1
|
Xu P, Liang S, Hahn A, Zhao V, Lo WT‘J, Haller BC, Sobkowiak B, Chitwood MH, Colijn C, Cohen T, Rhee KY, Messer PW, Wells MT, Clark AG, Kim J. e3SIM: epidemiological-ecological-evolutionary simulation framework for genomic epidemiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601123. [PMID: 39005464 PMCID: PMC11244936 DOI: 10.1101/2024.06.29.601123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Infectious disease dynamics are driven by the complex interplay of epidemiological, ecological, and evolutionary processes. Accurately modeling these interactions is crucial for understanding pathogen spread and informing public health strategies. However, existing simulators often fail to capture the dynamic interplay between these processes, resulting in oversimplified models that do not fully reflect real-world complexities in which the pathogen's genetic evolution dynamically influences disease transmission. We introduce the epidemiological-ecological-evolutionary simulator (e3SIM), an open-source framework that concurrently models the transmission dynamics and molecular evolution of pathogens within a host population while integrating environmental factors. Using an agent-based, discrete-generation, forward-in-time approach, e3SIM incorporates compartmental models, host-population contact networks, and quantitative-trait models for pathogens. This integration allows for realistic simulations of disease spread and pathogen evolution. Key features include a modular and scalable design, flexibility in modeling various epidemiological and population-genetic complexities, incorporation of time-varying environmental factors, and a user-friendly graphical interface. We demonstrate e3SIM's capabilities through simulations of realistic outbreak scenarios with SARS-CoV-2 and Mycobacterium tuberculosis, illustrating its flexibility for studying the genomic epidemiology of diverse pathogen types.
Collapse
Affiliation(s)
- Peiyu Xu
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Shenni Liang
- Department of Computational Science, Cornell University, Ithaca, NY, USA
| | - Andrew Hahn
- Department of Computational Science, Cornell University, Ithaca, NY, USA
| | - Vivian Zhao
- Department of Computational Science, Cornell University, Ithaca, NY, USA
| | - Wai Tung ‘Jack’ Lo
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Benjamin Sobkowiak
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Melanie H. Chitwood
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Ted Cohen
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Martin T. Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Li Y, Niu J, Liu Y, Dai Y, Ni H, Wang J, Fang R, Ye C. Genomic Sequencing and Analysis of Enzootic Nasal Tumor Virus Type 2 Provides Evidence for Recombination within the Prevalent Chinese Strains. Vet Sci 2024; 11:248. [PMID: 38921995 PMCID: PMC11209414 DOI: 10.3390/vetsci11060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, the clinical cases of ENTV-2 infection have increased and become prevalent in several provinces of China. In this study, we reported the occurrence of ENTV-2 in one goat farm in Chongqing, southwest China. The complete genome of an emerged ENTV-2 isolate (designated as CQ2) was sequenced with 7468 bp in length. Phylogenetic analysis revealed that ENTV-2 consisted of two main lineages. Lineage 1 was composed of Chinese strains and could be subdivided into five sublineages. CQ2 and the other six recent isolates from China were clustered in sublineage 1.5; however, CQ2 was significantly different from the other six isolates. Furthermore, recombination analysis suggested that CQ2 might be a recombinant variant derived from sublineage 1.5 and sublineage 1.2 strains, with the recombination region in areas of pro and pol genes. In conclusion, we sequenced and analyzed the complete genome of a potential ENTV-2 recombinant, which may contribute to our understanding of the genetic variation and evolution of ENTV-2 in China.
Collapse
Affiliation(s)
- Yixuan Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Jingyi Niu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Yiyu Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Yu Dai
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Hongbo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| |
Collapse
|
3
|
Guo X, Yu D, Liu M, Li H, Chen M, Wang X, Zhai X, Zhang B, Wang Y, Yang C, Wang C, Liu Y, Han J, Wang X, Li J, Jia L, Li L. A unified classification system for HIV-1 5' long terminal repeats. PLoS One 2024; 19:e0301809. [PMID: 38696412 PMCID: PMC11065288 DOI: 10.1371/journal.pone.0301809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
The HIV-1 provirus mainly consists of internal coding region flanked by 1 long terminal repeats (LTRs) at each terminus. The LTRs play important roles in HIV-1 reverse transcription, integration, and transcription. However, despite of the significant study advances of the internal coding regions of HIV-1 by using definite reference classification, there are no systematic and phylogenetic classifications for HIV-1 5' LTRs, which hinders our elaboration on 5' LTR and a better understanding of the viral origin, spread and therapy. Here, by analyzing all available resources of 5' LTR sequences in public databases following 4 recognized principles for the reference classification, 83 representatives and 14 consensus sequences were identified as representatives of 2 groups, 6 subtypes, 6 sub-subtypes, and 9 CRFs. To test the reliability of the supplemented classification system, the constructed references were applied to identify the 5' LTR assignment of the 22 clinical isolates in China. The results revealed that 16 out of 22 tested strains showed a consistent subtype classification with the previous LTR-independent classification system. However, 6 strains, for which recombination events within 5' LTR were demonstrated, unexpectedly showed a different subtype classification, leading a significant change of binding sites for important transcription factors including SP1, p53, and NF-κB. The binding change of these transcriptional factors would probably affect the transcriptional activity of 5' LTR. This study supplemented a unified classification system for HIV-1 5' LTRs, which will facilitate HIV-1 characterization and be helpful for both basic and clinical research fields.
Collapse
Affiliation(s)
- Xing Guo
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Dan Yu
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Mengying Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xinyu Wang
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiuli Zhai
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yanglan Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Caiqing Yang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiaolin Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingyun Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
4
|
Dong S, Lu X, Wang Y, An N, Liu M, Li Y, Li Q. Near-Full-Length Genome Analysis of a HIV-1 CRF01_AE/B Recombinant Strain Among Men Who Have Sex with Men in Chengde City, China. AIDS Res Hum Retroviruses 2024; 40:257-262. [PMID: 37981835 DOI: 10.1089/aid.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The unique recombinant form (URF) of HIV is formed by multiple subtypes which are cocirculating in some area, and the number of HIV recombinants is on the increase worldwide. In this study, we identified a URF named 2019638, composed of CRF01_AE and subtype B, in a man who has sex with men in Qinhuangdao, Hebei province, China. The near-full-length genome (NFLG) sequence was confirmed to be a novel URF. Within this NFLG, two CRF01_AE fragments were inserted into the pol and vif regions, respectively, using subtype B as the backbone. Moreover, the presence of the V106M and V179D point mutations in the reverse transcriptase (RT) region rendered the high-level resistance to efavirenz and nevirapine and intermediate resistance to doravirine. Our findings suggest that the HIV epidemic is evolving toward a high degree of recombination, and we need to continuously monitor HIV genetic diversity to control the further development of the AIDS epidemic.
Collapse
Affiliation(s)
- Shuofan Dong
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Lu
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yingying Wang
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Ning An
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Meng Liu
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yan Li
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Qi Li
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Rashid A, Kang L, Yi F, Mir F, Getaneh Y, Shao Y, Abidi SH. Characterization of HIV-1 CRF02_AG/A3/G unique recombinant forms identified among children in Larkana, Pakistan. Front Cell Infect Microbiol 2023; 13:1284815. [PMID: 37965253 PMCID: PMC10642767 DOI: 10.3389/fcimb.2023.1284815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Co-circulation of different human immunodeficiency virus type 1 HIV-1 subtypes among infected populations can lead to the generation of new recombinants. In Pakistan, subtype A1 and CRF02_AG are the dominant strains circulating among key populations. The high prevalence of new HIV infections among the key populations highlights the possibility of recombination between the dominant strains, which can lead to the generation of new recombinants. Here, we identified a recombinant cluster composed of CRF02_AG, sub-subtype A3, and subtype G among HIV-infected children in Larkana. For the study, 10 retrospectively collected samples, with recombination signals in the pol gene, were used to perform a near full-length genome NFLG sequencing. Of the 10 samples, NFLG was successfully sequenced from seven samples. Phylogenetic analysis of the seven NFLGs showed that all recombinants formed a distinct monophyletic cluster and were distinct from known HIV-1 circulating recombinant forms CRFs. Recombination analyses showed that all seven NFLGs shared a similar recombinant structure consisting of CRF02_AG, sub-subtype A3, and subtype G, with a sub-subtype A3 fragment inserted into pol and vif regions spanning from (HXB2: 4218-5518), and a subtype G fragment inserted into vpu, rev, tat and env regions spanning from (HXB2: 5957-8250) of the CRF02_AG backbone. The identification of unique recombinant forms may indicate the presence and transmission of several co-circulating lineages in Larkana, giving rise to newer CRFs. This study also highlights the importance of continuous molecular surveillance to fully understand HIV-1 genetic diversity in Pakistan, particularly in Larkana, which is the epicenter of HIV outbreaks.
Collapse
Affiliation(s)
- Abdur Rashid
- School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Kang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Yi
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fatima Mir
- Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan
| | - Yimam Getaneh
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Changping Laboratory, Beijing, China
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
6
|
HIV/AIDS Global Epidemic. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
7
|
Wagner T, Zuckerman NS, Wax M, Shirazi R, Gozlan Y, Girshengorn S, Marom R, Mendelson E, Turner D, Mor O. HIV-1 Circulating Recombinant Forms (CRFs) and Unique Recombinant Forms (URFs) in Israel, 2010-2018. Viruses 2022; 14:v14091970. [PMID: 36146776 PMCID: PMC9502407 DOI: 10.3390/v14091970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Monitoring HIV-1 circulating recombinant forms (CRFs) and unique recombinant forms (URFs) is important for disease surveillance. Recombination may affect prevention efforts and interfere with the diagnosis and treatment of HIV-1 infection. Here, we characterized the epidemiology of HIV-1 CRFs and URFs in Israel. Partial pol sequences from treatment naïve patients diagnosed in 2010−2018 were assessed using the recombinant identification program (RIP), the recombinant detection program (RDP5), and using the maximum-likelihood phylogenetic method, using 410 reference sequences obtained from the Los Alamos database. CRFs and URFs were identified in 11% (213/1940) of all sequenced cases. The median age at diagnosis was 38 (30−47) years, 61% originated from Israel, and 82% were male. The most common were CRF02_AG (30.5%), CRF01_AE (16.9%), and the more complex forms CRF01_AE/CRF02_AG/A3 (10.8%) and B/F1 (7%). A significant increase in their overall proportion was observed in recent years (8.1% in 2010−2012, 20.3% in 2016−2018, p < 0.001). This increase was most prominent in individuals carrying CRF02_AG (2.5% in 2010−2015, 9.8% in 2016−2018, p < 0.001). Men who have sex with men (MSM) was the most common risk group; however, those infected with the secondary recombinant CRF02_AG/A6 were mainly injecting drug users (IDUs). The most common resistance mutations were K103N (5/213, 2.3%) and E138A (18/213, 8.5%) in the reverse transcriptase. Only E138A was more frequent in the recombinants compared with the classic subtypes and was significantly associated with a specific secondary CRF, CRF02_AG/A4. We concluded that CRFs and URFs were mainly detected in Israeli-born MSM and that an increase in the overall proportion of such HIV-1 sequences could be observed in more recent years.
