1
|
Bresciani G, Manai F, Felszeghy S, Smedowski A, Kaarniranta K, Amadio M. VEGF and ELAVL1/HuR protein levels are increased in dry and wet AMD patients. A new tile in the pathophysiologic mechanisms underlying RPE degeneration? Pharmacol Res 2024; 208:107380. [PMID: 39216841 DOI: 10.1016/j.phrs.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula's retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (i.e., oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.
Collapse
Affiliation(s)
| | - Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Szabolcs Felszeghy
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Adrian Smedowski
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland; GlaucoTech Co., Katowice, Poland; Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | |
Collapse
|
2
|
von der Burchard C, Miura Y, Stanzel B, Chhablani J, Roider J, Framme C, Brinkmann R, Tode J. Regenerative Retinal Laser and Light Therapies (RELITE): Proposal of a New Nomenclature, Categorization, and Trial Reporting Standard. Lasers Surg Med 2024; 56:693-708. [PMID: 39210705 DOI: 10.1002/lsm.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Numerous laser and light therapies have been developed to induce regenerative processes in the choroid/retinal pigment epithelium (RPE)/photoreceptor complex, leaving the neuroretina undamaged. These therapies are applied to the macula for the treatment of various diseases, most prominently diabetic maculopathy, retinal vein occlusion, central serous chorioretinopathy, and age-related macular degeneration. However, the abundance of technologies, treatment patterns, and dosimetry protocols has made understanding these therapies and comparing different approaches increasingly complex and challenging. To address this, we propose a new nomenclature system with a clear categorization that will allow for better understanding and comparability between different laser and light modalities. We propose this nomenclature system as an open standard that may be adapted in future toward new technical developments or medical advancements. METHODS A systematic literature review of reported macular laser and light therapies was conducted. A categorization into a standardized system was proposed and discussed among experts and professionals in the field. This paper does not aim to assess, compare, or evaluate the efficacy of different laser or dosimetry techniques or treatment patterns. RESULTS The literature search yielded 194 papers describing laser techniques, 50 studies describing dosimetry, 272 studies with relevant clinical trials, and 82 reviews. Following the common therapeutic aim, we propose "regenerative retinal laser and light therapies (RELITE)" as the general header. We subdivided RELITE into four main categories that refer to the intended physical and biochemical effects of temperature increase (photothermal therapy, PTT), RPE regeneration (photomicrodisruption therapy, PMT), photochemical processes (photochemical therapy, PCT), and photobiomodulation (photobiomodulation therapy, PBT). Further, we categorized the different dosimetry approaches and treatment regimens. We propose the following nomenclature system that integrates the most important parameters to enable understanding and comparability: Pattern-Dosimetry-Exposure Time/Frequency, Duty Cycle/Irradiation Diameter/Wavelength-Subcategory-Category. CONCLUSION Regenerative retinal laser and light therapies are widely used for different diseases and may become valuable in the future. A precise nomenclature system and strict reporting standards are needed to allow for a better understanding, reproduceable and comparable clinical trials, and overall acceptance. We defined categories for a systematic therapeutic goal-based nomenclature to facilitate future research in this field.
