of CD59 on astrocytes may have therapeutic benefit in NMO.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA
| | - A S Verkman
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
36
|
Duehrkop C, Rieben R. Ischemia/reperfusion injury: effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition. Biochem Pharmacol 2013; 88:12-22. [PMID: 24384116 DOI: 10.1016/j.bcp.2013.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion injury (IRI) may occur from ischemia due to thrombotic occlusion, trauma or surgical interventions, including transplantation, with subsequent reestablishment of circulation. Time-dependent molecular and structural changes result from the deprivation of blood and oxygen in the affected tissue during ischemia. Upon restoration of blood flow a multifaceted network of plasma cascades is activated, including the complement-, coagulation-, kinin-, and fibrinolytic system, which plays a major role in the reperfusion-triggered inflammatory process. The plasma cascade systems are therefore promising therapeutic targets for attenuation of IRI. Earlier studies showed beneficial effects through inhibition of the complement system using specific complement inhibitors. However, pivotal roles in IRI are also attributed to other cascades. This raises the question, whether drugs, such as C1 esterase inhibitor, which regulate more than one cascade at a time, have a higher therapeutic potential. The present review discusses different therapeutic approaches ranging from specific complement inhibition to simultaneous inhibition of plasma cascade systems for reduction of IRI, gives an overview of the plasma cascade systems in IRI as well as highlights recent findings in this field.
Collapse
Affiliation(s)
- Claudia Duehrkop
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, CH-3010 Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, CH-3010 Bern, Switzerland.
| |
Collapse
|
37
|
Sun C, Wu J, Liu S, Li H, Zhang S. Zebrafish CD59 has both bacterial-binding and inhibiting activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:178-188. [PMID: 23707788 DOI: 10.1016/j.dci.2013.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
CD59, known as protectin, usually plays roles as a regulatory inhibitor of complement, but it also exhibits activities independent of its function as a complement inhibitor. This study reported the identification and characterization of an ortholog of mammalian cd59 from zebrafish Danio rerio, which is similar to known cd59 in terms of both amino acid sequence and genomic structure as well as synteny conservation. We showed that zebrafish cd59 was maternally expressed in early embryos and expressed in a tissue-specific manner, with most abundant expression in the brain. We further showed that recombinant zebrafish CD59 was capable of binding to both the Gram-negative and Gram-positive bacteria as well as the microbial signature molecules LPS and LTA. In addition we demonstrated that recombinant zebrafish CD59 displayed slight antimicrobial activity capable of inhibiting the growth of E. coli and S. aureus. All these data indicate that zebrafish CD59 can not only binds to the bacteria and their signature molecules LPS and LTA but can also inhibit their growth, a novel role assigned to CD59.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
38
|
Järlestedt K, Rousset CI, Ståhlberg A, Sourkova H, Atkins AL, Thornton C, Barnum SR, Wetsel RA, Dragunow M, Pekny M, Mallard C, Hagberg H, Pekna M. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic‐ischemic brain injury. FASEB J 2013; 27:3797-804. [DOI: 10.1096/fj.13-230011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Anders Ståhlberg
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hana Sourkova
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alison L. Atkins
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Scott R. Barnum
- Department of MicrobiologyUniversity of AlabamaBirminghamAlabamaUSA
| | - Rick A. Wetsel
- Research Center for Immunology and Autoimmune DiseasesInstitute of Molecular Medicine for the Prevention of Human DiseasesUniversity of Texas‐HoustonHoustonTexasUSA
| | - Mike Dragunow
- Department of PharmacologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- The National Research Centre for Growth and DevelopmentFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Milos Pekny
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Obstetrics and GynecologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for the Developing BrainKing's CollegeLondonUK
| | - Marcela Pekna
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
39
|
