1
|
Naushad W, Premadasa LS, Okeoma BC, Mohan M, Okeoma CM. Extracellular condensates (ECs) are endogenous modulators of HIV transcription and latency reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613037. [PMID: 39345617 PMCID: PMC11429871 DOI: 10.1101/2024.09.14.613037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) latent reservoir is the major challenge to HIV cure because the latent reservoir is not eliminated by antiretroviral therapy (ART), and they serve as sources for viral rebound upon cessation of ART. Mechanisms regulating viral persistence are not well understood. This study used model systems of post-integration latency to explore the role of basal ganglia (BG) isolated extracellular condensates (ECs) in reprogramming HIV latent cells. We found that BG ECs from uninfected macaques (VEH) and SIV infected macaques (VEH|SIV) activate latent HIV transcription in various model systems. VEH and VEH|SIV ECs significantly increased expression of viral antigen in latently infected cells. Activation of viral transcription, antigen expression, and latency reactivation was inhibited by ECs from the brain of macaques treated with Delta-9-tetrahydrocannabinol (THC) and infected with SIV (THC|SIV). Virus produced by latently infected cells treated with VEH|SIV ECs potentiated cell-cell and cell-free HIV transmission. VEH|SIV ECs also reversed dexamethasone-mediated inhibition of HIV transcription while TNFα-mediated reactivation of latency was reversed by THC|SIV ECs. Transcriptome and secretome analyses of total RNA and supernatants from latently infected cells treated with ECs revealed significant alteration in gene expression and cytokine secretion. THC|SIV ECs increased secretion of Th2 and decreased secretion of proinflammatory cytokines. Most strikingly, while VEH/SIV ECs robustly induced HIV RNA in latently HIV-infected cells, long-term low-dose THC administration enriched ECs for anti-inflammatory cargo that significantly diminished their ability to reactivate latent HIV, an indication that ECs are endogenous host factors that may regulate HIV persistence. Highlights ECs isolated from SIV infected macaques (VEH|SIV ECs) is a positive regulator of LTR-dependent HIV transcription and production of infectious viral particles in vitro.ECs isolated from THC treated SIV infected macaques (THC|SIV ECs) prevents the transcription and reactivation of HIV in latently infected cells and prevents production of viral particles in vitro.ECs reprogram host transcriptome and secretome in manners that or suppress promote reactivation of latent HIV reservoir.The above highlights led to the conclusion that while VEH/SIV ECs robustly induced HIV RNA in latently HIV-infected cells, long-term low-dose THC administration enriched ECs for anti-inflammatory cargo that significantly diminished their ability to reactivate latent HIV.
Collapse
|
2
|
Nosik M, Ryzhov K, Kudryavtseva AV, Kuimova U, Kravtchenko A, Sobkin A, Zverev V, Svitich O. Decreased IL-1 β Secretion as a Potential Predictor of Tuberculosis Recurrence in Individuals Diagnosed with HIV. Biomedicines 2024; 12:954. [PMID: 38790916 PMCID: PMC11117744 DOI: 10.3390/biomedicines12050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The goal of the study was to identify possible immunological markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cytokine concentrations were determined using a standard curve obtained with the standards provided by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection, and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10 secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group (p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in HIV/TB patients' cohort with secondary TB indicate that this cytokine can be a potential biomarker of TB recurrence.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Asya V. Kudryavtseva
- La Facultad de Ciencias Médicas, Universidad Bernardo O’Higgings-Escuela de Medicina, Santiago 8370993, Chile;
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV, 125466 Moscow, Russia;
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
3
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
4
|