Collapse
Affiliation(s)
- Tali Wagner
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
- Correspondence: (T.W.); (O.M.); Tel.: +972-3-5302458 (T.W. & O.M.)
| | - Neta S. Zuckerman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Rachel Shirazi
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Shirley Girshengorn
- Tel-Aviv Sourasky Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Rotem Marom
- Tel-Aviv Sourasky Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Ella Mendelson
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Dan Turner
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv Sourasky Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Orna Mor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 5262112, Israel
- Correspondence: (T.W.); (O.M.); Tel.: +972-3-5302458 (T.W. & O.M.)
| |
Collapse
|
8
|
Cañada-García JE, Delgado E, Gil H, Benito S, Sánchez M, Ocampo A, Cabrera JJ, Miralles C, García-Bodas E, Mariño A, Ordóñez P, Gude MJ, Ezpeleta C, Thomson MM. Viruses Previously Identified in Brazil as Belonging to HIV-1 CRF72_BF1 Represent Two Closely Related Circulating Recombinant Forms, One of Which, Designated CRF122_BF1, Is Also Circulating in Spain. Front Microbiol 2022; 13:863084. [PMID: 35694315 PMCID: PMC9185580 DOI: 10.3389/fmicb.2022.863084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating recombinant forms (CRFs) are important components of the HIV-1 pandemic. Those derived from recombination between subtype B and subsubtype F1, with 18 reported, most of them of South American origin, are among the most diverse. In this study, we identified a HIV-1 BF1 recombinant cluster that is expanding in Spain, transmitted mainly via heterosexual contact, which, analyzed in near full-length genomes in four viruses, exhibited a coincident BF1 mosaic structure, with 12 breakpoints, that fully coincided with that of two viruses (10BR_MG003 and 10BR_MG005) from Brazil, previously classified as CRF72_BF1. The three remaining Brazilian viruses (10BR_MG002, 10BR_MG004, and 10BR_MG008) previously identified as CRF72_BF1 exhibited mosaic structures highly similar, but not identical, to that of the Spanish viruses and to 10BR_MG003 and 10BR_MG005, with discrepant subtypes in two short genome segments, located in pol and gp120env. Based on these results, we propose that the five viruses from Brazil previously identified as CRF72_BF1 actually belong to two closely related CRFs, one comprising 10BR_MG002, 10BR_MG004, and 10BR_MG008, which keep their CRF72_BF1 designation, and the other, designated CRF122_BF1, comprising 10BR_MG003, 10BR_MG005, and the viruses of the identified Spanish cluster. Three other BF1 recombinant genomes, two from Brazil and one from Italy, previously identified as unique recombinant forms, were classified as CRF72_BF1. CRF122_BF1, but not CRF72_BF1, was associated with protease L89M substitution, which was reported to contribute to antiretroviral drug resistance. Phylodynamic analyses estimate the emergence of CRF122_BF1 in Brazil around 1987. Given their close phylogenetic relationship and similar structures, the grouping of CRF72_BF1 and CRF122_BF1 in a CRF family is proposed.
Collapse
Affiliation(s)
- Javier E. Cañada-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Antonio Ocampo
- Department of Internal Medicine, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Jorge Julio Cabrera
- Department of Microbiology, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Celia Miralles
- Department of Internal Medicine, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Ana Mariño
- Infectious Diseases Unit, Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Patricia Ordóñez
- Department of Microbiology, Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - María José Gude
- Department of Microbiology, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Carmen Ezpeleta
- Department of Clinical Microbiology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
- *Correspondence: Michael M. Thomson,
| |
Collapse
|
9
|
He S, Song W, Guo G, Li Q, An M, Zhao B, Gao Y, Tian W, Wang L, Shang H, Han X. Multiple CRF01_AE/CRF07_BC Recombinants Enhanced the HIV-1 Epidemic Complexity Among MSM in Shenyang City, Northeast China. Front Microbiol 2022; 13:855049. [PMID: 35633698 PMCID: PMC9133626 DOI: 10.3389/fmicb.2022.855049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transmission of Unique Recombinant Forms (URFs) has complicated the molecular epidemic of HIV-1. This increasing genetic diversity has implications for prevention surveillance, diagnosis, and vaccine design. In this study, we characterized the HIV-1 URFs from 135 newly diagnosed HIV-1 infected cases between 2016 and 2020 in Shenyang, northeast China and analyzed the evolutionary relationship of them by phylogenetic and recombination approaches. Among 135 URFs, we found that the CRF01_AE/CRF07_BC recombinants were the most common (81.5%, 110/135), followed by CRF01_AE/B (11.9%, 16/135), B/C (3.7%, 5/135), and others (3.0%, 4/135). 94.8% (128/135) of patients infected by URFs were through homosexual contact. Among 110 URFs_0107, 60 (54.5%) formed 11 subclusters (branch support value = 1) and shared the consistent recombination structure, respectively. Four subclusters have caused small-scale spread among different high-risk populations. Although the recombination structures of URFs_0107 are various, the hotspots of recombinants gathered between position 2,508 and 2,627 (relative to the HXB2 position). Moreover, the CRF07_BC and CRF01AE fragments of URFs_0107 were mainly derived from the MSM population. In brief, our results reveal the complex recombinant modes and the high transmission risk of URFs_0107, which calls for more attention on the new URFs_0107 monitoring and strict control in the areas led by homosexual transmission route.
Collapse
Affiliation(s)
- Shan He
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wei Song
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Gang Guo
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Qiang Li
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yang Gao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- *Correspondence: Hong Shang,
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Xiaoxu Han,
| |
Collapse
|
10
|
Revisiting the recombinant history of HIV-1 group M with dynamic network community detection. Proc Natl Acad Sci U S A 2022; 119:e2108815119. [PMID: 35500121 PMCID: PMC9171507 DOI: 10.1073/pnas.2108815119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recombination is a major mechanism through which HIV type 1 (HIV-1) maintains genetic diversity and interferes with viral eradication efforts. There is growing evidence demonstrating a recombinant origin of primate lentiviruses including HIV-1 group M (HIV-1/M). Inferring the extent of recombination across the entire HIV-1/M genome is of great importance as it provides deeper insights into the origin, dynamics, and evolution of the global pandemic. Here we propose an alternative method that can reconstruct the extent of genome-wide recombination in HIV-1, uncover reticulate patterns, and serve as a framework for HIV-1 classification. Our method provides an alternative approach for understanding the roles of virus recombination in the early evolutionary history of zoonosis for other emerging viruses. The prevailing abundance of full-length HIV type 1 (HIV-1) genome sequences provides an opportunity to revisit the standard model of HIV-1 group M (HIV-1/M) diversity that clusters genomes into largely nonrecombinant subtypes, which is not consistent with recent evidence of deep recombinant histories for simian immunodeficiency virus (SIV) and other HIV-1 groups. Here we develop an unsupervised nonparametric clustering approach, which does not rely on predefined nonrecombinant genomes, by adapting a community detection method developed for dynamic social network analysis. We show that this method (dynamic stochastic block model [DSBM]) attains a significantly lower mean error rate in detecting recombinant breakpoints in simulated data (quasibinomial generalized linear model (GLM), P<8×10−8), compared to other reference-free recombination detection programs (genetic algorithm for recombination detection [GARD], recombination detection program 4 [RDP4], and RDP5). When this method was applied to a representative sample of n = 525 actual HIV-1 genomes, we determined k = 29 as the optimal number of DSBM clusters and used change-point detection to estimate that at least 95% of these genomes are recombinant. Further, we identified both known and undocumented recombination hotspots in the HIV-1 genome and evidence of intersubtype recombination in HIV-1 subtype reference genomes. We propose that clusters generated by DSBM can provide an informative framework for HIV-1 classification.
Collapse
|
11
|
Yabar CA, Vilcarino GF, Espetia S, Lujan F, Vásquez-Domínguez A, Yaya M, Acuña M, Santos D, Mamani E, Rodriguez-Bayona R, Salvatierra J, Obregon G, Romero S, Cardenas F, Lopez P, Rivera-Amill V. Social, Epidemiological, and Virological Characteristics from Peruvian Subjects Living with HIV-1/AIDS with Different Sexual Risk Behavior. AIDS Res Hum Retroviruses 2022; 38:288-299. [PMID: 34569275 DOI: 10.1089/aid.2021.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV-1 genetic diversity and resistance profile might change according to the risky sexual behavior of the host. To show this, we recruited 134 individuals between the years 2015 and 2017 identified as transgender women sex workers (TWSW, n = 73) and Heterosexual Military Officers (HET-MO, n = 61). After obtaining informed consent, we collected a blood sample to perform the HIV genotyping, CD4 cell count, and viral load. We used bioinformatics approaches for detecting resistance mutations and recombination events. Epidemiological data showed that both groups reported sexually transmitted diseases and they were widespread among TWSW, especially syphilis and herpes virus (35.6%). Illegal drugs consumption was higher among TWSW (71.2%), whereas condom use was inconsistent for both HET-MO (57.4%) and TWSW (74.0%). TWSW showed the shortest time exposition to antiretroviral therapy (ART) (3.5 years) and the lowest access to ART (34.2%) that conducted treatment failure (>4 logs). HIV-1 sequences from TWSW and HET-MO were analyzed to determine the genetic diversity and antiretroviral drug resistance. Phylogeny analysis revealed 125 (93%) cases of subtype B, 01 subtype A (0.76%), 07 (5.30%) BF recombinants, and 01 (0.76%) AG recombinant. Also, TWSW showed a higher recombination index (9.5%, 7/73) than HET-MO (1.5%, 1/68). HET-MO only showed acquired resistance (26.23%, 16/61), whereas TWSW showed both acquired as transmitted resistance (9.59% for each). In conclusion, TWSW and HET-MO showed significant differences considering the epidemiological characteristics, genetic diversity, recombination events, and HIV resistance profile.