Elvington A, Atkinson C, Zhu H, Yu J, Takahashi K, Stahl GL, Kindy MS, Tomlinson S. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. THE JOURNAL OF IMMUNOLOGY 2012; 189:4640-7. [PMID: 23028050 DOI: 10.4049/jimmunol.1201904] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is mounting evidence indicating an important role for complement in the pathogenesis of cerebral ischemia-reperfusion injury, or ischemic stroke. The role of the alternative complement pathway in ischemic stroke has not been investigated, and there is conflicting data on the role of the terminal pathway. In this study, we show that compared with wild-type mice, mice deficient in the alternative pathway protein factor B or mice treated with the alternative pathway inhibitor CR2-fH have improved outcomes after 60-min middle cerebral artery occlusion and 24-h reperfusion. Factor B-deficient or CR2-fH-treated mice were protected in terms of improved neurologic function and reduced cerebral infarct, demyelination, P-selectin expression, neutrophil infiltration, and microthrombi formation. Mice deficient in both the classical and lectin pathways (C1q/MBL deficient) were also protected from cerebral ischemia-reperfusion injury, and there was no detectable C3d deposition in the ipsilateral brain of these mice. These data demonstrate that the alternative pathway is not alone sufficient to initiate complement activation and indicate that the alternative pathway propagates cerebral injury via amplification of the cascade. Deficiency of C6, a component of the terminal cytolytic membrane attack complex, had no effect on outcome after ischemic stroke, indicating that the membrane attack complex is not involved in mediating injury in this model. We additionally show that the protective effect of factor B deficiency and CR2-fH treatment is sustained in the subacute stage of infarct development, adding to the clinical relevance of these findings.
Collapse
Affiliation(s)
- Andrew Elvington
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Charnay Y, Imhof A, Vallet PG, Kovari E, Bouras C, Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res Bull 2012; 88:434-43. [DOI: 10.1016/j.brainresbull.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
41
|
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012; 9:137. [PMID: 22721265 PMCID: PMC3464784 DOI: 10.1186/1742-2094-9-137] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Collapse
Affiliation(s)
- Faith H Brennan
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
42
|
Abstract
Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.
Collapse
Affiliation(s)
- Yara Banz
- Institute of Pathology, University of Bern, Switzerland
| | | |
Collapse
|
43
|
Weckbach S, Neher M, Losacco JT, Bolden AL, Kulik L, Flierl MA, Bell SE, Holers VM, Stahel PF. Challenging the role of adaptive immunity in neurotrauma: Rag1(-/-) mice lacking mature B and T cells do not show neuroprotection after closed head injury. J Neurotrauma 2012; 29:1233-42. [PMID: 22335783 DOI: 10.1089/neu.2011.2169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of adaptive immunity in contributing to post-traumatic neuroinflammation and neuropathology after head injury remains largely unexplored. The present study was designed to investigate the pathophysiological sequelae of closed head injury in Rag1(-/-) mice devoid of mature B and T lymphocytes. C57BL/6 wild-type and Rag1(-/-) mice were subjected to experimental closed head injury, using a standardized weight-drop device. Outcome parameters consisted of neurological scoring, quantification of blood-brain barrier (BBB) function, measurement of inflammatory markers and mediators of apoptosis in serum and brain tissue, and assessment of neuronal cell death, astrogliosis, and tissue destruction. There was no difference between wild-type and Rag1(-/-) mice with regard to injury severity and neurological impairment for up to 7 days after head injury. The extent of BBB dysfunction was in a similar range for both groups. Quantification of complement activation fragments in serum revealed significantly attenuated C3a levels in Rag1(-/-) mice compared to wild-type animals. In contrast, the levels of pro- and anti-inflammatory cytokines and pro-apoptotic and anti-apoptotic mediators remained in a similar range for both groups, and the histological analysis of brain sections did not reveal a difference in reactive astrogliosis, tissue destruction, and neuronal cell death in Rag1(-/-) compared to wild-type mice. These findings suggest that adaptive immunity is not of crucial importance for initiating and sustaining the inflammatory neuropathology after closed head injury. The attenuated extent of post-traumatic complement activation seen in Rag1(-/-) mice implies a cross-talk between innate and adaptive immune responses, which requires further investigation in future studies.
