1
|
Li K, Liang X, Liu X, Geng Y, Yan J, Tian L, Liu H, Lai W, Shi Y, Xi Z, Lin B. Early-life exposure to PM2.5 leads to ASD-like phenotype in male offspring rats through activation of PI3K-AKT signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116222. [PMID: 38503106 DOI: 10.1016/j.ecoenv.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Previous studies have shown that early-life exposure to fine particulate matter (PM2.5) is associated with an increasing risk of autism spectrum disorder (ASD), however, the specific sensitive period of ASD is unknown. Here, a model of dynamic whole-body concentrated PM2.5 exposure in pre- and early-postnatal male offspring rats (MORs) was established. And we found that early postnatal PM2.5 exposed rats showed more typical ASD behavioral characteristics than maternal pregnancy exposure rats, including poor social interaction, novelty avoidance and anxiety disorder. And more severe oxidative stress and inflammatory responses were observed in early postnatal PM2.5 exposed rats. Moreover, the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) was down-regulated and the ratios of p-PI3K/PI3K and p-AKT/AKT were up-regulated in early postnatal PM2.5 exposed rats. This study suggests that early postnatal exposure to PM2.5 is more susceptible to ASD-like phenotype in offspring than maternal pregnancy exposure and the activation of PI3K-AKT signaling pathway may represent underlying mechanisms.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaotian Liang
- Yantai Center for Disease Control and Prevention, Yantai 264003, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Binzhou Medical College, Yantai 264000, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Yantai Center for Disease Control and Prevention, Yantai 264003, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
2
|
Green TR, Nguyen T, Dunker V, Ashton D, Ortiz JB, Murphy SM, Rowe RK. Blood-Brain Barrier Dysfunction Predicts Microglial Activation After Traumatic Brain Injury in Juvenile Rats. Neurotrauma Rep 2024; 5:95-116. [PMID: 38404523 PMCID: PMC10890961 DOI: 10.1089/neur.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB), which may exacerbate neuroinflammation post-injury. Few translational studies have examined BBB dysfunction and subsequent neuroinflammation post-TBI in juveniles. We hypothesized that BBB dysfunction positively predicts microglial activation and that vulnerability to BBB dysfunction and associated neuroinflammation are dependent on age at injury. Post-natal day (PND)17 and PND35 rats (n = 56) received midline fluid percussion injury or sham surgery, and immunoglobulin-G (IgG) stain was quantified as a marker of extravasated blood in the brain and BBB dysfunction. We investigated BBB dysfunction and the microglial response in the hippocampus, hypothalamus, and motor cortex relative to age at injury and days post-injury (DPI; 1, 7, and 25). We measured the morphologies of ionized calcium-binding adaptor molecule 1-labeled microglia using cell body area and perimeter, microglial branch number and length, end-points/microglial cell, and number of microglia. Data were analyzed using generalized hierarchical models. In PND17 rats, TBI increased levels of IgG compared to shams. Independent of age at injury, IgG in TBI rats was higher at 1 and 7 DPI, but resolved by 25 DPI. TBI activated microglia (more cells and fewer end-points) in PND35 rats compared to respective shams. Independent of age at injury, TBI induced morphological changes indicative of microglial activation, which resolved by 25 DPI. TBI rats had fewer cells and end-points per cell at 1 and 7 DPI than 25 DPI. Independent of TBI, PND17 rats had larger, more activated microglia than PND35 rats; PND17 TBI rats had larger cell body areas and perimeters than PND35 TBI rats. Importantly, we found support in both ages that IgG quantification predicted microglial activation after TBI. The number of microglia increased with increasing IgG, whereas branch length decreased with increasing IgG, which together indicate microglial activation. Our results suggest that stabilization of the BBB after pediatric TBI may be an important therapeutic strategy to limit neuroinflammation and promote recovery.