Collapse
Affiliation(s)
- Claus von der Burchard
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Yoko Miura
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Department of Ophthalmology, University of Luebeck, University Medical Center of Schleswig-Holstein, Luebeck, Germany
| | - Boris Stanzel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Carsten Framme
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| | - Ralf Brinkmann
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Medical Laser Center Luebeck, Luebeck, Germany
| | - Jan Tode
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| |
Collapse
|
3
|
Dimtsas GS, Ieronymaki A, Chatzistefanou KI, Siasos G, Krassas A, Moschos MM. Elevated VEGF-A Levels in the Aqueous Humor of Patients With Primary Open Angle Glaucoma. In Vivo 2024; 38:1875-1881. [PMID: 38936903 PMCID: PMC11215581 DOI: 10.21873/invivo.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The purpose of the current study was to compare the vascular endothelial growth factor-A (VEGF-A) levels in the aqueous humor of patients with primary open angle glaucoma (POAG) and non-glaucomatous eyes and reveal any potential statistically significant correlations. PATIENTS AND METHODS This was an observational cross-sectional study. Aqueous humor samples (50-100 μl) were collected under aseptic conditions, from the anterior chamber at the start of glaucoma or cataract surgery. The levels of VEGF-A were measured using a multiplex bead-based immunoassay. RESULTS Aqueous humor samples were obtained from 76 participants: 39 with POAG and 36 with age-related cataracts as controls. VEGF-A levels were significantly elevated in the POAG group (166.37±110.04 pg/ml, p=0.011) compared to the control group (119.02±49.09 pg/ml). The receiver operating characteristic (ROC) analysis showed that VEGF-A had significant prognostic ability for POAG (AUC=0.67; p=0.006). An optimal cut-off for VEGF-A was found to be 148.5 pg/ml with a sensitivity of 54%, specificity of 81.1%, positive prognostic value (PPV) of 75% and negative prognostic value (NPV) of 62.5%. Logistic regression analysis showed that after adjusting for sex and age, patients with VEGF-A higher than 148.5 pg/ml had almost 10 times greater likelihood for POAG. CONCLUSION VEGF-A is elevated in patients with POAG and can potentially have a prognostic ability for these patients.
Collapse
Affiliation(s)
- Georgios S Dimtsas
- First Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece;
| | - Alexandra Ieronymaki
- First Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| | - Klio I Chatzistefanou
- First Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, Sotiria Chest Disease Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Augustinos Krassas
- First Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| | - Marilita M Moschos
- First Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| |
Collapse
|
4
|
Dimtsas GS, Tsiogka A, Moschos MM. VEGF levels in the aqueous humor of patients with primary open angle glaucoma: A systematic review and a meta-analysis. Eur J Ophthalmol 2023; 33:2228-2235. [PMID: 37038334 DOI: 10.1177/11206721231168146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE To compare the VEGF levels in the aqueous humor of patients with Primary Open Angle Glaucoma (POAG) and non-glaucomatous eyes and reveal any potential statistically significant correlations. METHODS We searched PubMed, from inception to December 31, 2021. Key search terms included VEGF and Glaucoma. All relevant studies that evaluated the VEGF levels in patients with POAG and in the control group were included in this systematic review. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines were followed. Data were extracted independently by 2 authors. Heterogeneity was statistically quantified by Q, H, and I2 statistics, and a meta-analysis was performed using the random-effects model. RESULTS Seven cross-sectional studies were included in the meta-analysis. 144 eyes were enrolled in the POAG group and 162 eyes in the control group. The random effect model showed no statistically significant difference between the two groups (SMD =0.284, 95% CI = -0.173 to 0.741; P = 0.223), but we noticed a trend towards elevated VEGF levels in the aqueous humor of POAG patients. Significant heterogeneity was detected (I2 = 74.1%, P = 0.001). CONCLUSIONS This systematic review and meta-analysis indicates a trend towards elevated VEGF-A levels in the aqueous humor of patients with POAG and suggests a potential neuroprotective role of VEGF in patients with POAG. Future studies are required to evaluate the exact role of VEGF in POAG.
Collapse
Affiliation(s)
- Georgios S Dimtsas
- 1st Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| | - Anastasia Tsiogka
- 1st Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| | - Marilita M Moschos
- 1st Department of Ophthalmology, National and Kapodistrian University of Athens, "G. Gennimatas" General Hospital, Athens, Greece
| |
Collapse
|
5
|
Wysocki M, Czarczynska-Goslinska B, Ziental D, Michalak M, Güzel E, Sobotta L. Excited state and reactive oxygen species against cancer and pathogens: a review on sonodynamic and sono-photodynamic therapy. ChemMedChem 2022; 17:e202200185. [PMID: 35507015 DOI: 10.1002/cmdc.202200185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic and sonodynamic therapy are therapies having great potential in the treatment of bacterial infections and cancer. Their background is associated with photo- and sonosensitizers - substances that can be excited when exposed to light or ultrasound. These sensitizers belong to a variety of compounds groups, including porphyrins, porphyrazines, and phthalocyanines. Releasing the energy when returning to the ground state can occur in the manner of transferring it to oxygen molecules, leading to reactive oxygen species able to disrupt membranes of bacterial and cancer cells, leaving the organism's cells unaffected. In recent years, the number of reports on numerous sensitizers being effective has been constantly growing. Therefore, the development of this field may prove beneficial for dealing with cancer and microbes. This review describes the development of photodynamic and sonodynamic therapy, as well as their combination, with emphasize on sonodynamic therapy and its potential in the treatment of cancer and bacterial infections.