Liu X, Zhu X, Peng X, Tao R, Wan Z, Hui J, Guo Y, Hang Y, Zhu B. Lenalidomide potentially reduced the level of cell- associated HIV RNA and improved persistent inflammation in patients with HIV-associated cryptococcal meningitis a pilot study. Front Cell Infect Microbiol 2022; 12:954814. [PMID: 35967862 PMCID: PMC9369255 DOI: 10.3389/fcimb.2022.954814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe HIV-1 reservoir is a major barrier to curative strategies. Inflammation is an important factor for HIV-1 reservoir persistence. Lenalidomide regulates inflammatory cytokines efficiently. We examined whether lenalidomide could inhibit HIV-1 transcription and reduce systemic inflammation in people living with HIV.MethodsLenalidomide was administered orally for 48 weeks to patients with HIV-associated cryptococcal meningitis (HIV-CM). A HIV-1 latency model was treated with or without lenalidomide ex vivo for 5 days. The primary endpoints were change in HIV reservoir markers and inflammatory cytokines in both the cohort and cell model.ResultsThirteen participants were enrolled from May 2019 to September 2020. The median change in cell-associated (CA) HIV RNA between baseline and 48 weeks was 0.81 log10 copies/million peripheral blood mononuclear cells (PBMCs). The CA HIV RNA decreased significantly in the cohort (P = 0.021). Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) gradually diminished with lenalidomide treatment until 48 weeks (P = 0.007, P = 0.014, respectively). C-reactive protein/IL-6/TNF-α and CA HIV RNA were significantly correlated (P = 0.0027, 0.0496, and 0.0346, respectively). Lenalidomide also significantly decreased HIV core P24 (P = 0.0038) and CA HIV RNA in CD8-depleted PBMCs (P = 0.0178) ex vivo. TNF-α and IL-6 were significantly reduced in the CD8-depleted PBMC supernatant (P = 0.004, P < 0.0001, respectively) while IL-10 levels increased significantly on lenalidomide compared to no-lenalidomide treatment (P < 0.0001).ConclusionsLenalidomide was preliminarily confirmed to reduce the level of cell- associated HIV RNA and improve persistent inflammation in patients with HIV-Associated cryptococcal meningitis, which was a potential intervention for clinical use to inhibit viral transcription of the HIV-1 reservoir and reduced HIV-related inflammation in HIV-1 patients during ART.
Collapse
|
5
|
Nosik M, Ryzhov K, Rymanova I, Sobkin A, Kravtchenko A, Kuimova U, Pokrovsky V, Zverev V, Svitich O. Dynamics of Plasmatic Levels of Pro- and Anti-Inflammatory Cytokines in HIV-Infected Individuals with M. tuberculosis Co-Infection. Microorganisms 2021; 9:microorganisms9112291. [PMID: 34835417 PMCID: PMC8624412 DOI: 10.3390/microorganisms9112291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) and HIV have profound effects on the immune system, which can lead to the activation of viral replication and negatively regulate the activation of T cells. Dysregulation in the production of cytokines necessary to fight HIV and M. tuberculosis may ultimately affect the results of the treatment and be important in the pathogenesis of HIV infection and TB. This work presents the results of a study of the expression of pro- and anti-inflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-1RA) in drug-naïve patients with dual infection of HIV/TB at the late stages of HIV-infection, with newly diagnosed HIV and TB, and previously untreated HIV in the process of receiving antiretroviral (ART) and TB treatment vs. a cohort of patients with HIV monoinfection and TB monoinfection. The study revealed that during a double HIV/TB infection, both Th1 and Th2 immune responses are suppressed, and a prolonged dysregulation of the immune response and an increased severity of the disease in pulmonary/extrapulmonary tuberculosis is observed in HIV/TB co-infection. Moreover, it was revealed that a double HIV/TB infection is characterized by delayed and incomplete recovery of immune activity. High levels of IL-6 were detected in patients with HIV/TB co-infection before initiation of dual therapy (2.1-fold increase vs. HIV), which persisted even after 6 months of treatment (8.96-fold increase vs. HIV), unlike other cytokines. The persistent enhanced expression of IL-6 in patients with dual HIV/TB co-infection allows the consideration of it as a potential marker of early detection of M. tuberculosis infection in HIV-infected individuals. The results of multivariate regression analysis showed a statistical trend towards an increase in the incidence of IRIS in patients with high IL-1Ra levels (in the range of 1550–2500 pg/mL): OR = 4.3 (95%CI 3.7–14.12, p = 0.53), which also allows IL-1Ra to be considered as a potential predictive biomarker of the development of TB-IRIS and treatment outcomes.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
- Correspondence:
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Irina Rymanova
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (I.R.); (A.S.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (I.R.); (A.S.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
6
|
