1
|
Le SJ, Xin GY, Wu WC, Shi M. Genetic Diversity and Evolution of Viruses Infecting Felis catus: A Global Perspective. Viruses 2023; 15:1338. [PMID: 37376637 DOI: 10.3390/v15061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.
Collapse
Affiliation(s)
- Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Selection of Drug-Resistant Feline Immunodeficiency Virus (FIV) Encoding FIV/HIV Chimeric Protease in the Presence of HIV-Specific Protease Inhibitors. J Virol 2013; 87:8524-34. [DOI: 10.1128/jvi.01240-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed
in vitro
, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC
50
s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V99
82
A, I59
50
V, and V37
32
I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC
50
of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.
Collapse
|
3
|
Mohr S, Ghanem E, Smith W, Sheeter D, Qin Y, King O, Polioudakis D, Iyer VR, Hunicke-Smith S, Swamy S, Kuersten S, Lambowitz AM. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA (NEW YORK, N.Y.) 2013; 19:958-70. [PMID: 23697550 PMCID: PMC3683930 DOI: 10.1261/rna.039743.113] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3' ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.
Collapse
Affiliation(s)
- Sabine Mohr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Eman Ghanem
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Whitney Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dennis Sheeter
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Olga King
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Damon Polioudakis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Vishwanath R. Iyer
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Scott Hunicke-Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | - Scott Kuersten
- Epicentre—An Illumina Company, Madison, Wisconsin 53713, USA
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Corresponding authorE-mail
| |
Collapse
|
4
|
Troyer JL, Roelke ME, Jespersen JM, Baggett N, Buckley-Beason V, MacNulty D, Craft M, Packer C, Pecon-Slattery J, O'Brien SJ. FIV diversity: FIV Ple subtype composition may influence disease outcome in African lions. Vet Immunol Immunopathol 2011; 143:338-46. [PMID: 21723622 PMCID: PMC3168974 DOI: 10.1016/j.vetimm.2011.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species of non-domestic felids throughout the world. Strains specific to domestic cat (FIV(Fca)) produce AIDS-like disease progression, sequelae and pathology providing an informative model for HIV infection in humans. Less is known about the immunological and pathological influence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIV(Ple)) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIV(Ple) subtypes, the data suggest that FIV(Ple) subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, National Cancer Institute, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bucy DS, Brown MS, Bielefeldt-Ohmann H, Thompson J, Bachand AM, Morges M, Elder JH, Vandewoude S, Kraft SL. Early detection of neuropathophysiology using diffusion-weighted magnetic resonance imaging in asymptomatic cats with feline immunodeficiency viral infection. J Neurovirol 2011; 17:341-52. [PMID: 21786078 DOI: 10.1007/s13365-011-0040-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/20/2010] [Accepted: 05/10/2011] [Indexed: 01/20/2023]
Abstract
HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.
Collapse
Affiliation(s)
- Daniel S Bucy
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Miller C, Bielefeldt-Ohmann H, MacMillan M, Huitron-Resendiz S, Henriksen S, Elder J, VandeWoude S. Strain-specific viral distribution and neuropathology of feline immunodeficiency virus. Vet Immunol Immunopathol 2011; 143:282-91. [PMID: 21715019 DOI: 10.1016/j.vetimm.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, and is the causative agent of feline AIDS. Similar to human immunodeficiency virus (HIV), the pathogenesis of FIV involves infection of lymphocytes and macrophages, and results in chronic progressive immune system collapse and death. Neuropathologic correlates of FIV infection have not yet been elucidated, and may be relevant to understanding HIV-associated neurologic disease (neuroAIDS). As in HIV, FIV strains have been shown to express differential tendencies towards development of clinical neuroAIDS. To interrogate viral genetic determinants that might contribute to neuropathogenicity, cats were exposed to two well-characterized FIV strains with divergent clinical phenotypes and a chimeric strain as follows: FIV(PPR) (PPR, relatively apathogenic but associated with neurologic manifestations), FIV(C36) (C36, immunopathogenic but without associated neurologic disease), and Pcenv (a chimeric virus consisting of a PPR backbone with substituted C36 env region). A sham inoculum control group was also included. Peripheral nerve conduction velocity, CNS imaging studies, viral loads and hematologic analysis were performed over a 12 month period. At termination of the study (350 days post-inoculation), brain sections were obtained from four anatomic locations known to be involved in human and primate lentiviral neuroAIDS. Histological and immunohistochemical evaluation with seven markers of inflammation revealed that Pcenv infection resulted in mild inflammation of the CNS, microglial activation, neuronal degeneration and apoptosis, while C36 and PPR strains induced minimal neuropathologic changes. Conduction velocity aberrations were noted peripherally in all three groups at 63 weeks post-infection. Pcenv viral load in this study was intermediate to the parental strains (C36 demonstrating the highest viral load and PPR the lowest). These results collectively suggest that (i) 3' C36 genomic elements contribute to viral replication characteristics, and (ii) 5' PPR genomic elements contribute to CNS manifestations. This study illustrates the potential for FIV to provide valuable information about neuroAIDS pathogenesis related to genotype and viral kinetics, as well as to identify strains useful to evaluation of therapeutic intervention.