Collapse
Affiliation(s)
- Tabitha R.F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Tina Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Veronika Dunker
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - Danielle Ashton
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Arizona, USA
| | - Sean M. Murphy
- Cumberland Biological and Ecological Researchers, Longmont, Colorado, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, USA
| |
Collapse
|
3
|
Green TRF, Murphy SM, Rowe RK. Comparisons of quantitative approaches for assessing microglial morphology reveal inconsistencies, ecological fallacy, and a need for standardization. Sci Rep 2022; 12:18196. [PMID: 36307475 PMCID: PMC9616881 DOI: 10.1038/s41598-022-23091-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Microglial morphology is used to measure neuroinflammation and pathology. For reliable inference, it is critical that microglial morphology is accurately quantified and that results can be easily interpreted and compared across studies and laboratories. The process through which microglial morphology is quantified is a key methodological choice and little is known about how this choice may bias conclusions. We applied five of the most commonly used ImageJ-based methods for quantifying the microglial morphological response to a stimulus to identical photomicrographs and individual microglial cells isolated from these photomicrographs, which allowed for direct comparisons of results generated using these approaches. We found a lack of comparability across methods that analyzed full photomicrographs, with significant discrepancies in results among the five methods. Quantitative methods to analyze microglial morphology should be selected based on several criteria, and combinations of these methods may give the most biologically accurate representation of microglial morphology.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA ,grid.266190.a0000000096214564Department of Integrative Physiology, University of Colorado, 2860 Wilderness Place, Boulder, CO 80301 USA
| | - Sean M. Murphy
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
| | - Rachel K. Rowe
- grid.134563.60000 0001 2168 186XDepartment of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA ,grid.266190.a0000000096214564Department of Integrative Physiology, University of Colorado, 2860 Wilderness Place, Boulder, CO 80301 USA
| |
Collapse
|
4
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
5
|
Lei J, Deng Y, Ma S. Downregulation of TGIF2 is possibly correlated with neuronal apoptosis and autism-like symptoms in mice. Brain Behav 2022; 12:e2610. [PMID: 35592894 PMCID: PMC9226810 DOI: 10.1002/brb3.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND TGFB-induced factor homeobox 2 (TGIF2) has been reported to exert essential functions in brain development. This study aimed to elucidate the correlation of TGIF2 with autism, a neurodevelopmental condition which presents with severe communication problems. METHODS An autism-related gene expression dataset GSE36315 was used to analyze aberrantly expressed genes in autistic brain tissues. Maternal mice were treated with valproate (VPA), and their offspring were selected as model mice with autism. The functions of TGIF2 in autism-like symptoms in mice were examined by behavioral tests and histological examination of their hippocampal tissues. Mouse hippocampal neurons were extracted for in vitro studies. A gene set enrichment analysis was performed to analyze the signaling pathways involved, and the upstream factors influencing TGIF2 expression were explored in the ENCODE database and validated by ChIP-qPCR assays. RESULTS TGIF2 was poorly expressed in autistic patients in the GSE36315 dataset as well as in the temporal cortex tissues of autistic mice. Adenovirus-mediated overexpression of TGIF2 suppressed autism-like symptoms and neuronal apoptosis in autistic mice. TGIF2 activated the Wnt/β-catenin signaling pathway. TGIF2 could be regulated by monomethylation of histone H3 Lys4 (H3K4me1). The histone demethylase LSD1 was highly expressed in the tissues of autistic mice and bound to TGIF2 promoter, which was possibly responsible for TGIF2 downregulation. CONCLUSION This research suggests that the downregulation of TGIF2, possibly regulated by LSD1/H3K4me1, is correlated with neuronal apoptosis and development of autism in mice through the inactivation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jing Lei
- Department of the Ninth Pediatrics, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| | - Yijue Deng
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Songdong Ma
- Hunan Provincial Key Laboratory of Pediatric Respirology, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| |
Collapse
|
6
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
7
|
Heidari A, Rostam-Abadi Y, Rezaei N. The immune system and autism spectrum disorder: association and therapeutic challenges. Acta Neurobiol Exp (Wars) 2021; 81:249-263. [PMID: 34672295 DOI: 10.21307/ane-2021-023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, affecting communication and behavior. Historically, ASD had been described as a purely psychiatric disorder with genetic factors playing the most critical role. Recently, a growing body of literature has been emphasizing the importance of environmental and immunological factors in its pathogenesis, with the autoimmune process attracting the most attention. This study provides a review of the autoimmune involvement in the pathogenesis of ASD. The\r\nmicrobiome, the representative of the innate immune system in the central nervous system (CNS), plays a critical role in triggering inflammation. Besides, a bidirectional communicational pathway between the CNS and the intestine called the gut‑brain‑axis is linked to the development of ASD. Moreover, the higher plasma level of pro‑inflammatory cytokines in ASD patients and the higher prevalence of autoimmune disorders in the first‑degree family members of affected persons are other clues of the immune system involvement in\r\nthe pathogenesis of ASD. Furthermore, some anti‑inflammatory drugs, including resveratrol and palmitoylethanolamide have shown promising effects by relieving the manifestations of ASD. Although considerable advances have been made in elucidating the role of autoimmunity in the ASD pathogenesis, further studies with stronger methodologies are needed to apply the knowledge to the definitive treatment of ASD.