Collapse
Affiliation(s)
- Marcin Wysocki
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Beata Czarczynska-Goslinska
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Pharmaceutical Technology, POLAND
| | - Daniel Ziental
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Maciej Michalak
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Emre Güzel
- Sakarya Uygulamali Bilimler Universitesi, Department of Engineering Fundamental Sciences, TURKEY
| | - Lukasz Sobotta
- Uniwersytet Medyczny imienia Karola Marcinkowskiego w Poznaniu, Department of Inorganic and Analytical Chemistry, Grunwaldzka 6, 60780, Poznan, POLAND
| |
Collapse
|
6
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Cheng SY, Punzo C. Ocular Inflammation with Anti-Vascular Endothelial Growth Factor Treatments. Hum Gene Ther 2021; 32:639-641. [PMID: 34283642 DOI: 10.1089/hum.2021.29167.syc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology, Gene Therapy Center, Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology, Gene Therapy Center, Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Cheng SY, Luo Y, Malachi A, Ko J, Su Q, Xie J, Tian B, Lin H, Ke X, Zheng Q, Tai PWL, Gao G, Punzo C. Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Hum Gene Ther 2021; 32:649-666. [PMID: 34182803 PMCID: PMC8312021 DOI: 10.1089/hum.2021.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Anneliese Malachi
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jihye Ko
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
10
|
The Influence of Melatonin and Light on VEGF Secretion in Primary RPE Cells. Biomolecules 2021; 11:biom11010114. [PMID: 33467052 PMCID: PMC7830335 DOI: 10.3390/biom11010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Retinal pigment epithelial cells (RPE) cells constitutively secrete vascular endothelial growth factor (VEGF) in the retina, protecting the neuronal cells and the choroid. Increased VEGF secretion, however, can result in neovascularization and edema. Many factors regulate VEGF secretion. In this study, we investigated the effect of external stimuli in relation to diurnal rhythm on constitutive VEGF secretion. (2) Methods: Single-eye RPE cell culture was prepared from porcine eyes. RPE cells were cultured in darkness, treated with daylight or room light, and treated with melatonin at different time frames, either respectively or in combination. Supernatants were collected and VEGF content evaluated using ELISA. Expression of the clock protein BMAL1 was evaluated with Western blot. (3) Results: VEGF secretion of the RPE shows a diurnal rhythm. While the rhythm is not influenced by either light or melatonin, the amount of secreted VEGF can be increased by nocturnal melatonin, especially in combination with morning daylight. These findings disclose another layer of VEGF regulation in the retina.