Zaidan SM, Leyre L, Bunet R, Larouche-Anctil E, Turcotte I, Sylla M, Chamberland A, Chartrand-Lefebvre C, Ancuta P, Routy JP, Baril JG, Trottier B, MacPherson P, Trottier S, Harris M, Walmsley S, Conway B, Wong A, Thomas R, Kaplan RC, Landay AL, Durand M, Chomont N, Tremblay C, El-Far M. Upregulation of IL-32 Isoforms in Virologically Suppressed HIV-Infected Individuals: Potential Role in Persistent Inflammation and Transcription From Stable HIV-1 Reservoirs. J Acquir Immune Defic Syndr 2019; 82:503-513. [PMID: 31714430 PMCID: PMC6857723 DOI: 10.1097/qai.0000000000002185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human IL-32 is a polyfunctional cytokine that was initially reported to inhibit HIV-1 infection. However, recent data suggest that IL-32 may enhance HIV-1 replication by activating the HIV-1 primary targets, CD4 T-cells. Indeed, IL-32 is expressed in multiple isoforms, some of which are proinflammatory, whereas others are anti-inflammatory. SETTING AND METHODS Here, we aimed to determine the relative expression of IL-32 isoforms and to test their inflammatory nature and potential to induce HIV-1 production in latently infected cells from virologically suppressed HIV-infected individuals. IL-32 and other cytokines were quantified from plasma and supernatant of CD4 T-cells by ELISA. Transcripts of IL-32 isoforms were quantified by qRT-PCR in peripheral blood mononuclear cells. The impact of recombinant human IL-32 isoforms on HIV-1 transcription was assessed in CD4 T-cells from HIV-1cART individuals by qRT-PCR. RESULTS All IL-32 isoforms were significantly upregulated in HIV-1cART compared to HIV individuals with IL-32β representing the dominantly expressed isoform, mainly in T-cells and NK-cells. At the functional level, although IL-32γ induced typical proinflammatory cytokines (IL-6 and IFN-γ) in TCR-activated CD4 T-cells, IL-32α showed an anti-inflammatory profile by inducing IL-10 but not IL-6 or IFN-γ. However, IL-32β showed a dual phenotype by inducing both pro- and anti-inflammatory cytokines. Interestingly, consistent with its highly pro-inflammatory nature, IL-32γ, but not IL-32α or IL-32β, induced HIV-1 production in latently infected CD4 T-cells isolated from combined antiretroviral therapy-treated individuals. CONCLUSIONS Our data report on the differential expression of IL-32 isoforms and highlight the potential role of IL-32, particularly the γ isoform, in fueling persistent inflammation and transcription of viral reservoir in HIV-1 infection.
Collapse
Affiliation(s)
- Sarah M. Zaidan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Louise Leyre
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Rémi Bunet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | | | - Isabelle Turcotte
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Mohamed Sylla
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Annie Chamberland
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | | | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Jean-Pierre Routy
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | - Benoit Trottier
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | | | - Sylvie Trottier
- Centre Hospitalier de l’Université Laval, Quebec, QC, Canada
| | - Marianne Harris
- AIDS Research Program, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | - Brian Conway
- Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | | | | | | | | | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Christensen-Quick A, Vanpouille C, Lisco A, Gianella S. Cytomegalovirus and HIV Persistence: Pouring Gas on the Fire. AIDS Res Hum Retroviruses 2017; 33:S23-S30. [PMID: 29140108 DOI: 10.1089/aid.2017.0145] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The inherent stability of a small population of T cells that are latently infected with HIV despite antiretroviral therapy (ART) remains a stubborn obstacle to an HIV cure. By exploiting the memory compartment of our immune system, HIV maintains persistence in a small subset of quiescent cells with varying phenotypes, thus evading immune surveillance and clinical detection. Understanding the molecular and immunological mechanisms that maintain the latent reservoir will be critical to the success of HIV eradication strategies. Human cytomegalovirus (CMV), another chronic viral infection, frequently co-occurs with HIV and occupies an oversized proportion of memory T cell responses. CMV and HIV have both evolved complex strategies to manipulate our immune system for their own advantage. Given the increasingly clear links between CMV replication, chronic immune activation, and increased HIV reservoirs, we present a closer examination of the interplay between these two chronic coinfections. Here we review the effects of CMV on the immune system and show how they may affect persistence of the latent HIV reservoir during ART. The studies described herein suggest that hijacking of cytokine and chemokine signaling, manipulation of cell development pathways, and transactivation of HIV expression by CMV might be pouring gas on the fire of HIV persistence. Future interventional studies are required to formally determine the extent to which CMV is causally associated with inflammation and HIV reservoir expansion.