Collapse
Affiliation(s)
- Arash Heidari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasna Rostam-Abadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
8
|
Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat Commun 2021; 12:3321. [PMID: 34059669 PMCID: PMC8166865 DOI: 10.1038/s41467-021-23843-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. The mechanisms underlying ASD are unclear. Astrocyte alterations are noted in ASD patients and animal models. However, whether astrocyte dysfunction is causal or consequential to ASD-like phenotypes in mice is unresolved. Type 2 inositol 1,4,5-trisphosphate 6 receptors (IP3R2)-mediated Ca2+ release from intracellular Ca2+ stores results in the activation of astrocytes. Mutations of the IP3R2 gene are associated with ASD. Here, we show that both IP3R2-null mutant mice and astrocyte-specific IP3R2 conditional knockout mice display ASD-like behaviors, such as atypical social interaction and repetitive behavior. Furthermore, we show that astrocyte-derived ATP modulates ASD-like behavior through the P2X2 receptors in the prefrontal cortex and possibly through GABAergic synaptic transmission. These findings identify astrocyte-derived ATP as a potential molecular player in the pathophysiology of ASD. Astrocytes contribute to autism spectrum disorder (ASD) pathophysiology. Here, the authors show that IP3R2 conditional KO mice show ASD-like behaviours and identify astrocyte-derived ATP as a modulator of these behaviours in mice.
Collapse
|
9
|
Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
|
10
|
Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol Neurobiol 2020; 57:3424-3438. [DOI: 10.1007/s12035-020-01976-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
11
|
Liao X, Li Y. Nuclear Factor Kappa B in Autism Spectrum Disorder: A Systematic Review. Pharmacol Res 2020; 159:104918. [PMID: 32461184 DOI: 10.1016/j.phrs.2020.104918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is composed of a series of transcription factors, which are involved in the expression of a plethora of target genes, many of these genes contributing to the regulation of inflammatory responses. Consistent with its central role in inflammatory responses, existing studies of the neurobiological basis for ASD propose the involvement of NF-κB in the etiology of this disorder. OBJECTIVES The present review aimed to systematically characterize extant literatures regarding the role of NF-κB in the etiology of ASD through data derived from both human studies and animal models. METHODS A systematic electronic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible studies. Study inclusion and data extraction was agreed by two independent authors after reviewing the abstract and full text. RESULTS Among the 371 articles identified in the initial screening, 18 articles met the eligibility criteria for this review, including 14 human case-control studies compared the expression or activation of NF-κB between ASD cases and controls as well as 4 animal studies used mouse model of ASD to examine the level of NF-κB and further evaluate its changes after different drug treatments. These included 18 studies, although relatively small in quantity, appear to support the role of NF-κB in the etiology of ASD. CONCLUSIONS Evidence generated from both human studies and animal models supported the involvement of NF-κB in the neurobiological basis of ASD, despite some concern about whether it functions as a primary contributor causes ASD onset or rather an ancillary factor regulates ASD pathogenesis. The increased understanding of NF-κB in the neurobiological basis of ASD could aid the emergence of clinically relevant diagnostic biomarkers and novel therapeutic strategies acting on the underlying disease pathogenesis. These results suggested that potential methodological differences between studies need to be accounted for and keep open the discussion over the existence of aberrantly NF-κB signaling in ASD subjects.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
13
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
14
|
Yao W, Huang J, He H. Over-expressed LOC101927196 suppressed oxidative stress levels and neuron cell proliferation in a rat model of autism through disrupting the Wnt signaling pathway by targeting FZD3. Cell Signal 2019; 62:109328. [PMID: 31145996 DOI: 10.1016/j.cellsig.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play an important role in autism. Herein, we delineated the functions of LOC101927196 and its potential mitigation effect on a rat model of autism. We retrieved various bioinformatics databases and websites to screen differentially expressed lncRNAs associated with autism. Next, a rat model of autism was established with the neuron cells extracted for transfection of different plasmids. The regulatory effect of LOC101927196 on neuron cell proliferation, apoptosis as well as oxidative stress was also investigated. Firstly, microarray dataset GSE18123 revealed that LOC101927196 was poorly expressed in a rat model of autism. Poor development and growth and oxidative stress disorder were also observed in a rat model of autism. In addition, LOC101927196 targeting FZD3 played a vital role in a rat model of autism through the Wnt signaling pathway. Furthermore, we further demonstrated that over-expressed LOC101927196 blocked neuron cell proliferation and reduced oxidative stress levels, while promoting apoptosis by suppressing the activation of the Wnt signaling pathway. Our findings illustrate that up-regulated LOC101927196 attenuated oxidative stress disorder in a rat model of autism through suppressing the activation of Wnt signaling pathway by targeting FZD3.