Collapse
Affiliation(s)
- Carlos Augusto Yabar
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
- Facultad de Medicina Humana, Universidad de San Martín de Porres, La Molina, Lima - Perú
| | - Giovanny Francesco Vilcarino
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Susan Espetia
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Fiorela Lujan
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Andres Vásquez-Domínguez
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Mariela Yaya
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Maribel Acuña
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Daniel Santos
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Edgardo Mamani
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | | | - Javier Salvatierra
- Servicio de ITS VIH, Centro de Salud, “Alberto Barton,” Callao, Lima - Perú
| | - George Obregon
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Soledad Romero
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Fany Cardenas
- Laboratorio de VTS/VIH-SIDA, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Chorrillos, Lima - Perú
| | - Pablo Lopez
- Center for Research Resources, Ponce Health Sciences University-Ponce Research Institute, Ponce, Puerto Rico
| | - Vanessa Rivera-Amill
- Center for Research Resources, Ponce Health Sciences University-Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
12
|
Oluniyi PE, Ajogbasile FV, Zhou S, Fred-Akintunwa I, Polyak CS, Ake JA, Tovanabutra S, Iroezindu M, Rolland M, Happi CT. HIV-1 drug resistance and genetic diversity in a cohort of people with HIV-1 in Nigeria. AIDS 2022; 36:137-146. [PMID: 34628443 PMCID: PMC8654252 DOI: 10.1097/qad.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study was designed to provide information on the genetic diversity of HIV-1 and drug resistance mutations in Nigeria, as there is limited understanding of variants circulating in the country. METHODS We used an advanced next-generation sequencing platform, Primer ID, to: investigate the presence of high and low abundance drug resistance mutations; characterize preexisting Integrase Strand Transfer Inhibitor (INSTI) mutations in antiretroviral therapy (ART)-experienced but dolutegravir-naive individuals; detect recent HIV-1 infections and characterize subtype diversity from a cohort of people with HIV-1 (PWH). RESULTS HIV-1 subtype analysis revealed the predominance of CRF02_AG and subtype G in our study population. At detection sensitivity of 30% abundance, drug resistance mutations (DRMs) were identified in 3% of samples. At a sensitivity level of 10%, DRMs were identified in 27.3% of samples. We did not detect any major INSTI mutation associated with dolutegravir-resistance. Only one recent infection was detected in our study population. CONCLUSION Our study suggests that dolutegravir-containing antiretroviral regimens will be effective in Nigeria. Our study also further emphasizes the high genetic diversity of HIV-1 in Nigeria and that CRF02_AG and subtype G are the dominant circulating forms of HIV-1 in Nigeria. These two circulating forms of the virus are largely driving the epidemic in the country.
Collapse
Affiliation(s)
- Paul E. Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Fehintola V. Ajogbasile
- Department of Biological Sciences, Faculty of Natural Sciences
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Iyanuoluwa Fred-Akintunwa
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Christina S. Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA
| | - Michael Iroezindu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
- HJF Medical Research International, Abuja, Nigeria
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA
| | - Christian T. Happi
- Department of Biological Sciences, Faculty of Natural Sciences
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| |
Collapse
|
13
|
Bacqué J, Delgado E, Benito S, Moreno-Lorenzo M, Montero V, Gil H, Sánchez M, Nieto-Toboso MC, Muñoz J, Zubero-Sulibarria MZ, Ugalde E, García-Bodas E, Cañada JE, del Romero J, Rodríguez C, Rodríguez-Avial I, Elorduy-Otazua L, Portu JJ, García-Costa J, Ocampo A, Cabrera JJ, Thomson MM. Identification of CRF66_BF, a New HIV-1 Circulating Recombinant Form of South American Origin. Front Microbiol 2021; 12:774386. [PMID: 34867914 PMCID: PMC8634668 DOI: 10.3389/fmicb.2021.774386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Circulating recombinant forms (CRFs) are important components of the HIV-1 pandemic. Among 110 reported in the literature, 17 are BF1 intersubtype recombinant, most of which are of South American origin. Among these, all 5 identified in the Southern Cone and neighboring countries, except Brazil, derive from a common recombinant ancestor related to CRF12_BF, which circulates widely in Argentina, as deduced from coincident breakpoints and clustering in phylogenetic trees. In a HIV-1 molecular epidemiological study in Spain, we identified a phylogenetic cluster of 20 samples from 3 separate regions which were of F1 subsubtype, related to the Brazilian strain, in protease-reverse transcriptase (Pr-RT) and of subtype B in integrase. Remarkably, 14 individuals from this cluster (designated BF9) were Paraguayans and only 4 were native Spaniards. HIV-1 transmission was predominantly heterosexual, except for a subcluster of 6 individuals, 5 of which were men who have sex with men. Ten additional database sequences, from Argentina (n = 4), Spain (n = 3), Paraguay (n = 1), Brazil (n = 1), and Italy (n = 1), branched within the BF9 cluster. To determine whether it represents a new CRF, near full-length genome (NFLG) sequences were obtained for 6 viruses from 3 Spanish regions. Bootscan analyses showed a coincident BF1 recombinant structure, with 5 breakpoints, located in p17 gag , integrase, gp120, gp41-rev overlap, and nef, which was identical to that of two BF1 recombinant viruses from Paraguay previously sequenced in NFLGs. Interestingly, none of the breakpoints coincided with those of CRF12_BF. In a maximum likelihood phylogenetic tree, all 8 NFLG sequences grouped in a strongly supported clade segregating from previously identified CRFs and from the CRF12_BF "family" clade. These results allow us to identify a new HIV-1 CRF, designated CRF66_BF. Through a Bayesian coalescent analysis, the most recent common ancestor of CRF66_BF was estimated around 1984 in South America, either in Paraguay or Argentina. Among Pr-RT sequences obtained by us from HIV-1-infected Paraguayans living in Spain, 14 (20.9%) of 67 were of CRF66_BF, suggesting that CRF66_BF may be one of the major HIV-1 genetic forms circulating in Paraguay. CRF66_BF is the first reported non-Brazilian South American HIV-1 CRF_BF unrelated to CRF12_BF.
Collapse
Affiliation(s)
- Joan Bacqué
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Moreno-Lorenzo
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josefa Muñoz
- Hospital Universitario de Basurto, Bilbao, Spain
| | | | | | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E. Cañada
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | - Antonio Ocampo
- Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | | | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
15
|
Tang R, Yu Z, Ma Y, Wu Y, Phoebe Chen YP, Wong L, Li J. Genetic source completeness of HIV-1 circulating recombinant forms (CRFs) predicted by multi-label learning. Bioinformatics 2021; 37:750-758. [PMID: 33063094 DOI: 10.1093/bioinformatics/btaa887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells' reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. RESULTS We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. AVAILABILITY AND IMPLEMENTATION https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Runbin Tang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zuguo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuanlin Ma
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yaoqun Wu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Identification of CRF89_BF, a new member of an HIV-1 circulating BF intersubtype recombinant form family widely spread in South America. Sci Rep 2021; 11:11442. [PMID: 34075073 PMCID: PMC8169922 DOI: 10.1038/s41598-021-90023-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Circulating recombinant forms (CRFs) contribute substantially to the HIV-1 pandemic. Among 105 CRFs described in the literature, 16 are BF intersubtype recombinants, most of South American origin, of which CRF12_BF is the most widely spread. A BF recombinant cluster identified in Bolivia was suggested to represent a new CRF_BF. Here we find that it belongs to a larger cluster incorporating 39 viruses collected in 7 countries from 3 continents, 22 of them in Spain, most from Bolivian or Peruvian individuals, and 12 in South America (Bolivia, Argentina, and Peru). This BF cluster comprises three major subclusters, two associated with Bolivian and one with Peruvian individuals. Near full-length genome sequence analyses of nine viruses, collected in Spain, Bolivia, and Peru, revealed coincident BF mosaic structures, with 13 breakpoints, 6 and 7 of which coincided with CRF12_BF and CRF17_BF, respectively. In a phylogenetic tree, they grouped in a clade closely related to these CRFs, and more distantly to CRF38_BF and CRF44_BF, all circulating in South America. These results allowed to identify a new HIV-1 CRF, designated CRF89_BF. Through phylodynamic analyses, CRF89_BF emergence was estimated in Bolivia around 1986. CRF89_BF is the fifth CRF member of the HIV-1 recombinant family related to CRF12_BF.
Collapse
|
17
|
Liu Y, Jia L, Su B, Li H, Li Z, Han J, Zhang Y, Zhang T, Li T, Wu H, Li J, Li L. The Genetic Diversity of HIV-1 Quasispecies Within Primary Infected Individuals. AIDS Res Hum Retroviruses 2020; 36:440-449. [PMID: 31766855 DOI: 10.1089/aid.2019.0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV has remarkable genetic diversity among populations. The diversity has critical impacts on transmission, immune escape, pathogenesis, and clinical management. HIV-1 diversity originates from frequent mutation and recombination during reverse transcription. This work focuses on the quasispecies genetic dynamics within individuals with primary infections. Eleven men who have sex with men from the Beijing PRIMO Clinical Cohort were identified as primary infection and had three or four series of their anticoagulant blood samples collected. Viral RNA was extracted and amplified using single-genome amplification. Products of the gp120 gene that met single-genome amplification requirements were sequenced. Subtype assortment of all collected sequences was performed using both the jumping profile hidden Markov model (jpHMM) and REGA. Quasispecies diversity at each time was estimated using Mega 6. Intrapatient recombination was analyzed using RDP4. According to the Fiebig classification system, YA-81 belongs to stage III and YA-113 belongs to stage IV. The other samples are all associated with the infection stage of V/VI. YA113 had a dual infection with subtype B and a new unique recombinant form involving CRF01_AE and C. The other eight were infected with CRF01_AE, one was infected with B/C recombinant, and the last one with B. Of the 10 single infections, 8 were caused by 1 founder virus. They all displayed a sharp increase of quasispecies diversity during the sampling times. Two were caused by at least two founder viruses. The diversity of these strains starts at a significantly high level and is followed by a relatively steady trend. Critically, the separate subtypes YA113-B and YA113-CRF01_AE/C both showed a similar trend to those infected by a single founder virus. Recombination analysis revealed that 5 of 11 cases underwent detectable intrapatient recombination. These findings indicate that tracing the dynamics of HIV-1 quasispecies during early infection may be relevant and valuable for understanding pathways of viral diversification and immune escape.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
18
|
Abstract
Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| |
Collapse
|
19
|
Banin AN, Tuen M, Bimela JS, Tongo M, Zappile P, Khodadadi-Jamayran A, Nanfack AJ, Meli J, Wang X, Mbanya D, Ngogang J, Heguy A, Nyambi PN, Fokunang C, Duerr R. Development of a Versatile, Near Full Genome Amplification and Sequencing Approach for a Broad Variety of HIV-1 Group M Variants. Viruses 2019; 11:E317. [PMID: 30939815 PMCID: PMC6520859 DOI: 10.3390/v11040317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
Near full genome sequencing (NFGS) of HIV-1 is required to assess the genetic composition of HIV-1 strains comprehensively. Population-wide, it enables a determination of the heterogeneity of HIV-1 and the emergence of novel/recombinant strains, while for each individual it constitutes a diagnostic instrument to assist targeted therapeutic measures against viral components. There is still a lack of robust and adaptable techniques for efficient NFGS from miscellaneous HIV-1 subtypes. Using rational primer design, a broad primer set was developed for the amplification and sequencing of diverse HIV-1 group M variants from plasma. Using pure subtypes as well as diverse, unique recombinant forms (URF), variable amplicon approaches were developed for NFGS comprising all functional genes. Twenty-three different genomes composed of subtypes A (A1), B, F (F2), G, CRF01_AE, CRF02_AG, and CRF22_01A1 were successfully determined. The NFGS approach was robust irrespective of viral loads (≥306 copies/mL) and amplification method. Third-generation sequencing (TGS), single genome amplification (SGA), cloning, and bulk sequencing yielded similar outcomes concerning subtype composition and recombinant breakpoint patterns. The introduction of a simple and versatile near full genome amplification, sequencing, and cloning method enables broad application in phylogenetic studies of diverse HIV-1 subtypes and can contribute to personalized HIV therapy and diagnosis.