Collapse
|
11
|
Froger N, Matonti F, Roubeix C, Forster V, Ivkovic I, Brunel N, Baudouin C, Sahel JA, Picaud S. VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons. Sci Rep 2020; 10:12409. [PMID: 32710087 PMCID: PMC7382485 DOI: 10.1038/s41598-020-68488-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2020] [Indexed: 02/01/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) is the angiogenic factor promoting the pathological neovascularization in age-related macular degeneration (AMD) or diabetic macular edema (DME). Evidences have suggested a neurotrophic and neuroprotective role of VEGF, albeit in retina, cellular mechanisms underlying the VEGF neuroprotection remain elusive. Using purified adult retinal ganglion cells (RGCs) in culture, we demonstrated here that VEGF is released by RGCs themselves to promote their own survival, while VEGF neutralization by specific antibodies or traps drastically reduced the RGC survival. These results indicate an autocrine VEGF neuroprotection on RGCs. In parallel, VEGF produced by mixed retinal cells or by mesenchymal stem cells exerted a paracrine neuroprotection on RGCs. Such neuroprotective effect was obtained using the recombinant VEGF-B, suggesting the involvement of VEGF-R1 pathway in VEGF-elicited RGC survival. Finally, glaucomatous patients injected with VEGF traps (ranibizumab or aflibercept) due to either AMD or DME comorbidity, showed a significant reduction of RGC axon fiber layer thickness, consistent with the plausible reduction of the VEGF autocrine stimulation of RGCs. Our results provide evidence of the autocrine neuroprotective function of VEGF on RGCs is crucially involved to preserve injured RGCs such as in glaucomatous patients.
Collapse
Affiliation(s)
- Nicolas Froger
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.
| | - Frédéric Matonti
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,Centre Monticelli Paradis, 433 bis rue Paradis, 13008, Marseille, France.,Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, 13005, Marseille, France
| | - Christophe Roubeix
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France
| | - Valérie Forster
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France
| | - Ivana Ivkovic
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France
| | - Nadège Brunel
- UMS 29 INSERM Plateforme FluExGen UPMC, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,CHNO Des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,CHNO Des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75020, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France. .,Fondation Ophtalmologique Adolphe de Rothschild, 75020, Paris, France.
| |
Collapse
|
12
|
Suzuki M, Nagai N, Minami S, Kurihara T, Kamoshita M, Sonobe H, Watanabe K, Shinoda H, Tsubota K, Ozawa Y. Predicting recurrences of macular edema due to branch retinal vein occlusion during anti-vascular endothelial growth factor therapy. Graefes Arch Clin Exp Ophthalmol 2019; 258:49-56. [PMID: 31732812 DOI: 10.1007/s00417-019-04495-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To determine the predictive factors for recurrent macular edema due to branch retinal vein occlusion (BRVO) during intravitreal ranibizumab (IVR) monotherapy. METHODS Clinical records were retrospectively reviewed for 65 patients (mean age 66.5 years, 65 eyes) who were diagnosed with macular edema due to BRVO and treated with IVR monotherapy for 12 months at the Medical Retina Division, Department of Ophthalmology, Keio University Hospital between October 2013 and August 2017. Best-corrected visual acuity (BCVA), fundus findings, and sectional optical coherence tomography (OCT) images were analyzed. RESULTS Overall BCVA and central retinal thickness (CRT) improved (all p < 0.01). BCVA at 12 months was significantly worse in patients with recurrent macular edema (40 eyes [61.5%]) (p < 0.01) than in those without, while CRT decreased and was comparable in both groups at 12 months. Logistic regression analyses showed association of recurrence with disorganization of the retinal inner layer (DRIL) temporal to the fovea at baseline (odds ratio = 7.74; 95% confidence interval 1.62-37.08, p = 0.01), after adjusting for age, gender, and initial CRT. CONCLUSION Recurrent macular edema due to BRVO affects visual outcome and is associated with initial DRIL temporal to the fovea, evaluated using OCT sectional images before treatments. DRIL may facilitate determination of follow-up schedules in clinical practice.