Collapse
Affiliation(s)
- Wanxia Yao
- Medical School of Xi'an Peihua University, Xi'an 710125, PR China
| | - Junting Huang
- School of Nursing, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Hongling He
- Academic Journals Publishing Center of Education Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
15
|
Balasubramanian S, Packard JA, Leach JB, Powell EM. Three-Dimensional Environment Sustains Morphological Heterogeneity and Promotes Phenotypic Progression During Astrocyte Development. Tissue Eng Part A 2017; 22:885-98. [PMID: 27193766 DOI: 10.1089/ten.tea.2016.0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Astrocytes are critical for coordinating normal brain function by regulating brain metabolic homeostasis, synaptogenesis and neurotransmission, and blood-brain barrier permeability and maintenance. Dysregulation of normal astrocyte ontogeny contributes to neurodevelopmental and neurodegenerative disorders, epilepsies, and adverse responses to injury. To achieve these multiple essential roles, astrocyte phenotypes are regionally, morphologically, and functionally heterogeneous. Therefore, the best regenerative medicine strategies may require selective production of distinct astrocyte subpopulations at defined maturation levels. However, little is known about the mechanisms that direct astrocyte diversity or whether heterogeneity is represented in biomaterials. In vitro studies report lack of normal morphologies and overrepresentation of the glial scar type of reactive astrocyte morphology and expression of markers, questioning how well the in vitro astrocytes represent glia in vivo and whether in vitro tissue engineering methods are suitable for regenerative medicine applications. Our previous work with neurons suggests that the three-dimensional (3D) environment, when compared with standard two-dimensional (2D) substrate, yields cellular and molecular behaviors that more closely approximately normal ontogeny. To specifically study the effects of dimensionality, we used purified glial fibrillary acidic protein (GFAP)-expressing primary cerebral cortical astrocyte cultures from single pups and characterized the cellular maturation profiles in 2D and 3D milieu. We identified four morphological groups in vitro: round, bipolar, stellate, and putative perivascular. In the 3D hydrogel culture environment, postnatal astrocytes transitioned from a population of nearly all round cells and very few bipolar cells toward a population with significant fractions of round, stellate, and putative perivascular cells within a few days, following the in vivo ontogeny. In 2D, however, the population shift from round and bipolar to stellate and perivascular was rarely observed. The transition to distinct cellular morphologies in 3D corresponded to the in vivo expression of phenotypic markers, supporting the generation of mature heterogeneous glial populations in vitro. This study presents quantitative data supporting that 3D culture is critical for sustaining the heterogeneity of astrocytes in vitro and for generating a representation of the in vivo portfolio of heterogeneous populations of astrocytes required for therapeutic interventions in neurodevelopmental disorders, epilepsy, and brain injury.