Collapse
Affiliation(s)
- Andrew N Banin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Faculty of Medicine and Biomedical Sciences, Department of Biochemistry, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Jude S Bimela
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Faculty of Science, Department of Biochemistry, BP 1364 Yaoundé, Cameroon.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants, BP 906 Yaoundé, Cameroon.
| | - Paul Zappile
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories (ABL) and Genome Technology Center (GTC), Division of Advanced Research Technologies (DART), New York University Langone Medical Center, New York, NY 10016, USA.
| | - Aubin J Nanfack
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Medical Diagnostic Center, BP 15810 Yaoundé, Cameroon.
- Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, BP 3077 Messa Yaoundé, Cameroon.
| | | | - Xiaohong Wang
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, Department of Microbiology, Parasitology and Infectious Diseases, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Jeanne Ngogang
- Faculty of Medicine and Biomedical Sciences, Department of Biochemistry, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Phillipe N Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| | - Charles Fokunang
- Faculty of Medicine and Biomedical Sciences, Department of Pharmacotoxicology & Pharmacokinetics, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| |
Collapse
|
20
|
Abstract
HIV is one of the fastest evolving organisms known. It evolves about 1 million times faster than its host, humans. Because HIV establishes chronic infections, with continuous evolution, its divergence within a single infected human surpasses the divergence of the entire humanoid history. Yet, it is still the same virus, infecting the same cell types and using the same replication machinery year after year. Hence, one would think that most mutations that HIV accumulates are neutral. But the picture is more complicated than that. HIV evolution is also a clear example of strong positive selection, that is, mutants have a survival advantage. How do these facts come together?
Collapse
Affiliation(s)
- Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
21
|
Olabode AS, Avino M, Ng GT, Abu-Sardanah F, Dick DW, Poon AFY. Evidence for a recombinant origin of HIV-1 Group M from genomic variation. Virus Evol 2019; 5:vey039. [PMID: 30687518 PMCID: PMC6342232 DOI: 10.1093/ve/vey039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reconstructing the early dynamics of the HIV-1 pandemic can provide crucial insights into the socioeconomic drivers of emerging infectious diseases in human populations, including the roles of urbanization and transportation networks. Current evidence indicates that the global pandemic comprising almost entirely of HIV-1/M originated around the 1920s in central Africa. However, these estimates are based on molecular clock estimates that are assumed to apply uniformly across the virus genome. There is growing evidence that recombination has played a significant role in the early history of the HIV-1 pandemic, such that different regions of the HIV-1 genome have different evolutionary histories. In this study, we have conducted a dated-tip analysis of all near full-length HIV-1/M genome sequences that were published in the GenBank database. We used a sliding window approach similar to the 'bootscanning' method for detecting breakpoints in inter-subtype recombinant sequences. We found evidence of substantial variation in estimated root dates among windows, with an estimated mean time to the most recent common ancestor of 1922. Estimates were significantly autocorrelated, which was more consistent with an early recombination event than with stochastic error variation in phylogenetic reconstruction and dating analyses. A piecewise regression analysis supported the existence of at least one recombination breakpoint in the HIV-1/M genome with interval-specific means around 1929 and 1913, respectively. This analysis demonstrates that a sliding window approach can accommodate early recombination events outside the established nomenclature of HIV-1/M subtypes, although it is difficult to incorporate the earliest available samples due to their limited genome coverage.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Mariano Avino
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Garway T Ng
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Faisal Abu-Sardanah
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - David W Dick
- Department of Applied Mathematics, Western University, London, Ontario, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.,Department of Applied Mathematics, Western University, London, Ontario, Canada.,Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Jia L, Hu F, Li H, Li L, Tang X, Liu Y, Deng H, Han J, Li J, Cai W. Characterization of small genomic regions of the hepatitis B virus should be performed with more caution. Virol J 2018; 15:188. [PMID: 30526629 PMCID: PMC6288937 DOI: 10.1186/s12985-018-1100-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus is a hepatotropic DNA virus that reproduces via an RNA intermediate. It can lead to an increased risk of serious liver diseases such as hepatocellular carcinoma and is a serious threat to public health. Currently, the HBV are designated based on greater than 8% nucleotide variation along the whole genome. The recombination of HBV is very common, a large majority of which are recombinants between 2 genotypes. The current work aims to characterize a suspected recombinant involving 3 genotypes. METHODS Fifty-seven HBV full-genome sequences were obtained from 57 patients co-infected with HBV and HIV-1 by amplification coupled with sequencing. JpHMM and RDP4 were used to perform recombination analysis respectively. The recombination results of a suspected 3-genotypic recombinant were further confirmed by both maximum likelihood phylogenetic tree and Mrbayes tree. RESULTS JpHMM recombination analysis clearly indicated one 3-genotypic HBV recombinant composing of B/C/D. The genotype assignments are supported by significant posterior probabilities. The subsequent phylogenetic analysis of sub-regions derived from inferred breakpoints led to a disagreement on the assignment of D segment. Investigating the conflict, further exploration by RDP4 and phylogenies revealed that the jpHMM-derived 3-genotypic recombinant is actually a B/C genotypic recombinant with C fragment spanning 1899 to 2295 (jpHMM) or 1821 to 2199 (RDP4). CONCLUSIONS The whole analysis indicated that (i) determination of small genomic regions should be performed with more caution, (ii) combinations of various recombination detection approaches conduce to obtain impartial results, and (iii) a unified system of nomenclature of HBV genotypes is necessary.
Collapse
Affiliation(s)
- Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Fengyu Hu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Haohui Deng
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Weiping Cai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| |
Collapse
|
23
|
Avettand-Fénoël V, Mélard A, Gueudin M, Maillard A, Dina J, Gousset M, Chaix ML, Lerolle N, Viard JP, Meyer L, Plantier JC, Rouzioux C. Comparative performance of the Biocentric Generic Viral Load, Roche CAP/CTM v1.5, Roche CAP/CTM v2.0 and m2000 Abbott assays for quantifying HIV-1 B and non-B strains: Underestimation of some CRF02 strains. J Clin Virol 2018; 110:36-41. [PMID: 30530097 DOI: 10.1016/j.jcv.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND HIV-1 viral load testing is now recommended by the World Health Organization for every patient receiving antiretroviral therapy (ART). OBJECTIVES The objective of this study is to evaluate the performance of commercial assays for their ability to quantify HIV-1 strains currently circulating in France. STUDY DESIGN The performances of the Generic HIV-RNA assay from Biocentric were compared to those of the Roche CAP/CTM v1.5, Roche CAP/CTM v2.0 and Abbott m2000 RealTime HIV-1 assays. A total of 1885 HIV-1 plasma samples were tested, including 684 samples from patients included in the ANRS-Primo Cohort. RESULTS We found a good concordance of quantification between the Roche v2.0 and the Biocentric assays, both of which were superior to the Roche v1.5 assay. We show moderate agreement between techniques; however, CRF02_AG strains and undetermined viruses were underestimated when quantified with the Roche CAP/CTM v2.0. In contrast, a comparison of the Biocentric and Abbott assay results showed strong agreement between assays, indicating that both are well suited for quantification of CRF02_AG strains. Moreover, a 2% underestimation of the B subtypes was observed with the Biocentric assay. CONCLUSIONS These results have implications for viral load monitoring in Western Africa, where CRF02_AG strains are highly prevalent. Closer epidemiological surveillance and evaluation of commercial assays are still necessary to better evaluate the impact of the genetic evolution of circulating viruses on HIV-RNA quantification in the regions most affected by the HIV-1 epidemic.
Collapse
Affiliation(s)
- V Avettand-Fénoël
- Université Paris Descartes, EA 7327, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Necker, Paris, France
| | - A Mélard
- Université Paris Descartes, EA 7327, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Necker, Paris, France
| | - M Gueudin
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie, F-76000, Rouen, France
| | - A Maillard
- Laboratoire de Virologie, Hôpital de Rennes, Rennes, France
| | - J Dina
- Université de Normandie, EA 2556, Hôpital de Caen, département de Virologie, Caen, France
| | - M Gousset
- Université Paris Descartes, EA 7327, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Necker, Paris, France
| | - M L Chaix
- INSERM UMR 942 Université Paris Diderot, Laboratoire de Virologie, APHP Hôpital Saint-Louis, Paris, France
| | - N Lerolle
- INSERM CESP U1018, Université Paris Sud, Le Kremlin Bicêtre, France
| | - J P Viard
- Université Paris Descartes, EA 7327, Sorbonne Paris Cité, AP-HP, Centre de Diagnostic et de Thérapeutique, Hôpital Hôtel Dieu, France
| | - L Meyer
- INSERM CESP U1018, Université Paris Sud, Le Kremlin Bicêtre, France
| | - J C Plantier
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie, F-76000, Rouen, France
| | - C Rouzioux
- Université Paris Descartes, EA 7327, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Necker, Paris, France.
| | | |
Collapse
|
24
|
López P, De Jesús O, Yamamura Y, Rodríguez N, Arias A, Sánchez R, Rodríguez Y, Tamayo-Agrait V, Cuevas W, Rivera-Amill V. Molecular Epidemiology of HIV-1 Virus in Puerto Rico: Novel Cases of HIV-1 Subtype C, D, and CRF-24BG. AIDS Res Hum Retroviruses 2018; 34:507-516. [PMID: 29658302 DOI: 10.1089/aid.2017.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 subtype B virus is the most prevalent subtype in Puerto Rico (PR), accounting for about 90% of infection in the island. Recently, other subtypes and circulating recombinant forms (CRFs), including F(12_BF), A (01_BF), and CRF-39 BF-like, have been identified. The purpose of this study is to assess the distribution of drug resistance mutations and subtypes in PR. A total of 846 nucleotide sequences from the period comprising 2013 through 2017 were obtained from our "HIV Genotyping" test file. Phylogenetic and molecular epidemiology analyses were performed to evaluate the evolutionary dynamics and prevalence of drug resistance mutations. According to our results, we detected a decrease in the prevalence of protease inhibitor, nucleoside reverse transcriptase inhibitor (NRTI), and non-NRTI (NNRTI) resistance mutations over time. In addition, we also detected recombinant forms and, for the first time, identified subtypes C, D, and CRF-24BG in PR. Recent studies suggest that non-subtypes B are associated with a high risk of treatment failure and disease progression. The constant monitoring of viral evolution and drug resistance mutation dynamics is important to establish appropriate efforts for controlling viral expansion.