Collapse
Affiliation(s)
| | - Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sara Gianella
- University of California San Diego, Center for AIDS Research, La Jolla, California
| |
Collapse
|
8
|
Hu J, Li Y, Chen L, Yang Z, Zhao G, Wang Y, Cheng J, Zhao J, Peng Y. Impact of IL-22 gene polymorphism on human immunodeficiency virus infection in Han Chinese patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:872-878. [PMID: 25556046 DOI: 10.1016/j.jmii.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND/PURPOSE To analyze the polymorphism of the IL-22 gene in Han Chinese patients and to evaluate the influence of IL-22 polymorphism on human immunodeficiency virus (HIV) infection. METHODS IL-22 gene polymorphism was analyzed in 73 blood samples from healthy participants. The influence of the genotype and allele distribution of three single nucleotide polymorphisms (rs2227484, rs2227485, and rs2227513) of IL-22 on HIV infection was evaluated in 619 HIV seropositive patients and 619 healthy controls. To determine the association between the rs2227513 genotype and IL-22 levels in plasma, we randomly selected 29 HIV seropositive blood samples and 15 healthy blood samples and measured the levels of IL-22. RESULTS Nine single nucleotide polymorphism loci of the IL-22 gene were found (rs2227484, rs2227485, rs2227491, rs2227508, rs2227513, rs1179249, rs1179250, rs1179251, and rs1182844). Stratified analysis (by sex) showed a higher association of HIV infection and the A/G genotype and G allele at rs2227513 in women, but not in men (A/G genotype odds ratio = 5.24, 95% confidence interval = 1.13-24.27; allele G odds ratio = 5.27, 95% confidence interval 1.15-24.23). The rs2227513 A/G genotype was also associated with significantly higher levels of plasma IL-22, regardless of whether the patient was HIV seropositive or seronegative. CONCLUSION Our results suggest that IL-22 production in blood might act as a pathogenic factor in HIV infection.
Collapse
Affiliation(s)
- Jun Hu
- Department of Life Sciences, Sun Yat-Sen University, Guangzhou, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Science in Botany, Jilin University, Changchun, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guanglu Zhao
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yushu Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Gimeno Brias S, Stack G, Stacey MA, Redwood AJ, Humphreys IR. The Role of IL-22 in Viral Infections: Paradigms and Paradoxes. Front Immunol 2016; 7:211. [PMID: 27303405 PMCID: PMC4885595 DOI: 10.3389/fimmu.2016.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies.
Collapse
Affiliation(s)
- Silvia Gimeno Brias
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Maria A Stacey
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University , Murdoch, WA , Australia
| | - Ian R Humphreys
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Iketleng T, Moyo S, Gaseitsiwe S, Nyombi B, Mitchell RM, Makhema J, Baum MK, Marlink R, Essex M, Musonda R. Plasma Cytokine Levels in Chronic Asymptomatic HIV-1 Subtype C Infection as an Indicator of Disease Progression in Botswana: A Retrospective Case Control Study. AIDS Res Hum Retroviruses 2016; 32:364-9. [PMID: 26414751 DOI: 10.1089/aid.2015.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HIV infects cells of the immune system causing immune activation and proliferation of immune cells, leading to alteration of production and activity of a number of cytokines. These changes in cytokine levels can affect the immune function, and have the potential to directly impact the course of HIV disease. We characterized plasma cytokine concentration profiles in HIV-1 subtype C chronically infected, antiretroviral therapy (ART)-naive participants to establish their influence on disease progression and viremia. Plasma levels of interleukin (IL)-1α, IL-7, IL-12p40, granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-γ were quantified in samples from 60 treatment-naive participants in the placebo arm of the completed Micronutrient-HIV disease progressions study, "Dikotlana" (2004-2009) in Gaborone, Botswana. Participants were stratified into progressors (P) and nonprogressors (NP) based on their rates of CD4(+) T cell depletion during the study period. Nonprogressors were those who had <1% CD4(+) T cell depletion at 24 months postenrollment. Progressors were defined as those with CD4(+) T cell depletion of >15% at 24 months postenrollment. Cytokine levels were compared between P and NP using the Mann-Whitney U-test. Logistic regression analysis was used to determine if cytokines predicted disease progression. Correlations of cytokines with CD4(+) T cell counts and viral loads were determined by the Spearman rank test. Median baseline CD4(+) T cell counts were 453 (Q1, Q3; 401, 592) and 479 (Q1, Q3; 401-592) for nonprogressors and progressors, respectively. Nonprogressors had a higher viral set point than progressors. IL-12p40 levels were significantly higher in the P than in NP at enrollment and 24 months (p < 0.05). Levels of IL-1α, IL-7, IFN-γ, and GM-CSF did not differ significantly between the two groups. Except for IL-12p40, which displayed an inverse correlation with CD4(+) T cell counts and a direct correlation with viral load, all other cytokines showed no correlations. IL-12p40 was found to be the most significant predictor of progression and its production was most likely driven by HIV replication products as evidenced by its direct correlation with viral load. In chronic HIV-1 subtype C infection, CD4(+) T cell counts and plasma cytokine levels may not necessarily evolve in parallel, suggesting the involvement of other factors in determining the rates of CD4(+) T cell depletion.