Collapse
Affiliation(s)
- Misa Suzuki
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sakiko Minami
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mamoru Kamoshita
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideki Sonobe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Watanabe
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hajime Shinoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Karwicka M, Pucelik B, Gonet M, Elas M, Dąbrowski JM. Effects of Photodynamic Therapy with Redaporfin on Tumor Oxygenation and Blood Flow in a Lung Cancer Mouse Model. Sci Rep 2019; 9:12655. [PMID: 31477749 PMCID: PMC6718604 DOI: 10.1038/s41598-019-49064-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/08/2019] [Indexed: 11/24/2022] Open
Abstract
Three photodynamic therapy (PDT) protocols with 15 min, 3 h and 72 h drug-to-light time intervals (DLIs) were performed using a bacteriochlorin named redaporfin, as a photosensitizer. Blood flow and pO2 changes after applying these protocols were investigated in a Lewis lung carcinoma (LLC) mouse model and correlated with long-term tumor responses. In addition, cellular uptake, cytotoxicity and photocytotoxicity of redaporfin in LLC cells were evaluated. Our in vitro tests revealed negligible cytotoxicity, significant cellular uptake, generation of singlet oxygen, superoxide ion and hydroxyl radicals in the cells and changes in the mechanism of cell death as a function of the light dose. Results of in vivo studies showed that treatment focused on vascular destruction (V-PDT) leads to a highly effective long-term antineoplastic response mediated by a strong deprivation of blood supply. Tumors in 67% of the LLC bearing mice treated with V-PDT regressed completely and did not reappear for over 1 year. This significant efficacy can be attributed to photosensitizer (PS) properties as well as distribution and accurate control of oxygen level and density of vessels before and after PDT. V-PDT has a greater potential for success than treatment based on longer DLIs as usually applied in clinical practice.
Collapse
Affiliation(s)
- Malwina Karwicka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Barbara Pucelik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
- Jagiellonian University, Małopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Michał Gonet
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Martyna Elas
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Janusz M Dąbrowski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
14
|
Relationships of orientation discrimination threshold and visual acuity with macular lesions in age-related macular degeneration. PLoS One 2017; 12:e0185070. [PMID: 28922378 PMCID: PMC5602672 DOI: 10.1371/journal.pone.0185070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To measure visual acuity and metamorphopsia in patients with age-related macular degeneration (AMD) and to explore their relationship with macular lesions. METHODS In this cross-sectional study, a total of 32 normal subjects (32 eyes) and 35 AMD patients (35 eyes) were recruited. They were categorized into 4 groups: normal, dry AMD, non-active wet AMD, and active wet AMD. Best-corrected visual acuity (BCVA) was measured using the Early Treatment Diabetic Retinopathy Study protocol. Metamorphopsia was quantified with the orientation discrimination threshold (ODT). Macular lesions, including drusen, sub-retinal fluid (SRF), intra-retinal fluid (IRF), pigmented epithelium detachment (PED), and scarring, were identified with spectral-domain optical coherence tomography (SD-OCT). A linear regression model was established to identify the relationships between the functional and structural changes. RESULTS BCVA progressively worsened across the normal, dry AMD, non-active wet AMD, and active wet AMD groups (P < 0.001), and ODT increased across the groups (P < 0.001). The correlation between BCVA and ODT varied among the groups. The partial correlation between BCVA and ODT was -0.61 (P < 0.001). Linear regression showed that ODT significantly depended on IRF (β = 0.61, P < 0.001), SRF (β = 0.34, P = 0.003), and scarring (β = 0.26, P = 0.050), while BCVA significantly depended only on scarring (β = -0.52, P < 0.001), and IRF (β = -0.36, P = 0.016). CONCLUSIONS From dry AMD to active wet AMD, BCVA gradually worsened while ODT increased. The correlation between BCVA and ODT varied among these groups, indicating that AMD lesions affect them differently. ODT and BCVA should be used concurrently for better monitoring of the disease.
Collapse
|
15
|
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 2017; 11:20. [PMID: 28289375 PMCID: PMC5326762 DOI: 10.3389/fncel.2017.00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Honghua Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLAGuangzhou, China
| | - Naihong Yan
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| |
Collapse
|
16
|
Gong Y, Shao Z, Fu Z, Edin ML, Sun Y, Liegl RG, Wang Z, Liu CH, Burnim SB, Meng SS, Lih FB, SanGiovanni JP, Zeldin DC, Hellström A, Smith LEH. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis. EBioMedicine 2016; 13:201-211. [PMID: 27720395 PMCID: PMC5264653 DOI: 10.1016/j.ebiom.2016.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases. Fenofibrate inhibits retinal and choroidal neovascularization by inhibiting CYP2C activity as well as by activating PPARα. Fenofibrate augments the protective effects of ω-3 LCPUFAs on pathological ocular angiogenesis. Inhibition of CYP2C is a potential therapeutic approach for treatment of proliferative retinopathy and neovascular AMD.