Collapse
Affiliation(s)
- Pablo López
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Omayra De Jesús
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Nayra Rodríguez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Andrea Arias
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Raphael Sánchez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Yadira Rodríguez
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Vivian Tamayo-Agrait
- Puerto Rico Community Network for Clinical Research on AIDS, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Wilfredo Cuevas
- HIV Clinic Outpatient Department, Ryder Memorial Hospital, Humacao, Puerto Rico
| | - Vanessa Rivera-Amill
- AIDS Research Program, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
25
|
Song H, Giorgi EE, Ganusov VV, Cai F, Athreya G, Yoon H, Carja O, Hora B, Hraber P, Romero-Severson E, Jiang C, Li X, Wang S, Li H, Salazar-Gonzalez JF, Salazar MG, Goonetilleke N, Keele BF, Montefiori DC, Cohen MS, Shaw GM, Hahn BH, McMichael AJ, Haynes BF, Korber B, Bhattacharya T, Gao F. Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat Commun 2018; 9:1928. [PMID: 29765018 PMCID: PMC5954121 DOI: 10.1038/s41467-018-04217-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elena E Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangping Cai
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gayathri Athreya
- Office for Research & Discovery, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyejin Yoon
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Oana Carja
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | | | - Chunlai Jiang
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaojun Li
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jesus F Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-57, Nakiwogo Road, Entebbe, Uganda
| | - Maria G Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Myron S Cohen
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Barton F Haynes
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Feng Gao
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
26
|
Trends in Drug Resistance Prevalence, HIV-1 Variants and Clinical Status in HIV-1-infected Pediatric Population in Madrid: 1993 to 2015 Analysis. Pediatr Infect Dis J 2018; 37:e48-e57. [PMID: 28991889 DOI: 10.1097/inf.0000000000001760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The expanded use of long-term antiretroviral treatments in infected children may exacerbate the problem of drug resistance mutations selection, which can compromise treatment efficiency. OBJECTIVE We describe the temporal trends of HIV drug resistance mutations and the HIV-1 variants during 23 years (1993 to March 2016) in the Madrid cohort of HIV-infected children and adolescents. METHODS We selected patients with at least one available HIV-1 pol sequence/genotypic resistance profile, establishing different groups according to the sampling year of first resistance data. We determined the prevalence of transmitted drug resistance mutations or acquired drug resistance mutations (DRM), the drug susceptibility among resistant viruses and HIV-1 variants characterized by phylogeny across time. RESULTS A total of 245 pediatric patients were selected, being mainly female, Spanish native, perinatally infected and carrying HIV-1 subtype B. At first sampling, most pediatric patients were on antiretroviral therapy and heavily pretreated. During 1993 to 2016, transmitted drug resistance mutations was found in 13 (26%) of 50 naive children [non-nucleoside reverse transcriptase inhibitors (NNRTI), 14.6%; nucleoside reverse transcriptase inhibitors (NRTI), 10.4%; protease inhibitors, 8.7%]. DRM appeared in 139 (73.2%) of 190 pretreated patients (NRTI, 64.5%; NNRTI, 36%; protease inhibitors, 35.1%). DRM to NNRTI was higher in last 5 years. Non-B variants infected 14.5% of children and adolescents of the Madrid Cohort, being mainly intersubtype recombinants (76.5%), including complex unique recombinant strains. They caused 3.4% infections before 2000, rising to 85.7% during 2011 to 2016. CONCLUSIONS Periodic surveillance resistance and molecular epidemiology studies in long-term pretreated HIV-infected pediatric populations are required to optimize treatment regimens. Results will permit a better understanding of long-time dynamics of viral resistance and HIV-1 variants in Spain.
Collapse
|
27
|
USING OF LOWLAND PEAT SUBSTRATE FOR CULTIVATION OF PICHIA ANOMALA IMB Y-5067 AND RHODOTORULA GRACILIS IMB Y-5075 YEAST STRAINS. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Tongo M, Harkins GW, Dorfman JR, Billings E, Tovanabutra S, de Oliveira T, Martin DP. Unravelling the complicated evolutionary and dissemination history of HIV-1M subtype A lineages. Virus Evol 2018; 4:vey003. [PMID: 29484203 PMCID: PMC5819727 DOI: 10.1093/ve/vey003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Subtype A is one of the rare HIV-1 group M (HIV-1M) lineages that is both widely distributed throughout the world and persists at high frequencies in the Congo Basin (CB), the site where HIV-1M likely originated. This, together with its high degree of diversity suggests that subtype A is amongst the fittest HIV-1M lineages. Here we use a comprehensive set of published near full-length subtype A sequences and A-derived genome fragments from both circulating and unique recombinant forms (CRFs/URFs) to obtain some insights into how frequently these lineages have independently seeded HIV-1M sub-epidemics in different parts of the world. We do this by inferring when and where the major subtype A lineages and subtype A-derived CRFs originated. Following its origin in the CB during the 1940s, we track the diversification and recombination history of subtype A sequences before and during its dissemination throughout much of the world between the 1950s and 1970s. Collectively, the timings and numbers of detectable subtype A recombination and dissemination events, the present broad global distribution of the sub-epidemics that were seeded by these events, and the high prevalence of subtype A sequences within the regions where these sub-epidemics occurred, suggest that ancestral subtype A viruses (and particularly sub-subtype A1 ancestral viruses) may have been genetically predisposed to become major components of the present epidemic.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Immunology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Erik Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
29
|
Kulkarni V, Ruprecht RM. Mucosal IgA Responses: Damaged in Established HIV Infection-Yet, Effective Weapon against HIV Transmission. Front Immunol 2017; 8:1581. [PMID: 29176985 PMCID: PMC5686557 DOI: 10.3389/fimmu.2017.01581] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
HIV infection not only destroys CD4+ T cells but also inflicts serious damage to the B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial B cells and plasma cells are also affected, which results in loss of mucosal IgG and IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. We postulate that compromised mucosal antibody defenses also facilitate superinfection of HIV-positive individuals with new HIV strains. This in turn sets the stage for the generation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, we discuss proof-of-principle studies we have performed using passive mucosal immunization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs) as IgG1, dimeric IgA1 (dIgA1), and dIgA2 isotypes, alone or in combination. Our data indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection against mucosal transmission of simian-human immunodeficiency virus. Our review also discusses the induction of mucosal antibody defenses by active vaccination and potential strategies to interrupt the vicious cycle of bacterial translocation, immune activation, and stimulation of HIV replication in individuals with damaged mucosal barriers.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States.,Southwest National Primate Research Center, San Antonio, TX, United States
| |
Collapse
|
30
|
Villabona Arenas CJ, Vidal N, Ahuka Mundeke S, Muwonga J, Serrano L, Muyembe JJ, Boillot F, Delaporte E, Peeters M. Divergent HIV-1 strains (CRF92_C2U and CRF93_cpx) co-circulating in the Democratic Republic of the Congo: Phylogenetic insights on the early evolutionary history of subtype C. Virus Evol 2017; 3:vex032. [PMID: 29250430 PMCID: PMC5724398 DOI: 10.1093/ve/vex032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular epidemiological studies revealed that the epicenter of the HIV pandemic was Kinshasa, the capital city of the Democratic Republic of the Congo (DRC) in Central Africa. All known subtypes and numerous complex recombinant strains co-circulate in the DRC. Moreover, high intra-subtype diversity has been also documented. During two previous surveys on HIV-1 antiretroviral drug resistance in the DRC, we identified two divergent subtype C lineages in the protease and partial reverse transcriptase gene regions. We sequenced eight near full-length genomes and classified them using bootscanning and likelihood-based phylogenetic analyses. Four strains are more closely related to subtype C although within the range of inter sub-subtype distances. However, these strains also have small unclassified fragments and thus were named CRF92_C2U. Another strain is a unique recombinant of CRF92_C2U with an additional small unclassified fragment and a small divergent subtype A fragment. The three remaining strains represent a complex mosaic named CRF93_cpx. CRF93_cpx have two fragments of divergent subtype C sequences, which are not conventional subtype C nor the above described C2, and multiple divergent subtype A-like fragments. We then inferred the time-scaled evolutionary history of subtype C following a Bayesian approach and a partitioned analysis using major genomic regions. CRF92_C2U and CRF93_cpx had the most recent common ancestor with conventional subtype C around 1932 and 1928, respectively. A Bayesian demographic reconstruction corroborated that the subtype C transition to a faster phase of exponential growth occurred during the 1950s. Our analysis showed considerable differences between the newly discovered early-divergent strains and the conventional subtype C and therefore suggested that this virus has been diverging in humans for several decades before the HIV/M diversity boom in the 1950s.
Collapse
Affiliation(s)
- C J Villabona Arenas
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - N Vidal
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - S Ahuka Mundeke
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France.,Institut National de Recherche Biomédicale, Av. De la Démocratie 5345, Kinshasa, Democratic Republic of the Congo.,Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo
| | - J Muwonga
- Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo.,Laboratoire National de Référence du SIDA, Kinshasa, Democratic Republic of Congo
| | - L Serrano
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - J J Muyembe
- Institut National de Recherche Biomédicale, Av. De la Démocratie 5345, Kinshasa, Democratic Republic of the Congo.,Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo
| | - F Boillot
- Alter-Santé Internationale and Développement, Montpellier, 34090, France
| | - E Delaporte
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - M Peeters
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| |
Collapse
|
31
|
Jia M, Shaw T, Zhang X, Liu D, Shen Y, Ezeamama AE, Yang C, Zhang M. Decoding noises in HIV computational genotyping. Virology 2017; 511:249-255. [PMID: 28918303 DOI: 10.1016/j.virol.2017.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Lack of a consistent and reliable genotyping system can critically impede HIV genomic research on pathogenesis, fitness, virulence, drug resistance, and genomic-based healthcare and treatment. At present, mis-genotyping, i.e., background noises in molecular genotyping, and its impact on epidemic surveillance is unknown. For the first time, we present a comprehensive assessment of HIV genotyping quality. HIV sequence data were retrieved from worldwide published records, and subjected to a systematic genotyping assessment pipeline. Results showed that mis-genotyped cases occurred at 4.6% globally, with some regional and high-risk population heterogeneities. Results also revealed a consistent mis-genotyping pattern in gp120 in all studied populations except the group of men who have sex with men. Our study also suggests novel virus diversities in the mis-genotyped cases. Finally, this study reemphasizes the importance of implementing a standardized genotyping pipeline to avoid genotyping disparity and to advance our understanding of virus evolution in various epidemiological settings.