Collapse
Affiliation(s)
- Thato Iketleng
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Sikhulile Moyo
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Balthazar Nyombi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Joseph Makhema
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Marianna K. Baum
- Florida International University, R. Stempel College of Public Health and Social Work, University Park, Miami, Florida
| | - Richard Marlink
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Max Essex
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Rosemary Musonda
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education (BHP), Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
11
|
Abstract
OBJECTIVES There are few studies with conflicting results on the effects of in vivo administration of opioids on immune function. The aim of this study was to evaluate the serum levels of interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-17, and hs-C-reactive protein (hs-CRP) in opium smokers. METHODS The study was conducted between 44 male opium addicts and 44 controls aged 20 to 40 years. The control group was healthy individuals with no lifetime history of substance abuse. All the opium abusers were selected from those who had a history of use of opium, as a regular habit, at least for 1 year, with a daily opium dosage of not less than 2 g. Addicts known to abuse alcohol or other drugs were excluded. Serum samples were collected from all participants and tested for the cytokine and hs-CRP levels by ELISA (enzyme-linked immunosorbent assay) method. Statistical analysis was performed using the Student t test. RESULTS The mean serum levels of IFN-γ, IL-10, and IL-17 in the opium addicts were significantly higher than those observed in the control group. The mean concentration of serum IL-4 in opium addicts did not differ from that in the control group. Systemic IL-10 levels correlated positively and significantly with CRP in opium addicts. CONCLUSIONS Long-term, daily use of opium is associated with higher Th1 (IFN-γ), Tr1 (IL-10), and Th17 (IL-17) cytokines concentration in serum. Interferon-γ and IL-17 are involved in inducing and mediating proinflammatory responses. Our data suggest that an immunoregulatory response is occurring with the upregulation of IL-10.
Collapse
|
12
|
Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol Lett 2013; 153:22-6. [PMID: 23850638 DOI: 10.1016/j.imlet.2013.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
Abstract
A relationship between the expression of inflammation markers, oxidative stress and opium use has not been clearly established. This study was done to determine serum high-sensitivity C-reactive protein (hs-CRP), quantity of C3 and C4 complement factors, immunoglobulins, nitric oxide (NO) and total antioxidant capacity (TAC) in opium smokers and non-drug-using control participants. The present study was done on 44 male opium smokers and 44 controls of the same sex and age (20-40 years). The control group was healthy individuals with no lifetime history of drug abuse or dependence. All of the opium abusers were selected from those who had a history of opium use, for at least one year, with a daily opium dosage not less than 2g. Addicts known to abuse alcohol or other drugs were excluded. Serum hs-CRP concentration was measured using ELISA method and serum C3, C4 and immunoglobulins concentration were determined by Single Radial Immunodiffusion (SRID) method. NO production was estimated through Griess reaction and TAC was assessed by Ferric Reducing/Antioxidant Power (FRAP) test. Serum hs-CRP, complement factors (C3 and C4) and FRAP levels were significantly higher in the opium smokers (8.93 ± 1.93; 138.47 ± 13.39; 68.79 ± 7.02 and 972.75 ± 11.55, respectively) relative to the control group (0.72 ± 0.09; 93.36 ± 8.73; 33.08 ± 7.39 and 761.95 ± 18.61, respectively). These results permit us to conclude that opium smokers indeed present with a low to moderate grade inflammation, which is defined by an increase in acute phase proteins.