Findings from clinical trials indicate that fenofibrate reduces the progression of proliferative diabetic retinopathy, but the mechanism of this effect is currently unknown. Dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs) is generally associated with a suppression of proliferative retinopathy and age-related macular degeneration acting through LCPUFA cyclooxygenase and lipoxygenase metabolites. However, cytochrome P450 epoxygenase (CYP)2C ω-3 and ω-6 LCPUFA metabolites promote retinopathy. Fenofibrate is a potent inhibitor of CYP2C. Our findings suggested that fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition. Combination therapy of dietary ω-3 LCPUFA supplementation with fenofibrate may be a promising approach to prevent incidence or progression of neovascular eye diseases.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhuo Shao
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Raffael G Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - John Paul SanGiovanni
- Section on Nutritional Neurosciences, Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg 40530, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 01248, United States.
| |
Collapse
|
17
|
Gong Y, Fu Z, Edin ML, Liu CH, Wang Z, Shao Z, Fredrick TW, Saba NJ, Morss PC, Burnim SB, Meng SS, Lih FB, Lee KSS, Moran EP, SanGiovanni JP, Hellström A, Hammock BD, Zeldin DC, Smith LEH. Cytochrome P450 Oxidase 2C Inhibition Adds to ω-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization. Arterioscler Thromb Vasc Biol 2016; 36:1919-27. [PMID: 27417579 DOI: 10.1161/atvbaha.116.307558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Pathological ocular neovascularization is a major cause of blindness. Increased dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces retinal neovascularization and choroidal neovascularization (CNV), but ω-3 LCPUFA metabolites of a major metabolizing pathway, cytochrome P450 oxidase (CYP) 2C, promote ocular pathological angiogenesis. We hypothesized that inhibition of CYP2C activity will add to the protective effects of ω-3 LCPUFA on neovascular eye diseases. APPROACH AND RESULTS The mouse models of oxygen-induced retinopathy and laser-induced CNV were used to investigate pathological angiogenesis in the retina and choroid, respectively. The plasma levels of ω-3 LCPUFA metabolites of CYP2C were determined by mass spectroscopy. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of CYP2C inhibition and ω-3 LCPUFA-derived CYP2C metabolic products on angiogenesis ex vivo. We found that inhibition of CYP2C activity by montelukast added to the protective effects of ω-3 LCPUFA on retinal neovascularization and CNV by 30% and 20%, respectively. In CYP2C8-overexpressing mice fed a ω-3 LCPUFA diet, montelukast suppressed retinal neovascularization and CNV by 36% and 39% and reduced the plasma levels of CYP2C8 products. Soluble epoxide hydrolase inhibition, which blocks breakdown and inactivation of CYP2C ω-3 LCPUFA-derived active metabolites, increased oxygen-induced retinopathy and CNV in vivo. Exposure to selected ω-3 LCPUFA metabolites of CYP2C significantly reversed the suppression of both angiogenesis ex vivo and endothelial cell functions in vitro by the CYP2C inhibitor montelukast. CONCLUSIONS Inhibition of CYP2C activity adds to the protective effects of ω-3 LCPUFA on pathological retinal neovascularization and CNV.