Collapse
Affiliation(s)
| | - John A Packard
- 1 Department of Chemical, Biochemical and Environmental Engineering, UMBC , Baltimore, Maryland
| | - Jennie B Leach
- 1 Department of Chemical, Biochemical and Environmental Engineering, UMBC , Baltimore, Maryland
| | - Elizabeth M Powell
- 2 Departments of Anatomy and Neurobiology, Psychiatry, and Bioengineering, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
16
|
Wu ZQ, Li D, Huang Y, Chen XP, Huang W, Liu CF, Zhao HQ, Xu RX, Cheng M, Schachner M, Ma QH. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex 2017; 27:1369-1385. [PMID: 26740489 DOI: 10.1093/cercor/bhv318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The generation of layer-specific neurons and astrocytes by radial glial cells during development of the cerebral cortex follows a precise temporal sequence, which is regulated by intrinsic and extrinsic factors. The molecular mechanisms controlling the timely generation of layer-specific neurons and astrocytes remain not fully understood. In this study, we show that the adhesion molecule contactin-associated protein (Caspr), which is involved in the maintenance of the polarized domains of myelinated axons, is essential for the timing of generation of neurons and astrocytes in the developing mouse cerebral cortex. Caspr is expressed by radial glial cells, which are neural progenitor cells that generate both neurons and astrocytes. Absence of Caspr in neural progenitor cells delays the production cortical neurons and induces precocious formation of cortical astrocytes, without affecting the numbers of progenitor cells. At the molecular level, Caspr cooperates with the intracellular domain of Notch to repress transcription of the Notch effector Hes1. Suppression of Notch signaling via a Hes1 shRNA rescues the abnormal neurogenesis and astrogenesis in Caspr-deficient mice. These findings establish Caspr as a novel key regulator that controls the temporal specification of cell fate in radial glial cells of the developing cerebral cortex through Notch signaling.
Collapse
Affiliation(s)
- Zhi-Qiang Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Di Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xi-Ping Chen
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg D-66421, Germany
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - He-Qing Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, Southern Medical University, Beijing 100070, China
| | - Mei Cheng
- Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
17
|
Lestanova Z, Puerta F, Alanazi M, Bacova Z, Kiss A, Castejon AM, Bakos J. Downregulation of Oxytocin Receptor Decreases the Length of Projections Stimulated by Retinoic Acid in the U-87MG Cells. Neurochem Res 2016; 42:1006-1014. [DOI: 10.1007/s11064-016-2133-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 12/03/2016] [Indexed: 12/24/2022]
|
18
|
Mony TJ, Lee JW, Dreyfus C, DiCicco-Bloom E, Lee HJ. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:338-344. [PMID: 27776385 PMCID: PMC5083944 DOI: 10.9758/cpn.2016.14.4.338] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/18/2022]
Abstract
Objective We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. Methods After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. Results VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). Conclusion Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder.
Collapse
Affiliation(s)
- Tamanna Jahan Mony
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae Won Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Korea.,Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Cheryl Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Hee Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
19
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
20
|
Qin L, Dai X, Yin Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol Cell Neurosci 2016; 75:27-35. [PMID: 27343825 DOI: 10.1016/j.mcn.2016.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. RESULTS We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. CONCLUSIONS Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats.
Collapse
Affiliation(s)
- Liyan Qin
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs, Chongqing 400047, China; Department of Blood Transfusion, Southwest Hospital of Third Military Medical University,Chongqing 400038, China
| | - Xufang Dai
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs, Chongqing 400047, China; College of Education Science, Chongqing Normal University, Chongqing 400047, China.
| | - Yunhou Yin
- Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
21
|
Cao F, Yin A, Wen G, Sheikh AM, Tauqeer Z, Malik M, Nagori A, Schirripa M, Schirripa F, Merz G, Feng S, Brown WT, Li X. Retraction Note: Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects. J Neuroinflammation 2016; 13:106. [PMID: 27178190 PMCID: PMC4867084 DOI: 10.1186/s12974-016-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fujiang Cao
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA.,Department of Orthopaedics, General Hospital of Tianjin Medical Universtiy, Tianjin, China
| | - Ailan Yin
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Guang Wen
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, New York, NY, 10314, USA
| | - Ashfaq M Sheikh
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Zujaja Tauqeer
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Mazhar Malik
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Amenah Nagori
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Michael Schirripa
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - Frank Schirripa
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | - George Merz
- Digital Microscopy, NY State Institute for Basic Research in Developmental Disabilities, New York, NY, 10314, USA
| | - Shiqing Feng
- Department of Orthopaedics, General Hospital of Tianjin Medical Universtiy, Tianjin, China
| | - W Ted Brown
- Digital Microscopy, NY State Institute for Basic Research in Developmental Disabilities, New York, NY, 10314, USA
| | - Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA.
| |
Collapse
|
22
|
Culminskaya I, Kulminski AM, Yashin AI. Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes. ANNALS OF GERONTOLOGY AND GERIATRIC RESEARCH 2016; 3:1035. [PMID: 28357417 PMCID: PMC5367637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10-22 and p=5.8×10-18), in general, and in short genes (p=1.4×10-47 and p=4.6×10-7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10-4, q<10-4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan.