Collapse
Affiliation(s)
- Craig Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Troyer JL, Brown MA. Feline models of viral pathogenesis: Opportunity knocks. Vet J 2011; 188:252-3. [PMID: 20716490 PMCID: PMC2988874 DOI: 10.1016/j.tvjl.2010.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022]
|
8
|
Mikkelsen SR, Long JM, Zhang L, Galemore ER, VandeWoude S, Dean GA. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis. PLoS One 2011; 6:e17183. [PMID: 21364928 PMCID: PMC3045403 DOI: 10.1371/journal.pone.0017183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/23/2011] [Indexed: 11/18/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.
Collapse
Affiliation(s)
- S. Rochelle Mikkelsen
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julie M. Long
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lin Zhang
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin R. Galemore
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Generation of infectious feline immunodeficiency virus (FIV) encoding FIV/human immunodeficiency virus chimeric protease. J Virol 2010; 84:6799-809. [PMID: 20410281 DOI: 10.1128/jvi.00294-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteases (PRs) share only 23% amino acid identity and exhibit distinct specificities yet have very similar 3-dimensional structures. Chimeric PRs in which HIV residues were substituted in structurally equivalent positions in FIV PR were prepared in order to study the molecular basis of PR specificity. Previous in vitro analyses showed that such substitutions dramatically altered the inhibitor specificity of mutant PRs but changed the rate and specificity of Gag cleavage so that chimeric FIVs were not infectious. Chimeric PRs encoding combinations of the I37V, N55M, M56I, V59I, L97T, I98P, Q99V, and P100N mutations were cloned into FIV Gag-Pol, and those constructs that best approximated the temporal cleavage pattern generated by wild-type FIV PR, while maintaining HIV-like inhibitor specificity, were selected. Two mutations, M56I and L97T, were intolerant to change and caused inefficient cleavage at NC-p2. However, a mutant PR with six substitutions (I37V, N55M, V59I, I98P, Q99V, and P100N) was selected and placed in the context of full-length FIV-34TF10. This virus, termed YCL6, had low-level infectivity ex vivo, and after passage, progeny that exhibited a higher growth rate emerged. The residue at the position of one of the six mutations, I98P, further mutated on passage to either P98H or P98S. Both PRs were sensitive to the HIV-1 PR inhibitors lopinavir (LPV) and darunavir (DRV), as well as to the broad-based inhibitor TL-3, with 50% inhibitory concentrations (IC(50)) of 30 to 40 nM, consistent with ex vivo results obtained using mutant FIVs. The chimeras offer an infectivity system with which to screen compounds for potential as broad-based PR inhibitors, define structural parameters that dictate specificity, and investigate pathways for drug resistance development.