Collapse
|
13
|
Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Fernandez EM, Blanc F, De Trez C, Van Maele L, Dumoutier L, Huerre MR, Eberl G, Si-Tahar M, Gosset P, Renauld JC, Sirard JC, Faveeuw C, Trottein F. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol 2013; 87:6911-24. [PMID: 23596287 PMCID: PMC3676141 DOI: 10.1128/jvi.02943-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
Abstract
Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αβ and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Joelle Renneson
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Adeline Barthelemy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fany Blanc
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Carl De Trez
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels
| | - Michel-René Huerre
- Institut Pasteur, Paris, France
- Unite de Recherche et d'Expertise Histotechnologie et Pathologie, Paris, France
| | - Gérard Eberl
- Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 1961, Paris, France
| | - Mustapha Si-Tahar
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Pierre Gosset
- Hopital Saint Vincent, Groupe Hospitalier de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | | | - Jean Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| |
Collapse
|
14
|
Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends Microbiol 2013; 21:6-13. [PMID: 23062765 PMCID: PMC3534808 DOI: 10.1016/j.tim.2012.09.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has significantly improved the prognosis of human immunodeficiency virus (HIV)-infected individuals. However, individuals treated long-term with cART still manifest increased mortality compared to HIV-uninfected individuals. This increased mortality is closely associated with inflammation, which persists in cART-treated HIV-infected individuals despite levels of plasma viremia below detection limits. Chronic, pathological immune activation is a key factor in progression to acquired immunodeficiency syndrome (AIDS) in untreated HIV-infected individuals. One contributor to immune activation is microbial translocation, which occurs when microbial products traverse the tight epithelial barrier of the gastrointestinal tract. Here we review the mechanisms underlying microbial translocation and its role in contributing to immune activation and disease progression in HIV infection.
Collapse
Affiliation(s)
- Nichole R. Klatt
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Nicholas T. Funderburg
- Division of Infectious Diseases, Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
15
|
Vandergeeten C, Fromentin R, Chomont N. The role of cytokines in the establishment, persistence and eradication of the HIV reservoir. Cytokine Growth Factor Rev 2012; 23:143-9. [PMID: 22743037 PMCID: PMC3767481 DOI: 10.1016/j.cytogfr.2012.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HIV persists in cellular and anatomical reservoirs during Highly Active Antiretroviral Therapy (HAART). In vitro studies as well as in vivo observations have identified cytokines as important factors regulating the immunological and virological mechanisms involved in HIV persistence. Immunosuppressive cytokines might contribute to the establishment of viral latency by dampening T cell activation and HIV production, thereby creating the necessary immuno-virological condition for the establishment of a pool of latently infected cells. Other cytokines that are involved in the maintenance of memory CD4(+) T cells promote the persistence of these cells during HAART. Conversely, proinflammatory cytokines may favor HIV persistence by exacerbating low levels of ongoing viral replication in lymphoid tissues even after prolonged therapy. The ability of several cytokines to interfere with the molecular mechanisms responsible for HIV latency makes them attractive candidates for therapeutic strategies aimed at reducing the pool of latently infected cells. In this article, we review the role of cytokines in HIV persistence during HAART and discuss their role as potential eradicating agents.