Collapse
Affiliation(s)
- Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Anatoli I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| |
Collapse
|
23
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015; 63:2133-51. [PMID: 25782611 PMCID: PMC4737250 DOI: 10.1002/glia.22821] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area.
Collapse
Affiliation(s)
- Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
25
|
Mahfouz A, Ziats MN, Rennert OM, Lelieveldt BPF, Reinders MJT. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome. J Mol Neurosci 2015; 57:580-94. [PMID: 26399424 PMCID: PMC4644211 DOI: 10.1007/s12031-015-0641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains unclear. We hypothesized that understanding functional relationships between autism candidate genes during normal human brain development may provide convergent mechanistic insight into the genetic heterogeneity of ASD. We analyzed the co-expression relationships of 455 genes previously implicated in autism using the BrainSpan human transcriptome database, across 16 anatomical brain regions spanning prenatal life through adulthood. We discovered modules of ASD candidate genes with biologically relevant temporal co-expression dynamics, which were enriched for functional ontologies related to synaptogenesis, apoptosis, and GABA-ergic neurons. Furthermore, we also constructed co-expression networks from the entire transcriptome and found that ASD candidate genes were enriched in modules related to mitochondrial function, protein translation, and ubiquitination. Hub genes central to these ASD-enriched modules were further identified, and their functions supported these ontological findings. Overall, our multi-dimensional co-expression analysis of ASD candidate genes in the normal developing human brain suggests the heterogeneous set of ASD candidates share transcriptional networks related to synapse formation and elimination, protein turnover, and mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Mark N Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,University of Cambridge, Cambridge, UK.,Baylor College of Medicine, Houston, TX, USA
| | - Owen M Rennert
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Boudewijn P F Lelieveldt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
26
|
Proctor DT, Stotz SC, Scott LOM, de la Hoz CLR, Poon KWC, Stys PK, Colicos MA. Axo-glial communication through neurexin-neuroligin signaling regulates myelination and oligodendrocyte differentiation. Glia 2015; 63:2023-2039. [PMID: 26119281 DOI: 10.1002/glia.22875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
Axonal transsynaptic signaling between presynaptic neurexin (NX) and postsynaptic neuroligin (NL) is essential for many properties of synaptic connectivity. Here, we demonstrate the existence of a parallel axo-glial signaling pathway between axonal NX and oligodendritic (OL) NL3. We show that this pathway contributes to the regulation of myelinogenesis, the maintenance of established myelination, and the differentiation state of the OL using in vitro models. We first confirm that NL3 mRNA and protein are expressed in OLs and in OL precursors. We then show that OLs in culture form contacts with non-neuronal cells exogenously expressing NL3's binding partners NX1α or NX1β. Conversely, blocking axo-glial NX-NL3 signaling by saturating NX with exogenous soluble NL protein (NL-ECD) disrupts interactions between OLs and axons in both in vitro and ex vivo assays. Myelination by OLs is tied to their differentiation state, and we find that blocking NX-NL signaling with soluble NL protein also caused OL differentiation to stall at an immature stage. Moreover, in vitro knockdown of NL3 in OLs with siRNAs stalls their development and reduces branching complexity. Interestingly, inclusion of an autism related mutation in the NL blocking protein attenuates these effects; OLs differentiate and the dynamics of OL-axon signaling occur normally as this peptide does not disrupt NX-NL3 axo-glial interactions. Our findings provide evidence not only for a new pathway in axo-glial communication, they also potentially explain the correlation between altered white matter and autism. GLIA 2015;63:2023-2039.