Collapse
Affiliation(s)
- MingRui Jia
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong Province 250021, China; Department of Epidemiology and Biostatistics, University of Georgia, GA 30602, USA
| | - Timothy Shaw
- Department of Epidemiology and Biostatistics, University of Georgia, GA 30602, USA
| | - Xing Zhang
- Diagnostic Imaging center, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dong Liu
- Department of Epidemiology and Biostatistics, University of Georgia, GA 30602, USA; Laboratory of Ichthyology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia, GA 30602, USA
| | - Amara E Ezeamama
- Department of Psychiatry, Michigan State University, MI 48824, USA
| | - Chunfu Yang
- International Laboratory Branch, Division of Global HIV/TB, Center for Global Health, Centers for Diseases Control and Prevention, GA 30333, USA
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, GA 30602, USA.
| |
Collapse
|
32
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Sallam M, Şahin GÖ, Ingman M, Widell A, Esbjörnsson J, Medstrand P. Genetic characterization of human immunodeficiency virus type 1 transmission in the Middle East and North Africa. Heliyon 2017; 3:e00352. [PMID: 28725873 PMCID: PMC5506879 DOI: 10.1016/j.heliyon.2017.e00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The HIV-1 spread in the Middle East and North Africa (MENA) has not been previously characterised using the phylogenetic approach. The aim of the current study was to investigate the genetic diversity and domestic transmission of HIV-1 in the MENA. METHODS A total of 2036 HIV-1 sequences available in Genbank and collected in the MENA during 1988-2016 were used together with 715 HIV-1 reference sequences that were retrieved from Genbank based on genetic similarity with the MENA sequences. The REGA and COMET tools were used to determine HIV-1 subtypes and circulating recombinant forms. Maximum Likelihood and Bayesian phylogenetic analyses were used to identify and date HIV-1 transmission clusters. RESULTS At least 21 HIV-1 subtypes and recombinant forms were prevalent in the MENA. Subtype B was the most common variant (39%), followed by CRF35_AD (19%) and CRF02_AG (14%). The most common genetic region was pol, and 675 partial pol sequences (average of 1005 bp) were eligible for detailed phylogenetic analysis. Fifty-four percent of the MENA sequences formed HIV-1 transmission clusters. Whereas numerous clusters were country-specific, some clusters indicated transmission links between countries for subtypes B, C and CRF02_AG. This was more common in North Africa compared with the Middle East (p < 0.001). Recombinant forms had a larger proportion of clustering compared to pure subtypes (p < 0.001). The largest MENA clusters dated back to 1991 (an Algerian CRF06_cpx cluster of 43 sequences) and 2002 (a Tunisian CRF02_AG cluster of 48 sequences). CONCLUSIONS We found an extensive HIV-1 diversity in the MENA and a high proportion of sequences in transmission clusters. This study highlights the need for preventive measures in the MENA to limit HIV-1 spread in this region.
Collapse
Affiliation(s)
- Malik Sallam
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Gülşen Özkaya Şahin
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
- Laboratory Medicine Skåne, Lund, Sweden
| | - Mikael Ingman
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Anders Widell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| | - Joakim Esbjörnsson
- Lund University, Faculty of Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Patrik Medstrand
- Lund University, Faculty of Medicine, Department of Translational Medicine, Malmö, Sweden
| |
Collapse
|
34
|
Histidine 375 Modulates CD4 Binding in HIV-1 CRF01_AE Envelope Glycoproteins. J Virol 2017; 91:JVI.02151-16. [PMID: 27928014 DOI: 10.1128/jvi.02151-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
The envelope glycoproteins (Envs) from human immunodeficiency virus type 1 (HIV-1) mediate viral entry. The binding of the HIV-1 gp120 glycoprotein to CD4 triggers conformational changes in gp120 that allow high-affinity binding to its coreceptors. In contrast to all other Envs from the same phylogenetic group, M, which possess a serine (S) at position 375, those from CRF01_AE strains possess a histidine (H) at this location. This residue is part of the Phe43 cavity, where residue 43 of CD4 (a phenylalanine) engages with gp120. Here we evaluated the functional consequences of replacing this residue in two CRF01_AE Envs (CM244 and 92TH023) by a serine. We observed that reversion of amino acid 375 to a serine (H375S) resulted in a loss of functionality of both CRF01_AE Envs as measured by a dramatic loss in infectivity and ability to mediate cell-to-cell fusion. While no effects on processing or trimer stability of these variants were observed, decreased functionality could be linked to a major defect in CD4 binding induced by the replacement of H375 by a serine. Importantly, mutations of residues 61 (layer 1), 105 and 108 (layer 2), and 474 to 476 (layer 3) of the CRF01_AE gp120 inner domain layers to the consensus residues present in group M restored CD4 binding and wild-type levels of infectivity and cell-to-cell fusion. These results suggest a functional coevolution between the Phe43 cavity and the gp120 inner domain layers. Altogether, our observations describe the functional importance of amino acid 375H in CRF01_AE envelopes. IMPORTANCE A highly conserved serine located at position 375 in group M is replaced by a histidine in CRF01_AE Envs. Here we show that H375 is required for efficient CRF01_AE Env binding to CD4. Moreover, this work suggests that specific residues of the gp120 inner domain layers have coevolved with H375 in order to maintain its ability to mediate viral entry.
Collapse
|
35
|
Foley BT, Leitner T, Paraskevis D, Peeters M. Primate immunodeficiency virus classification and nomenclature: Review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 46:150-158. [PMID: 27789390 PMCID: PMC5136504 DOI: 10.1016/j.meegid.2016.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022]
Abstract
The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000.
Collapse
Affiliation(s)
- Brian T Foley
- Theoretical Biology and Biophysics Group, T-6 Mail Stop K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, T-6 Mail Stop K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dimitrios Paraskevis
- National and Kapodistrian University of Athens, Department of Hygiene, Epidemiology and Medical Statistics, Medical School, Athens, Greece
| | - Martine Peeters
- UMI233-TransVIHMI, Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France; IBC, Computational Biology Institute, 34095 Montpellier, France
| |
Collapse
|
36
|
In-depth analysis of HIV-1 drug resistance mutations in HIV-infected individuals failing first-line regimens in West and Central Africa. AIDS 2016; 30:2577-2589. [PMID: 27603287 DOI: 10.1097/qad.0000000000001233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE In resource-limited countries, antiretroviral therapy (ART) has been scaled up, but individual monitoring is still suboptimal. Here, we studied whether or not ART had an impact on the frequency and selection of drug resistance mutations (DRMs) under these settings. We also examined whether differences exist between HIV-1 genetic variants. DESIGN A total of 3736 sequences from individuals failing standard first-line ART (n = 1599, zidovudine/stavudine + lamivudine + neviparine/efavirenz) were analyzed and compared with sequences from reverse transcriptase inhibitor (RTI)-naive individuals (n = 2137) from 10 West and Central African countries. METHODS Fisher exact tests and corrections for multiple comparisons were used to assess the significance of associations. RESULTS All RTI-DRM from the 2015 International Antiviral Society list, except F227C, and nine mutations from other expert lists were observed to confer extensive resistance and cross-resistance. Five additional independently selected mutations (I94L, L109I, V111L, T139R and T165L) were statistically associated with treatment. The proportion of sequences with multiple mutations and the frequency of all thymidine analog mutations, M184V, certain NNRTIS, I94L and L109I showed substantial increase with time on ART. Only one nucleoside and two nonnucleoside RTI-DRMs differed by subtype/circulating recombinant form. CONCLUSION This study validates the global robustness of the actual DRM repertoire, in particular for circulating recombinant form 02 predominating in West and Central Africa, despite our finding of five additional selected mutations. However, long-term ART without virological monitoring clearly leads to the accumulation of mutations and the emergence of additional variations, which limit drug options for treatment and can be transmitted. Improved monitoring and optimization of ART are necessary for the long-term effectiveness of ART.
Collapse
|
37
|
Alvarez P, Fernández McPhee C, Prieto L, Martín L, Obiang J, Avedillo P, Vargas A, Rojo P, Benito A, Ramos JT, Holguín Á. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013. PLoS One 2016; 11:e0165333. [PMID: 27798676 PMCID: PMC5087953 DOI: 10.1371/journal.pone.0165333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Methods Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. Results A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). Conclusions The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present.
Collapse
Affiliation(s)
- Patricia Alvarez
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
| | | | - Luis Prieto
- Pediatrics Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Leticia Martín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
| | - Jacinta Obiang
- Pediatrics Department, Hospital Regional de Bata, Ministerio de Sanidad y Bienestar Social, Bata, Equatorial Guinea
| | - Pedro Avedillo
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - Antonio Vargas
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - Pablo Rojo
- Pediatrics Department, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Agustín Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - José Tomás Ramos
- Pediatrics Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Jia L, Li L, Gui T, Liu S, Li H, Han J, Guo W, Liu Y, Li J. Analysis of HIV-1 intersubtype recombination breakpoints suggests region with high pairing probability may be a more fundamental factor than sequence similarity affecting HIV-1 recombination. Virol J 2016; 13:156. [PMID: 27655081 PMCID: PMC5031261 DOI: 10.1186/s12985-016-0616-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/15/2016] [Indexed: 01/27/2023] Open
Abstract
Background With increasing data on HIV-1, a more relevant molecular model describing mechanism details of HIV-1 genetic recombination usually requires upgrades. Currently an incomplete structural understanding of the copy choice mechanism along with several other issues in the field that lack elucidation led us to perform an analysis of the correlation between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarity to further explore structural mechanisms. Methods Near full length sequences of URFs from Asia, Europe, and Africa (one sequence/patient), and representative sequences of worldwide CRFs were retrieved from the Los Alamos HIV database. Their recombination patterns were analyzed by jpHMM in detail. Then the relationships between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarities were investigated. Results Pearson correlation test showed that all URF groups and the CRF group exhibit the same breakpoint distribution pattern. Additionally, the Wilcoxon two-sample test indicated a significant and inexplicable limitation of recombination in regions with high pairing probability. These regions have been found to be strongly conserved across distinct biological states (i.e., strong intersubtype similarity), and genetic similarity has been determined to be a very important factor promoting recombination. Thus, the results revealed an unexpected disagreement between intersubtype similarity and breakpoint distribution, which were further confirmed by genetic similarity analysis. Our analysis reveals a critical conflict between results from natural HIV-1 isolates and those from HIV-1-based assay vectors in which genetic similarity has been shown to be a very critical factor promoting recombination. Conclusions These results indicate the region with high-pairing probabilities may be a more fundamental factor affecting HIV-1 recombination than sequence similarity in natural HIV-1 infections. Our findings will be relevant in furthering the understanding of HIV-1 recombination mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0616-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tao Gui
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Siyang Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei Guo
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
39
|
Matsumoto C, Shinohara N, Sobata R, Uchida S, Satake M, Tadokoro K. Genetic Analysis of HIV-1 in Japan: a Comprehensive Analysis of Donated Blood. Jpn J Infect Dis 2016; 70:136-142. [PMID: 27357980 DOI: 10.7883/yoken.jjid.2015.504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Japan, the number of human immunodeficiency virus (HIV)-1 infections remains relatively low; nevertheless, the annual incidence of HIV-1 infection has not decreased. New infections remain a great concern, and an improved understanding of epidemiological trends is critical for public health. The env C2V3 and pol sequences of HIV-1 RNA from 240 early (1996-2001) and 223 more recent (2010-2012) blood donations were used to compare the distribution of virus subtypes and to generate phylogenetic trees. Subtype B was clearly predominant in both early and more recent donations (both were 88.3%), and CRF01_AE was the second most common subtype. Phylogenetic analysis revealed a peculiar epidemiological transition. Compared to early subtype B isolates from 2 major endemic areas (Tokyo and Osaka), the more recent subtype B isolates formed fewer tight clusters in phylogenetic trees (from 8 to 2 clusters in Tokyo and 5 to zero clusters in Osaka). Furthermore, mixing of HIV-1 infections between these 2 endemic areas appear to increase. Analysis of phylogenetic trees suggested that local outbreaks have become smaller in Japan; however, intermixing of viral types between these 2 areas was more evident in the more recent samples.