Collapse
Affiliation(s)
- Sebastian Weckbach
- Department of Orthopaedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado 80204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Differential regulation of Nedd4 ubiquitin ligases and their adaptor protein Ndfip1 in a rat model of ischemic stroke. Exp Neurol 2012; 235:326-35. [PMID: 22417925 DOI: 10.1016/j.expneurol.2012.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/20/2012] [Accepted: 02/25/2012] [Indexed: 01/31/2023]
Abstract
Ubiquitin-modification of proteins by E3 ubiquitin ligases is an important post-translational mechanism implicated in neuronal survival and injury following cerebral ischemia. However, of the 500 or so E3s thought to be present in mammalian cells, very few specific E3s have been identified and associated with brain ischemia. Here, we demonstrate endogenous induction of HECT-type E3 ligases of the Nedd4 family and their adaptor Nedd4-family interacting protein 1 (Ndfip1) following transient focal cerebral ischemia in rats. Ndfip1 is upregulated in surviving cortical neurons and its neuroprotective activity is correlated with Nedd4-2 upregulation, but not two other Nedd4 family members examined (Nedd4-1 and Itch). Immunoprecipitation assays confirmed biochemical binding of Ndfip1 with Nedd4-2 in the brain, with or without ischemic stroke, indicating their endogenous interaction. While Ndfip1 and Itch have been previously shown to interact outside of the nervous system, ischemic induction of Itch in the present study was associated with cellular survival independent of Ndfip1. Together, these findings demonstrate specific and differential regulation of Nedd4 family E3 ligases under ischemic conditions, and identify two E3 ligases and their adaptor that potentially regulate ubiquitination in ischemic stroke to provide neuroprotection.
Collapse
|
45
|
Morrison H, Frye J, Davis-Gorman G, Funk J, McDonagh P, Stahl G, Ritter L. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke. Curr Neurovasc Res 2012; 8:52-63. [PMID: 21208161 DOI: 10.2174/156720211794520260] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/19/2010] [Indexed: 12/23/2022]
Abstract
After complement system (CS) activation, the sequential production of complement products increases cell injury and death through opsonophagocytosis, cytolysis, adaptive, and inflammatory cell responses. These responses potentiate cerebral ischemia-reperfusion (IR) injury after ischemic stroke and reperfusion. Activation of the CS via mannose binding lectin (MBL)-initiated lectin pathway is known to increase tissue damage in response to IR in muscle, myocardium and intestine tissue. In contrast, the contribution of this pathway to cerebral IR injury, a neutrophil-mediated event, is less clear. Therefore, we investigated the potential protective role of MBL deficiency in neutrophil-mediated cerebral injury after IR. Using an intraluminal filament method, neutrophil activation and cerebral injury were compared between MBL-deficient and wild type C57Bl/6 mice subjected to 60 minutes of MCA ischemia and reperfusion. Systemic neutrophil activation was not decreased in MBL-deficient animals after IR. In MBL-deficient animals, cerebral injury was significantly decreased only in the striatum (p < 0.05). Despite MBL deficiency, C3 depositions were evident in the injured hemisphere during reperfusion. These results indicate that while MBL deficiency results in a modest protection of a sub-cortical brain region during IR, redundant complement pathway activation may overwhelm further beneficial effects of MBL deficiency during reperfusion.
Collapse
Affiliation(s)
- Helena Morrison
- College of Nursing, University of Arizona, Tucson Arizona, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Carter AM. Complement activation: an emerging player in the pathogenesis of cardiovascular disease. SCIENTIFICA 2012; 2012:402783. [PMID: 24278688 PMCID: PMC3820556 DOI: 10.6064/2012/402783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/06/2012] [Indexed: 05/08/2023]
Abstract
A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis.