Collapse
|
10
|
Kuhnt LA, Jennings RN, Brawner WR, Hathcock JT, Carreno AD, Johnson CM. Magnetic resonance imaging of radiation-induced thymic atrophy as a model for pathologic changes in acute feline immunodeficiency virus infection. J Feline Med Surg 2009; 11:977-84. [PMID: 19540785 PMCID: PMC11318762 DOI: 10.1016/j.jfms.2009.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2009] [Indexed: 01/26/2023]
Abstract
The development of a protocol to reproducibly induce thymic atrophy, as occurs in feline immunodeficiency virus (FIV) infection and other immunosuppressive diseases, and to consistently estimate thymic volume, provides a valuable tool in the search of innovative and novel therapeutic strategies. Magnetic resonance imaging (MRI) using the short tau inversion recovery (STIR) technique, with fat suppression properties, was determined to provide an optimized means of locating, defining, and quantitatively estimating thymus volume in young cats. Thymic atrophy was induced in four, 8-10-week-old kittens with a single, directed 500 cGy dose of 6 MV X-rays from a clinical linear accelerator, and sequential MR images of the cranial mediastinum were collected at 2, 7, 14, and 21 days post irradiation (PI). Irradiation induced a severe reduction in thymic volume, which was decreased, on average, to 47% that of normal, by 7 days PI. Histopathology confirmed marked, diffuse thymic atrophy, characterized by reduced thymic volume, decreased overall cellularity, increased apoptosis, histiocytosis, and reduced distinction of the corticomedullary junction, comparable to that seen in acute FIV infection. Beginning on day 7 PI, thymic volumes rebounded slightly and continued to increase over the following 14 days, regaining 3-35% of original volume. These findings demonstrate the feasibility and advantages of using this non-invasive, in vivo imaging technique to measure and evaluate changes in thymic volume in physiologic and experimental situations. All experimental protocols in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at Auburn University.
Collapse
Affiliation(s)
- Leah A Kuhnt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Improved health and survival of FIV-infected cats is associated with the presence of autoantibodies to the primary receptor, CD134. Proc Natl Acad Sci U S A 2009; 106:19980-5. [PMID: 19901342 DOI: 10.1073/pnas.0911307106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed antibody responses in sera from feline immunodeficiency virus (FIV)-infected and uninfected cats. A strong antiviral response to the viral surface glycoprotein (SU) was noted in both natural and experimental infections. In addition, 143 of 226 FIV-infected animals (63%) also expressed antibodies to the primary binding receptor, CD134, whereas cats infected with other feline RNA viruses, including calicivirus, coronavirus, herpesvirus, and feline leukemia virus, did not. Both affinity-purified anti-CD134 and anti-SU antibodies blocked FIV infection ex vivo. FACS analyses revealed that the anti-CD134 antibodies bound to a cryptic epitope on the receptor that was only exposed when SU bound to CD134. Anti-CD134 binding caused displacement of SU from the surface of the cell and inhibition of infection. The presence of antibodies to CD134 correlated with lower virus loads and a better overall health status in FIV(+) cats, whereas anti-SU antibodies were present independent of health status. The findings are consistent with a role for antireceptor antibodies in protection from virus spread and disease progression.
Collapse
|
12
|
Replication properties of clade A/C chimeric feline immunodeficiency viruses and evaluation of infection kinetics in the domestic cat. J Virol 2008; 82:7953-63. [PMID: 18550665 DOI: 10.1128/jvi.00337-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) causes progressive immunodeficiency in domestic cats, with clinical course dependent on virus strain. For example, clade A FIV-PPR is predominantly neurotropic and causes a mild disease in the periphery, whereas clade C FIV-C36 causes fulminant disease with CD4(+) T-cell depletion and neutropenia but no significant pathology in the central nervous system. In order to map pathogenic determinants, chimeric viruses were prepared between FIV-C36 and FIV-PPR, with reciprocal exchanges involving (i) the 3' halves of the viruses, including the Vif, OrfA, and Env genes; (ii) the 5' end extending from the 5' long terminal repeat (LTR) to the beginning of the capsid (CA)-coding region; and (iii) the 3' LTR and Rev2-coding regions. Ex vivo replication rates and in vivo replication and pathologies were then assessed and compared to those of the parental viruses. The results show that FIV-C36 replicates ex vivo and in vivo to levels approximately 20-fold greater than those of FIV-PPR. None of the chimeric FIVs recapitulated the replication rate of FIV-C36, although most replicated to levels similar to those of FIV-PPR. The rates of chloramphenicol acetyltransferase gene transcription driven by the FIV-C36 and FIV-PPR LTRs were identical. Furthermore, the ratios of surface glycoprotein (SU) to capsid protein (CA) in the released particles were essentially the same in the wild-type and chimeric FIVs. Tests were performed in vivo on the wild-type FIVs and chimeras carrying the 3' half of FIV-C36 or the 3' LTR and Rev2 regions of FIV-C36 on the PPR background. Both chimeras were infectious in vivo, although replication levels were lower than for the parental viruses. The chimera carrying the 3' half of FIV-C36 demonstrated an intermediate disease course with a delayed peak viral load but ultimately resulted in significant reductions in neutrophil and CD4(+) T cells, suggesting potential adaptation in vivo. Taken together, the findings suggest that the rapid-growth phenotype and pathogenicity of FIV-C36 are the result of evolutionary fine tuning throughout the viral genome, rather than being properties of any one constituent.