Collapse
Affiliation(s)
- Chieko Matsumoto
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society
| | | | | | | | | | | |
Collapse
|
40
|
Delatorre E, de Azevedo SSD, Rodrigues-Pedro A, Velasco-de-Castro CA, Couto-Fernandez JC, Pilotto JH, Morgado MG. Tracing the origin of a singular HIV-1 CRF45_cpx clade identified in Brazil. INFECTION GENETICS AND EVOLUTION 2016; 46:223-232. [PMID: 27259365 DOI: 10.1016/j.meegid.2016.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
The HIV-1 epidemiology has changed over the past decade toward a marked increase in the circulation of strains previously restricted to local epidemics. Recent molecular epidemiological surveys identified some HIV-1 strains of probable African origin circulating in Brazil, including the Circulating Recombinant Form (CRF) 45_cpx, a complex A1/K/U recombinant that circulates in Central Africa. Here, we characterize partial genomic sequences and reconstruct the evolutionary history of HIV-1 CRF45_cpx-related recombinant samples identified in independent studies carried out with HIV+ individuals in Brazil. The sequences were obtained by overlapping PCR amplifications followed by direct sequencing. Recombination profiles were determined by phylogenetic and bootscaning analyses. The evolutionary history was estimated by a Bayesian coalescent-based method using datasets representing the gag, pol and env gene fragments. Six of the 10 samples isolated in Rio de Janeiro showed a CRF45_cpx-like pattern throughout the sequenced genome. The remaining were classified as second-generation recombinants, showing the mosaic patterns: CRF45_cpx/B/D/F1/U, CRF45_cpx/B/F1/U, CRF45_cpx/B/U and CRF45_cpx/F1. All Brazilian CRF45_cpx sequences, except one, formed a monophyletic clade (CRF45-BR), which seems to be the result of a single introduction event that has spread to the Rio de Janeiro, São Paulo and Minas Gerais states and is related to sequences from Argentina, Italy and Belgium. The Bayesian analyses pointed out quite consistent onset dates for CRF45-BR clade (~1984: 1976-1996) in the three gene datasets. These results indicate that the CRF45-BR clade has been circulating in the Southeastern Brazilian region for about 30years, although its presence was not detected until recently due to its very low prevalence. This reinforces the relevance of large-scale molecular surveillance data to identify the emergence of new HIV variants and their impact on local epidemics.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Suwellen S D de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriana Rodrigues-Pedro
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carlos Augusto Velasco-de-Castro
- Laboratório de Virologia, Departamento de Patologia Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Jose H Pilotto
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Hospital Geral de Nova Iguaçu, Rio de Janeiro, Brazil
| | - Mariza G Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Jia L, Li L, Li H, Liu S, Wang X, Bao Z, Li T, Zhuang D, Liu Y, Li J. Correction: Recombination Pattern Reanalysis of Some HIV-1 Circulating Recombination Forms Suggest the Necessity and Difficulty of Revision. PLoS One 2016; 11:e0155750. [PMID: 27168068 PMCID: PMC4864214 DOI: 10.1371/journal.pone.0155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Abstract
BACKGROUND HIV recombination has been estimated in vitro using a variety of approaches, and shows a high rate of template switching per reverse transcription event. In-vivo studies of recombination generally measure the accumulation of recombinant strains over time, and thus do not directly estimate a comparable template switching rate. METHOD To examine whether the estimated in-vitro template switching rate is representative of the rate that occurs during HIV infection in vivo, we adopted a novel approach, analysing single genome sequences from early founder viruses to study the in-vivo template switching rate in the env region of HIV. RESULTS We estimated the in-vivo per cycle template switching rate to be between 0.5 and 1.5/1000 nt, or approximately 5-14 recombination events over the length of the HIV genome. CONCLUSION The in-vivo estimated template switching rate is close to the in-vitro estimated rate found in primary T lymphocytes but not macrophages, which is consistent with the majority of HIV infection occurring in T lymphocytes.
Collapse
|
43
|
High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution. J Virol 2015; 90:2221-9. [PMID: 26656688 DOI: 10.1128/jvi.02302-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic.IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56-61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine established HIV-1M subtypes. These lineages are likely to have been epidemiologically relevant in the Congo basin at the onset of the epidemic. Nonetheless, they appear not to have undergone the same explosive global spread as other HIV-1M subtypes, perhaps because they were less transmissible. Concerted efforts to characterize more of these divergent lineages could allow the accurate inference and chemical synthesis of epidemiologically key ancestral HIV-1M variants so as to directly test competing hypotheses relating to the viral genetic factors that enabled the present pandemic.
Collapse
|
44
|
Sanborn KB, Somasundaran M, Luzuriaga K, Leitner T. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission. Retrovirology 2015; 12:96. [PMID: 26573574 PMCID: PMC4647327 DOI: 10.1186/s12977-015-0222-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing an advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined. RESULTS We analyzed full-length env sequences after single genome amplification from the plasma of four subtype B HIV-1 infected women (11-67 env clones from 1 time point within a month prior to delivery) and their non-breastfed, intrapartum-infected children (3-6 longitudinal time points per child starting at the time of HIV-1 diagnosis). To address the potential beneficial or detrimental effects of recombination, we used a recently developed hierarchical recombination detection method based on the pairwise homoplasy index (PHI)-test. Recombination was observed in 9-67% of the maternal sequences and in 25-60% of the child sequences. In the child, recombination only occurred between variants that had evolved after transmission; taking recombination into account, we identified transmission of only 1 or 2 phylogenetic lineages from mother to child. Effective HIV-1 evolutionary rates of HIV-1 were initially high in the child and slowed over time (after 1000 days). Recombination was associated with elevated evolutionary rates. CONCLUSIONS Our results confirm that 1-2 variants are typically transmitted from mothers to their newborns. They also demonstrate that early abundant recombination elevates the effective evolutionary rate, suggesting that recombination increases the rate of adaptation in HIV-1 evolution.
Collapse
Affiliation(s)
- Keri B Sanborn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Mohan Somasundaran
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
45
|
Griffin TZ, Kang W, Ma Y, Zhang M. The HAND Database: a gateway to understanding the role of HIV in HIV-associated neurocognitive disorders. BMC Med Genomics 2015; 8:70. [PMID: 26510927 PMCID: PMC4625622 DOI: 10.1186/s12920-015-0143-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background Despite an augmented research effort and scale-up of highly active antiretroviral therapy, a high prevalence of HIV-1-associated neurocognitive disorders (HAND) persists in the HIV-infected population. Nearly 50 % of all HIV-1-infected individuals suffer from a neurocognitive disorder due to neural and synaptodendritic damage. Challenges in HAND research, including limited availability of brain tissue from HIV patients, variation in HAND study protocols, and virus genotyping inconsistency and errors, however, have resulted in studies with insufficient power to delineate molecular mechanisms underlying HAND pathogenesis. There exists, therefore, a great need for a reliable and centralized resource specific to HAND research, particularly for epidemiological study and surveillance in resource-limited countries where severe forms of HAND persist. Description To address the aforementioned imperative need, here we present the HAND Database, a resource containing well-curated and up-to-date HAND virus information and associated clinical and epidemiological data. This database provides information on 5,783 non-redundant HIV-1 sequences from global HAND research published to date, representing a total of 163 unique individuals that have been assessed for HAND. A user-friendly interface allows for flexible searching, filtering, browsing, and downloading of data. The most comprehensive database of its kind, the HAND Database not only bolsters current HAND research by increasing sampling power and reducing study biases caused by protocol variation and genotyping inconsistency, it allows for comparison between HAND studies across different dimensions. Development of the HAND Database has also revealed significant knowledge gaps in HIV-driven neuropathology. These gaps include inadequate sequencing of viral genes beyond env, lack of HAND viral data from HIV epidemiologically important regions including Asian and Sub-Saharan African countries, and biased sampling toward the male gender, all factors that impede efforts toward providing an improved quality of life to HIV-infected individuals, and toward elimination of viruses in the brain. Conclusion Our aim with the HAND database is to provide researchers in both the HIV and neuroscience fields a comprehensive and rigorous data source toward better understanding virus compartmentalization and to help in design of improved strategies against HAND viruses. We also expect this resource, which will be updated on a regular basis, to be useful as a reliable reference for further HAND epidemiology studies. The HAND Database is freely available and accessible online at http://www.handdatabase.org.