Collapse
|
16
|
IL-10 high producing genotype predisposes HIV infected individuals to TB infection. Hum Immunol 2012; 73:605-11. [DOI: 10.1016/j.humimm.2012.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/05/2012] [Accepted: 03/19/2012] [Indexed: 11/21/2022]
|
17
|
Zhang F, Shang D, Zhang Y, Tian Y. Interleukin-22 suppresses the growth of A498 renal cell carcinoma cells via regulation of STAT1 pathway. PLoS One 2011; 6:e20382. [PMID: 21625390 PMCID: PMC3100322 DOI: 10.1371/journal.pone.0020382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/02/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most common kidney cancers and is highly resistant to chemotherapy. Accumulating evidence suggests that interleukin-22 (IL-22) may mediate host defense against varietal pathogens as a proinflammatory and anti-inflammatory cytokine. The purpose of this study is to assess the inhibitory effects of IL-22 on human RCC cell line A498 and to investigate the possible mechanisms underlying the anti-tumor effects of this cytokine. METHODOLOGY A498 cells, a RCC cell line, were used to assess the inhibitory growth effects of IL-22 using the MTT assay and flow cytometric analysis in vitro. BALB/C nude mice bearing A498 cell xenografts were used to examine the antitumor efficacy of IL-22 in vivo. Western blotting assay was performed to detect the regulation of the intracellular signaling pathway of IL-22. PRINCIPAL FINDINGS We found that IL-22 suppressed the growth of A498 cells in a dose-dependent manner and inhibited the growth of A498 xenografts. We also observed that IL-22 produced a dose-dependent inhibitory effect on A498 cells that involved the induction of G2/M cell cycle arrest without cell apoptosis. Moreover, we showed that the phosphorylation of STAT1 was increased and the phosphorylation of ERK1/2 was attenuated in A498 cells exposed to IL-22. The growth inhibition of A498 cells was partially revised after IL-22 treatment as the expression of STAT1 was knocked down. And inflammatory cytokines, interferon-α and tumor necrosis factor-α (TNF-α) were barely involved in the suppression of A498 cell xenografts treated with IL-22. CONCLUSIONS IL-22 dose-dependently suppresses RCC cell line A498 cells in vitro and induces growth inhibition of A498 cell-bearing mouse xenografts. These results suggest that the anti-RCC effects of IL-22 are at least partially mediated through regulation of STAT1 signaling pathways and G2/M cell cycle arrest, rather than by inducing apoptosis and inflammatory cytokines.
Collapse
Affiliation(s)
- Fengbo Zhang
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | | | | | | |
Collapse
|
18
|
Witte E, Witte K, Warszawska K, Sabat R, Wolk K. Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev 2010; 21:365-79. [PMID: 20870448 DOI: 10.1016/j.cytogfr.2010.08.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 cytokine family that is produced by special immune cell populations, including Th22, Th1, and Th17 cells, classical and non-classical (NK-22) NK cells, NKT cells, and lymphoid tissue inducer cells. This cytokine does not influence cells of the hematopoietic lineage. Instead, its target cells are certain tissue cells from the skin, liver and kidney, and from organs of the respiratory and gastrointestinal systems. The main biological role of IL-22 includes the increase of innate immunity, protection from damage, and enhancement of regeneration. IL-22 can play either a protective or a pathogenic role in chronic inflammatory diseases depending on the nature of the affected tissue and the local cytokine milieu. This review highlights the primary effects of IL-22 on its target cells, its role in the defense against infections, in tumorigenesis, in inflammatory diseases and allergy as well as the potential of the therapeutic modulation of IL-22 action.
Collapse
Affiliation(s)
- Ellen Witte
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol 2010; 107:1-29. [PMID: 21034969 DOI: 10.1016/b978-0-12-381300-8.00001-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expression of interleukin (IL)-22, a member of the IL-10 cytokine family, has recently been reported in a number of human diseases, including mucosal-associated infections and inflammatory disorders of the intestine, skin, and joints. Both T cells and an emerging category of innate lymphoid cells are sources of IL-22, while the IL-22 receptor complex is reported to be restricted to cells of nonhematopoietic origin. The ligand-receptor distribution of IL-22-IL-22R permits immune cells to regulate responses of epithelial cells, endothelial cells, fibroblasts, and other tissue-resident stromal cells. This pathway appears to be critically important at barrier surfaces where epithelial cells play an active role in the initiation, regulation, and resolution of immune responses. Functional studies in murine model systems indicate that IL-22 has immunoregulatory properties in infection, inflammation, autoimmunity, and cancer. In these models, the functional consequences of IL-22 expression can be either pathologic or protective, depending on the context in which it is expressed. Therefore, advancing our understanding of the biology of IL-22-IL-22R may yield novel therapeutic targets in multiple human diseases. In this review, we discuss recent findings on the expression, regulation, and function of IL-22 at barrier surfaces, and offer insights into the next frontiers to be studied in this complex cytokine pathway.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|