Collapse
Affiliation(s)
- Dustin T Proctor
- Department of Physiology & Pharmacology, Faculty of Medicine, and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Stephanie C Stotz
- Department of Physiology & Pharmacology, Faculty of Medicine, and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Lucas O M Scott
- Department of Physiology & Pharmacology, Faculty of Medicine, and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Cristiane L R de la Hoz
- Department of Physiology & Pharmacology, Faculty of Medicine, and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Kelvin W C Poon
- Department of Clinical Neurosciences, Faculty of Medicine and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Peter K Stys
- Department of Clinical Neurosciences, Faculty of Medicine and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Michael A Colicos
- Department of Physiology & Pharmacology, Faculty of Medicine, and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
27
|
Schulze W, Hayata-Takano A, Kamo T, Nakazawa T, Nagayasu K, Kasai A, Seiriki K, Shintani N, Ago Y, Farfan C, Hashimoto R, Baba A, Hashimoto H. Simultaneous neuron- and astrocyte-specific fluorescent marking. Biochem Biophys Res Commun 2015; 459:81-6. [DOI: 10.1016/j.bbrc.2015.02.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/16/2015] [Indexed: 11/28/2022]
|
28
|
McDougle CJ, Landino SM, Vahabzadeh A, O'Rourke J, Zurcher NR, Finger BC, Palumbo ML, Helt J, Mullett JE, Hooker JM, Carlezon WA. Toward an immune-mediated subtype of autism spectrum disorder. Brain Res 2014; 1617:72-92. [PMID: 25445995 DOI: 10.1016/j.brainres.2014.09.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/25/2022]
Abstract
A role for immunological involvement in autism spectrum disorder (ASD) has long been hypothesized. This review includes four sections describing (1) evidence for a relationship between familial autoimmune disorders and ASD; (2) results from post-mortem and neuroimaging studies that investigated aspects of neuroinflammation in ASD; (3) findings from animal model work in ASD involving inflammatory processes; and (4) outcomes from trials of anti-inflammatory/immune-modulating drugs in ASD that have appeared in the literature. Following each section, ideas are provided for future research, suggesting paths forward in the continuing effort to define the role of immune factors and inflammation in the pathophysiology of a subtype of ASD. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Christopher J McDougle
- Lurie Center for Autism, Lexington, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Samantha M Landino
- Behavioral Genetics Laboratory, Belmont, MA, United States; McLean Hospital, Belmont, MA, United States
| | - Arshya Vahabzadeh
- Massachusetts General Hospital, Boston, MA, United States; McLean Hospital, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Julia O'Rourke
- Lurie Center for Autism, Lexington, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicole R Zurcher
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Beate C Finger
- Behavioral Genetics Laboratory, Belmont, MA, United States; McLean Hospital, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Michelle L Palumbo
- Lurie Center for Autism, Lexington, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jessica Helt
- Lurie Center for Autism, Lexington, MA, United States; Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer E Mullett
- Lurie Center for Autism, Lexington, MA, United States; Massachusetts General Hospital, Boston, MA, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - William A Carlezon
- Behavioral Genetics Laboratory, Belmont, MA, United States; McLean Hospital, Belmont, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
30
|
Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 2014; 27:75-81. [PMID: 24694749 DOI: 10.1016/j.conb.2014.03.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
The development of functional neural circuits relies upon the coordination of various cell types. In particular, astrocytes play a crucial role in orchestrating neural development by powerfully coordinating synapse formation and function, neuronal survival, and axon guidance. While astrocytes help to shape neural circuits in the developing brain, the mechanisms underlying their own development may play an equally crucial role in nervous system function. The onset of astrogenesis is a temporally regulated phenomenon that relies upon exogenously secreted cues and intrinsic chromatin changes. Defects in the mechanisms underlying astrogenesis or in astrocyte function during early development may contribute to the progression of a variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States.
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States
| |
Collapse
|
31
|
Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH, Hilton H, Esapa C, Simon M, Buenavista MT, McGuffin LJ, Vizor L, Dodero L, Tsaftaris S, Romero R, Nillesen WN, Vissers LELM, Kempers MJ, Vulto-van Silfhout AT, Iqbal Z, Orlando M, Maccione A, Lassi G, Farisello P, Contestabile A, Tinarelli F, Nieus T, Raimondi A, Greco B, Cantatore D, Gasparini L, Berdondini L, Bifone A, Gozzi A, Wells S, Nolan PM. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest 2014; 124:1468-82. [PMID: 24614104 DOI: 10.1172/jci70372] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/09/2014] [Indexed: 12/18/2022] Open
Abstract
The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.