Collapse
Affiliation(s)
- Tess Z Griffin
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA. .,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Weiliang Kang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA. .,Present address: College of Pharmacy, University of Illinois, Chicago, IL, 60612, USA.
| | - Yongjie Ma
- Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
46
|
Genetic and functional characterization of HIV-1 Vif on APOBEC3G degradation: First report of emergence of B/C recombinants from North India. Sci Rep 2015; 5:15438. [PMID: 26494109 PMCID: PMC4616021 DOI: 10.1038/srep15438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
HIV-1 is characterized by high genetic heterogeneity which is a challenge for developing therapeutics. Therefore, it is necessary to understand the extent of genetic variations that HIV is undergoing in North India. The objective of this study was to determine the role of genetic and functional role of Vif on APOBEC3G degradation. Vif is an accessory protein involved in counteracting APOBEC3/F proteins. Genetic analysis of Vif variants revealed that Vif C variants were closely related to South African Vif C whereas Vif B variants and Vif B/C showed distinct geographic locations. This is the first report to show the emergence of Vif B/C in our population. The functional domains, motifs and phosphorylation sites were well conserved. Vif C variants differed in APOBEC3G degradation from Vif B variants. Vif B/C revealed similar levels of APOBEC3G degradation to Vif C confirming the presence of genetic determinants in C-terminal region. High genetic diversity was observed in Vif variants which may cause the emergence of more complex and divergent strains. These results reveal the genetic determinants of Vif in mediating APOBEC3G degradation and highlight the genetic information for the development of anti-viral drugs against HIV. Importance: Vif is an accessory HIV-1 protein which plays significant role in the degradation of human DNA-editing factor APOBEC3G, thereby impeding the antiretroviral activity of APOBEC3G. It is known that certain natural polymorphisms in Vif could degrade APOBEC3G relatively higher rate, suggesting its role in HIV-1 pathogenesis. This is the first report from North India showcasing genetic variations and novel polymorphisms in Vif gene. Subtype C is prevalent in India, but for the first time we observed putative B/C recombinants with a little high ability to degrade APOBEC3G indicating adaptation and evolving nature of virus in our population. Indian Vif C variants were able to degrade APOBEC3G well in comparison to Vif B variants. These genetic changes were most likely selected during adaptation of HIV to our population. These results elucidate that the genetic determinants of Vif and highlights the potential targets for therapeutics.
Collapse
|
47
|
Tongo M, Dorfman JR, Abrahams MR, Mpoudi-Ngole E, Burgers WA, Martin DP. Near full-length HIV type 1M genomic sequences from Cameroon : Evidence of early diverging under-sampled lineages in the country. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:254-65. [PMID: 26354000 PMCID: PMC4600344 DOI: 10.1093/emph/eov022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Background: Cameroon is the country in which HIV-1 group M (HIV-1M) likely originated and is today a major hotspot of HIV-1M genetic diversity. It remains unclear, however, whether the highly divergent HIV-1M lineages found in this country arose during the earliest phases of the global HIV-1M epidemic, or whether they arose more recently as a result of recombination events between globally circulating HIV-1M lineages. Methodology: To differentiate between these two possibilities, we performed phylogenetic analyses of the near full genome sequences of nine newly sequenced divergent HIV-1M isolates and 15 previously identified, apparently unique recombinant forms (URFs) from Cameroon. Results: Although two of the new genome sequences were clearly classifiable within subtype G, the remaining seven were highly divergent and phylogenetically branched either outside of, or very near the bases of clades containing the well characterised globally circulating viral lineages that they were most closely related to. Recombination analyses further revealed that these divergent viruses were likely complex URFs. We show, however that substantial portions (>1 Kb) of three of the new genome sequences and 15 of the previously characterised Cameroonian URFs have apparently been derived from divergent parental viruses that branch phylogenetically near the bases of the major HIV-1M clades. Conclusions and implications: Our analyses indicate the presence in Cameroon of contemporary descendants of numerous early-diverging HIV-1M lineages. Further efforts to sample and sequence viruses from such lineages could be crucial both for retracing the earliest evolutionary steps during the emergence of HIV-1M in humans, and accurately reconstructing the ancestral sequences of the major globally circulating HIV-1M lineages.
Collapse
Affiliation(s)
- Marcel Tongo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology and Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - Jeffrey R Dorfman
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | | | - Darren P Martin
- Division of Computational Biology, Department of Integrated Biology Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; and
| |
Collapse
|
48
|
Tongo M, Essomba RG, Nindo F, Abrahams F, Nanfack AJ, Fokam J, Takou D, Torimiro JN, Mpoudi-Ngole E, Burgers WA, Martin DP, Dorfman JR. Phylogenetics of HIV-1 subtype G env: Greater complexity and older origins than previously reported. INFECTION GENETICS AND EVOLUTION 2015; 35:9-18. [PMID: 26190450 DOI: 10.1016/j.meegid.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
Abstract
HIV-1 subtype G has played an early and central role in the emergent complexity of the HIV-1 group M (HIV-1M) epidemic in central/west Africa. Here, we analysed new subtype G env sequences sampled from 8 individuals in Yaoundé, Cameroon during 2007-2010, together with all publically available subtype G-attributed full-length env sequences with known sampling dates and locations. We inferred that the most recent common ancestor (MRCA) of the analysed subtype G env sequences most likely occurred in ∼1953 (95% Highest Posterior Density interval [HPD] 1939-1963): about 15 years earlier than previous estimates. We found that the subtype G env phylogeny has a complex structure including seven distinct lineages, each likely dating back to the late 1960s or early 1970s. Sequences from Angola, Gabon and the Democratic Republic of Congo failed to group consistently in these lineages, possibly because they are related to more ancient sequences that are poorly sampled. The circulating recombinant form (CRF), CRF06_cpx env sequences but not CRF25_cpx env sequences are phylogenetically nested within the subtype G clade. This confirms that the CRF06_cpx env plausibly was derived through recombination from a subtype G parent, and suggests that the CRF25_cpx env was likely derived from an HIV-1M lineage related to the MRCA of subtype G that has remained undiscovered and may be extinct. Overall, this fills important gaps in our knowledge of the early events in the spread of HIV-1M.
Collapse
Affiliation(s)
- Marcel Tongo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Faculty of Health Sciences, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - René G Essomba
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederick Nindo
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fatima Abrahams
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Aubin Joseph Nanfack
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon
| | - Joseph Fokam
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Desire Takou
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon
| | - Judith N Torimiro
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - Wendy A Burgers
- Division of Medical Virology, Faculty of Health Sciences, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
49
|
Diallo K, Zheng DP, Rottinghaus EK, Bassey O, Yang C. Viral Genetic Diversity and Polymorphisms in a Cohort of HIV-1-Infected Patients Eligible for Initiation of Antiretroviral Therapy in Abuja, Nigeria. AIDS Res Hum Retroviruses 2015; 31:564-75. [PMID: 25582324 DOI: 10.1089/aid.2014.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studying the genetic diversity and natural polymorphisms of HIV-1 would benefit our understanding of HIV drug resistance (HIVDR) development and predict treatment outcomes. In this study, we have characterized the HIV-1 genetic diversity and natural polymorphisms at the 5' region of the pol gene encompassing the protease (PR) and reverse transcriptase (RT) from 271 plasma specimens collected in 2008 from HIV-1-infected patients who were eligible for initiating antiretroviral therapy in Abuja (Nigeria). The analysis indicated that the predominant subtype was subtype G (31.0%), followed by CRF02-AG (19.2 %), CRF43-02G (18.5%), and A/CRF36-cpx (11.4%); the remaining (19.9%) were other subtypes and circulating (CRF) and unique (URF) recombinant forms. Recombinant viruses (68.6%) were the major viral strains in the region. Eighty-four subtype G sequences were further mainly classified into two major and two minor clusters; sequences in the two major clusters were closely related to the HIV-1 strains in two of the three major subtype G clusters detected worldwide. Those in the two minor clusters appear to be new subtype G strains circulating only in Abuja. The pretreatment DR prevalence was <3%; however, numerous natural polymorphisms were present. Eleven polymorphic mutations (G16E, K20I, L23P, E35D, M36I, N37D/S/T, R57K, L63P, and V82I) were detected in the PR that were subtype or CRF specific while only three mutations (D123N, I135T, and I135V) were identified in the RT. Overall, this study indicates an evolving HIV-1 epidemic in Abuja with recombinant viruses becoming the dominant strains and the emergence of new subtype G strains; pretreatment HIVDR was low and the occurrence of natural polymorphism in the PR region was subtype or CRF dependent.
Collapse
Affiliation(s)
- Karidia Diallo
- International Laboratory Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Du-Ping Zheng
- International Laboratory Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Erin K. Rottinghaus
- International Laboratory Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Orji Bassey
- Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Chunfu Yang
- International Laboratory Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
50
|
Wang Y, Liang Y, Feng Y, Wang B, Li Y, Wu Z, Zhang J, Baloch Z, Zhang AM, Liu L, Qin W, Xia X. HIV-1 prevalence and subtype/recombinant distribution among travelers entering China from Vietnam at the HeKou port in the Yunnan province, China, between 2003 and 2012. J Med Virol 2015; 87:1500-9. [PMID: 25865741 DOI: 10.1002/jmv.24202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/09/2022]
Abstract
The aim of this study was to assess HIV-1 prevalence and the distribution of HIV-1 subtypes among travelers crossing the border at the HeKou land port. Between 2003 and 2012, 22,799 persons were randomly recruited from people entering China from Vietnam. In this crossing border population, a total of 161 (0.71%) travelers were determined as HIV-1-positive. From them, 140 HIV-1-positive serum samples were collected for RNA extraction and subsequent RT-nested PCR amplification of the group-specific antigen (gag)-RT with a length of 2.6 kb. The DNA sequences were analyzed to determine the HIV-1 subtypes/recombinants. We found that the circulating recombinant form 01_AE (CRF01_AE) was the most common HIV-1 subtype, accounting for 49.4% (41/83) of the subtyped 83 samples, followed by CRF08_BC (26.5%, 22/83) and CRF07_BC (7.2%, 6/83). Only 1 sample was classified as subtype C. Thirteen cases could not be clustered into any known subtypes or CRFs and presented as unique recombinant forms (URFs). Of them, 6 recombination patterns were identified. They had distinct structures consisting of fragments of subtypes B, C, CRF01_AE, CRF07_BC and CRF08_BC. Between 2003 and 2012, CRF01_AE and CRE08_BC were shown to be the most prevalent recombinant forms identified each year. But yearly change of each subtype is uncertain regular among in these travelers during the past decade. Understanding the distribution of HIV-1 subtypes/recombinants and how it changes across time among individuals entering China from Vietnam through this land port is crucial to establish strategies for the prevention of HIV cross-border transmission.
Collapse
Affiliation(s)
- Yajuan Wang
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - Yaobo Liang
- Care Center for International Travel Health in Yunnan, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - Yaping Li
- Care Center for International Travel Health in Yunnan, Yunnan, China
| | - Zhikun Wu
- HeKou Entry-Exit Inspection and Quarantine Bureau, Yunnan, China
| | - Jianchun Zhang
- HeKou Entry-Exit Inspection and Quarantine Bureau, Yunnan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| | - Weihong Qin
- Care Center for International Travel Health in Yunnan, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Center for Molecular Medicine in Yunnan province, Kunming University of Science and Technology, Yunnan, China
| |
Collapse
|