Collapse
Affiliation(s)
- Angela M. Carter
- Division of Epidemiology, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health and the Multidisciplinary Cardiovascular Research Centre, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
- *Angela M. Carter:
| |
Collapse
|
47
|
Füst G, Munthe-Fog L, Illes Z, Széplaki G, Molnar T, Pusch G, Hirschberg K, Szegedi R, Széplaki Z, Prohászka Z, Skjoedt MO, Garred P. Low ficolin-3 levels in early follow-up serum samples are associated with the severity and unfavorable outcome of acute ischemic stroke. J Neuroinflammation 2011; 8:185. [PMID: 22206485 PMCID: PMC3314397 DOI: 10.1186/1742-2094-8-185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/29/2011] [Indexed: 11/13/2022] Open
Abstract
Background A number of data indicate that the lectin pathway of complement activation contributes to the pathophysiology of ischemic stroke. The lectin pathway may be triggered by the binding of mannose-binding lectin (MBL), ficolin-2 or ficolin-3 to different ligands. Although several papers demonstrated the significance of MBL in ischemic stroke, the role of ficolins has not been examined. Methods Sera were obtained within 12 hours after the onset of ischemic stroke (admission samples) and 3-4 days later (follow-up samples) from 65 patients. The control group comprised 100 healthy individuals and 135 patients with significant carotid stenosis (patient controls). The concentrations of ficolin-2 and ficolin-3, initiator molecules of the lectin complement pathway, were measured by ELISA methods. Concentration of C-reactive protein (CRP) was also determined by a particle-enhanced immunturbidimetric assay. Results Concentrations of both ficolin-2 and ficolin-3 were significantly (p < 0.001) decreased in both the admission and in the follow-up samples of patients with definite ischemic stroke as compared to healthy subjects. Concentrations of ficolin-2 and ficolin-3 were even higher in patient controls than in healthy subjects, indicating that the decreased levels in sera during the acute phase of stroke are related to the acute ischemic event. Ficolin-3 levels in the follow-up samples inversely correlated with the severity of stroke indicated by NIH scale on admission. In follow-up samples an inverse correlation was observed between ficolin-3 levels and concentration of S100β, an indicator of the size of cerebral infarct. Patients with low ficolin-3 levels and high CRP levels in the follow up samples had a significantly worse outcome (adjusted ORs 5.6 and 3.9, respectively) as measured by the modified Rankin scale compared to patients with higher ficolin-3 and lower CRP concentrations. High CRP concentrations were similarly predictive for worse outcome, and the effects of low ficolin-3 and high CRP were independent. Conclusions Our findings indicate that ficolin-mediated lectin pathways of complement activation contribute to the pathogenesis of ischemic stroke and may be additive to complement-independent inflammatory processes.
Collapse
Affiliation(s)
- George Füst
- 3rd Department of Internal Medicine, Semmelwies University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang J, Hu W, Xing W, You T, Xu J, Qin X, Peng Z. The protective role of CD59 and pathogenic role of complement in hepatic ischemia and reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2876-84. [PMID: 22019898 DOI: 10.1016/j.ajpath.2011.08.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/04/2011] [Accepted: 08/29/2011] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major factor influencing graft outcome in liver transplantation, but its mechanism is not well defined. Although complement, including the membrane attack complex (MAC), a terminal product of complement activation, is thought to be involved in the multiple reactions subsequent to the ischemia-reperfusion (IR) process, the role of MAC in the pathogenesis of hepatic IRI requires further investigation. We used a warm ischemia-reperfusion injury model in mice and a syngeneic orthotopic liver transplantation model in rats to define the role of complement, including MAC, in hepatic IR. CD59-deficient mice had more severe liver dysfunction, evidenced by increased aspartate aminotransferase levels and increased injury of liver parenchymal and nonparenchymal cells than did CD59-sufficient mice during warm hepatic IR. Furthermore, complement depletion in CD59-deficient mice by pretreatment with cobra venom factor (CVF) or the genetic introduction of C3 deficiency partially protected against development of the severe liver dysfunction that occurred in CD59-deficient mice. Severity of liver dysfunction correlated with MAC deposition, apoptotic cells, and increased inflammatory mediators such as tumor necrosis factor α. Moreover, depletion of complement with CVF in orthotopic liver transplantation recipient rats attenuated IRI of the donor livers. Taken together, these results highlight the protective role of CD59 and pathogenic role of complement, including MAC, in the pathogenesis of hepatic IRI.
Collapse
Affiliation(s)
- Jinyan Zhang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|