Collapse
Affiliation(s)
- Yan Gong
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Zhongjie Fu
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Matthew L Edin
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Chi-Hsiu Liu
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Zhongxiao Wang
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Zhuo Shao
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Thomas W Fredrick
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Nicholas J Saba
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Peyton C Morss
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Samuel B Burnim
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Steven S Meng
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Fred B Lih
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Kin Sing Stephen Lee
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Elizabeth P Moran
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - John Paul SanGiovanni
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Ann Hellström
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Bruce D Hammock
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Darryl C Zeldin
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.)
| | - Lois E H Smith
- From the Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (Y.G., Z.F., C.-H.L., Z.W., Z.S., T.W.F., N.J.S., P.C.M., S.B.B., S.S.M., E.P.M., L.E.H.S.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (M.L.E., F.B.L., D.C.Z.); Department of Entomology and Comprehensive Cancer Center, University of California, Davis (K.S.S.L., B.D.H.); Section on Nutritional Neurosciences in the Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (J.P.S.G.); and Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (A.H.).
| |
Collapse
|
18
|
Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 2015; 363:31-45. [PMID: 26553653 DOI: 10.1007/s00441-015-2297-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Debra T Clopton
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
19
|
Nagai N, Kubota S, Tsubota K, Ozawa Y. Resveratrol prevents the development of choroidal neovascularization by modulating AMP-activated protein kinase in macrophages and other cell types. J Nutr Biochem 2014; 25:1218-1225. [PMID: 25091551 DOI: 10.1016/j.jnutbio.2014.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/21/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
The development of choroidal neovascularization (CNV) is a critical step in the pathogenesis of age-related macular degeneration (AMD), a vision-threatening disease. In this study, we used a mouse model of AMD to study the protective effects of resveratrol (RSV) supplementation against CNV as well as the underlying molecular mechanisms. Mice were orally pretreated with RSV daily for 5 days. On the fifth day, the mice underwent laser photocoagulation to induce CNV. One week after laser treatment, CNV volume was significantly lower in the RSV-treated mice compared with vehicle-treated animals. In addition, RSV treatment significantly inhibited macrophage infiltration into the retinal pigment epithelium (RPE)-choroid and suppressed the expression of inflammatory and angiogenic molecules, including vascular endothelial growth factor, monocyte chemotactic protein-1 and intercellular adhesion molecule-1. Importantly, RSV prevented the CNV-induced decrease in activated AMP-activated protein kinase and increase in activated nuclear factor-κB in the RPE-choroid complex. The regulatory effects of RSV on these molecules were confirmed in RPE, microvascular endothelial and macrophage cell lines. Inhibition of macrophage infiltration by RSV was confirmed by in vitro scratch and migration assays. RSV suppressed CNV development, reducing the levels of multiple cytokines secreted from several cell types and inhibiting macrophage migration. The direct effects of RSV on each cell type were confirmed in vitro. Although further studies are needed, RSV could potentially be applied in the clinic to prevent CNV development in AMD.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Kubota
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells. Photodiagnosis Photodyn Ther 2013; 10:518-25. [PMID: 24284105 DOI: 10.1016/j.pdpdt.2013.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent data indicates that nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) may play role in tumor growth. In present study authors examined whether photodynamic therapy with 5-aminolevulinic acid (5-ALA) induces NUCKS expression in breast cancer cell line, MCF-7. METHODS In the experiment concentration of 5-ALA was 6.5mM. Excitation wavelength was 630 ± 20 nm, total light dose of light 5 or 10 J/cm(2) and irradiance 60 mW/cm(2) was used. Cells were collected at established time points and Western blot and immunocytochemical studies were performed using antibody against NUCKS. RESULTS Studies proved strong cytotoxic effects in cells following PDT with 6.5mM of precursor and 10 J/cm(2). Western blot analysis revealed the strongest expression of NUCKS at 7h after PDT. At next time points, 18 and 24h, expression of NUCKS decreased and became similar to that of control group. Further immunocytochemical studies showed very strong expression of NUCKS following PDT with 5-ALA and light irradiation of 5 J/cm(2). Early, at 0 h, that expression was predominantly seen in nuclei, while at 7h expression of NUCKS was observed in disseminated manner within entire cells in both nuclei and cytoplasm, with prevalence of cytoplasmic staining. CONCLUSIONS Authors suggest that NUCKS is involved in cellular responses following PDT, and since parallel induction of NUCKS and proapoptotic marker Bax and inhibition of anti-apoptotic Bcl-2 was observed, this protein might also be involved in induction of apoptosis following PDT.
Collapse
|