Collapse
|
32
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
33
|
Astrocytes play a key role in Drosophila mushroom body axon pruning. PLoS One 2014; 9:e86178. [PMID: 24465945 PMCID: PMC3897647 DOI: 10.1371/journal.pone.0086178] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022] Open
Abstract
Axon pruning is an evolutionarily conserved strategy used to remodel neuronal connections during development. The Drosophila mushroom body (MB) undergoes neuronal remodeling in a highly stereotypical and tightly regulated manner, however many open questions remain. Although it has been previously shown that glia instruct pruning by secreting a TGF-β ligand, myoglianin, which primes MB neurons for fragmentation and also later engulf the axonal debris once fragmentation has been completed, which glia subtypes participate in these processes as well as the molecular details are unknown. Here we show that, unexpectedly, astrocytes are the major glial subtype that is responsible for the clearance of MB axon debris following fragmentation, even though they represent only a minority of glia in the MB area during remodeling. Furthermore, we show that astrocytes both promote fragmentation of MB axons as well as clear axonal debris and that this process is mediated by ecdysone signaling in the astrocytes themselves. In addition, we found that blocking the expression of the cell engulfment receptor Draper in astrocytes only affects axonal debris clearance. Thereby we uncoupled the function of astrocytes in promoting axon fragmentation to that of clearing axonal debris after fragmentation has been completed. Our study finds a novel role for astrocytes in the MB and suggests two separate pathways in which they affect developmental axon pruning.
Collapse
|
34
|
Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 2014; 5:3. [PMID: 24410870 PMCID: PMC3914711 DOI: 10.1186/2040-2392-5-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/29/2023] Open
Abstract
Background The cellular mechanism(s) underlying autism spectrum disorders (ASDs) are not completely understood, but ASDs are thought to ultimately result from disrupted synaptogenesis. However, studies have also shown that glial cell numbers and function are abnormal in post-mortem brain tissue from autistic patients. Direct assessment of glial cells in post-mortem human brain tissue is technically challenging, limiting glial research in human ASD studies. Therefore, we attempted to determine if glial cell-type specific markers may be altered in autistic brain tissue in a manner that is consistent with known cellular findings, such that they could serve as a proxy for glial cell numbers and/or activation patterns. Methods We assessed the relative expression of five glial-specific markers and two neuron-specific markers via qRT-PCR. We studied tissue samples from the prefrontal cortex (PFC) and cerebellum of nine post-mortem autistic brain samples and nine neurologically-normal controls. Relative fold-change in gene expression was determined using the ΔΔCt method normalized to housekeeping gene β-actin, with a two-tailed Student’s t-test P <0.05 between groups considered as significant. Results Both astrocyte- and microglial-specific markers were significantly more highly expressed in autistic PFC as compared to matched controls, while in the cerebellum only astrocyte markers were elevated in autistic samples. In contrast, neuron-specific markers showed significantly lower expression in both the PFC and cerebellum of autistic patients as compared to controls. Conclusions These results are in line with previous findings showing increased glial cell numbers and up-regulation of glial cell gene expression in autistic post-mortem brain tissue, particularly in the PFC, as well as decreased number of neurons in both the PFC and cerebellum of autistic patients. The concordance of these results with cell-level studies in post-mortem autistic brain tissue suggests that expression of glial cell-type specific markers may serve as a useful alternative to traditional cellular characterization methods, especially when appropriately-preserved post-mortem tissue is lacking. Additionally, these results demonstrate abnormal glial-specific gene expression in autistic brains, supporting previous studies that have observed altered glial cell numbers or activation patterns in ASDs. Future work should directly assess the correlation between cell-type specific marker levels and cell number and activation patterns.
Collapse
Affiliation(s)
- Catherine Edmonson
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA.,University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32603, USA
| | - Mark N Ziats
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA.,University of Cambridge, Robinson College, Grange Rd, Cambridgeshire CB3 9AN, UK.,Baylor College of Medicine MSTP, One Baylor Plaza, Houston, TX 77030, USA
| | - Owen M Rennert
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA
| |
Collapse
|
35
|
Abstract
The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.
Collapse
|
36
|
Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF. The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 2014; 38:160-72. [DOI: 10.1016/j.neubiorev.2013.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/03/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
|
37
|
Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013; 7:609. [PMID: 24098278 PMCID: PMC3784686 DOI: 10.3389/fnhum.2013.00609] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy (FA) or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | | |
Collapse
|