Collapse
|
13
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
14
|
Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2006; 2:154-70. [PMID: 18040840 DOI: 10.1007/s11481-006-9045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Invasion of human immunodeficiency virus (HIV) into the central and peripheral nervous system produces a wide range of neurological symptoms, which continue to persist even with adequate therapeutic suppression of the systemic viremia. The development of therapies designed to prevent the neurological complications of HIV require a detailed understanding of the mechanisms of virus penetration into the nervous system, infection, and subsequent neuropathogenesis. These processes, however, are difficult to study in humans. The identification of animal lentiviruses similar to HIV has provided useful models of HIV infection that have greatly facilitated these efforts. This review summarizes contributions made from in vitro and in vivo studies on the infectious and pathological interactions of feline immunodeficiency virus (FIV) with the nervous system. In vivo studies on FIV have provided insights into the natural progression of CNS disease as well as the contribution of various risk factors. In vitro studies have contributed to our understanding of immune cell trafficking, CNS infection and neuropathogenesis. Together, these studies have made unique contributions to our understanding of (1) lentiviral interactions at the blood-cerebrospinal fluid (CSF) barrier within the choroid plexus, (2) early FIV invasion and pathogenesis in the brain, and (3) lentiviral effects on intracellular calcium deregulation and neuronal dysfunction. The ability to combine in vitro and in vivo studies on FIV offers enormous potential to explore neuropathogenic mechanisms and generate information necessary for the development of effective therapeutic interventions.
Collapse
|
15
|
Manuel ER, Charini WA, Sen P, Peyerl FW, Kuroda MJ, Schmitz JE, Autissier P, Sheeter DA, Torbett BE, Letvin NL. Contribution of T-cell receptor repertoire breadth to the dominance of epitope-specific CD8+ T-lymphocyte responses. J Virol 2006; 80:12032-40. [PMID: 17035327 PMCID: PMC1676269 DOI: 10.1128/jvi.01479-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chromatography, High Pressure Liquid
- DNA Primers
- DNA, Complementary/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Flow Cytometry
- Genes, T-Cell Receptor beta/genetics
- Immunity, Cellular/immunology
- Macaca mulatta
- Molecular Sequence Data
- Peptides/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Sequence Analysis, DNA
- Simian Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Edwin R Manuel
- Beth Israel Deaconess Medical Center, 41 Ave. Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin YC, Brik A, de Parseval A, Tam K, Torbett BE, Wong CH, Elder JH. Altered gag polyprotein cleavage specificity of feline immunodeficiency virus/human immunodeficiency virus mutant proteases as demonstrated in a cell-based expression system. J Virol 2006; 80:7832-43. [PMID: 16873240 PMCID: PMC1563824 DOI: 10.1128/jvi.00374-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used feline immunodeficiency virus (FIV) protease (PR) as a mutational system to study the molecular basis of substrate-inhibitor specificity for lentivirus PRs, with a focus on human immunodeficiency virus type 1 (HIV-1) PR. Our previous mutagenesis studies demonstrated that discrete substitutions in the active site of FIV PR with structurally equivalent residues of HIV-1 PR dramatically altered the specificity of the mutant PRs in in vitro analyses. Here, we have expanded these studies to analyze the specificity changes in each mutant FIV PR expressed in the context of the natural Gag-Pol polyprotein ex vivo. Expression mutants were prepared in which 4 to 12 HIV-1-equivalent substitutions were made in FIV PR, and cleavage of each Gag-Pol polyprotein was then assessed in pseudovirions from transduced cells. The findings demonstrated that, as with in vitro analyses, inhibitor specificities of the mutants showed increased HIV-1 PR character when analyzed against the natural substrate. In addition, all of the mutant PRs still processed the FIV polyprotein but the apparent order of processing was altered relative to that observed with wild-type FIV PR. Given the importance of the order in which Gag-Pol is processed, these findings likely explain the failure to produce infectious FIVs bearing these mutations.
Collapse
Affiliation(s)
- Ying-Chuan Lin
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, MB14, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|