1
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Katusiime MG, Van Zyl GU, Cotton MF, Kearney MF. HIV-1 Persistence in Children during Suppressive ART. Viruses 2021; 13:v13061134. [PMID: 34204740 PMCID: PMC8231535 DOI: 10.3390/v13061134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| | - Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service Tygerberg, Cape Town 8000, South Africa;
| | - Mark F. Cotton
- Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Center for Research with Ubuntu, Stellenbosch University, Cape Town 7505, South Africa;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
3
|
Kumar A, Giorgi EE, Tu JJ, Martinez DR, Eudailey J, Mengual M, Honnayakanahalli Marichannegowda M, Van Dyke R, Gao F, Permar SR. Mutations that confer resistance to broadly-neutralizing antibodies define HIV-1 variants of transmitting mothers from that of non-transmitting mothers. PLoS Pathog 2021; 17:e1009478. [PMID: 33798244 PMCID: PMC8055002 DOI: 10.1371/journal.ppat.1009478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Despite considerable reduction of mother-to-child transmission (MTCT) of HIV through use of maternal and infant antiretroviral therapy (ART), over 150,000 infants continue to become infected with HIV annually, falling far short of the World Health Organization goal of reaching <20,000 annual pediatric HIV cases worldwide by 2020. Prior to the widespread use of ART in the setting of pregnancy, over half of infants born to HIV-infected mothers were protected against HIV acquisition. Yet, the role of maternal immune factors in this protection against vertical transmission is still unclear, hampering the development of synergistic strategies to further reduce MTCT. It has been established that infant transmitted/founder (T/F) viruses are often resistant to maternal plasma, yet it is unknown if the neutralization resistance profile of circulating viruses predicts the maternal risk of transmission to her infant. In this study, we amplified HIV-1 envelope genes (env) by single genome amplification and produced representative Env variants from plasma of 19 non-transmitting mothers from the U.S. Women Infant Transmission Study (WITS), enrolled in the pre-ART era. Maternal HIV Env variants from non-transmitting mothers had similar sensitivity to autologous plasma as observed for non-transmitting variants from transmitting mothers. In contrast, infant variants were on average 30% less sensitive to paired plasma neutralization compared to non-transmitted maternal variants from both transmitting and non-transmitting mothers (p = 0.015). Importantly, a signature sequence analysis revealed that motifs enriched in env sequences from transmitting mothers were associated with broadly neutralizing antibody (bnAb) resistance. Altogether, our findings suggest that circulating maternal virus resistance to bnAb-mediated neutralization, but not autologous plasma neutralization, near the time of delivery, predicts increased MTCT risk. These results caution that enhancement of maternal plasma neutralization through passive or active vaccination during pregnancy may potentially drive the evolution of variants fit for vertical transmission. Despite widespread, effective use of ART among HIV infected pregnant women, new pediatric HIV infections increase by about 150,000 every year. Thus, alternative strategies will be required to reduce MTCT and eliminate pediatric HIV infections. Interestingly, in the absence of ART, less than half of HIV-infected pregnant women will transmit HIV, suggesting natural immune protection of infants from virus acquisition. To understand the impact of maternal plasma autologous virus neutralization responses on MTCT, we compared the plasma and bnAb neutralization sensitivity of the circulating viral population present at the time of delivery in untreated, HIV-infected transmitting and non-transmitting mothers. While there was no significant difference in the ability of transmitting and non-transmitting women to neutralize their own circulating virus strains, specific genetic motifs enriched in variants from transmitting mothers were associated with resistance to bnAbs, suggesting that acquired bnAb resistance is a common feature of vertically-transmitted variants. This work suggests that enhancement of plasma neutralization responses in HIV-infected mothers through passive or active vaccination could further drive selection of variants that could be vertically transmitted, and cautions the use of passive bnAbs for HIV-1 prophylaxis or therapy during pregnancy.
Collapse
Affiliation(s)
- Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David R. Martinez
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Michael Mengual
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | | | - Russell Van Dyke
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Feng Gao
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Mishra N, Sharma S, Dobhal A, Kumar S, Chawla H, Singh R, Makhdoomi MA, Das BK, Lodha R, Kabra SK, Luthra K. Broadly neutralizing plasma antibodies effective against autologous circulating viruses in infants with multivariant HIV-1 infection. Nat Commun 2020; 11:4409. [PMID: 32879304 PMCID: PMC7468291 DOI: 10.1038/s41467-020-18225-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) develop in a subset of HIV-1 infected individuals over 2-3 years of infection. Infected infants develop plasma bnAbs frequently and as early as 1-year post-infection suggesting factors governing bnAb induction in infants are distinct from adults. Understanding viral characteristics in infected infants with early bnAb responses will provide key information about antigenic triggers driving B cell maturation pathways towards induction of bnAbs. Herein, we evaluate the presence of plasma bnAbs in a cohort of 51 HIV-1 clade-C infected infants and identify viral factors associated with early bnAb responses. Plasma bnAbs targeting V2-apex on the env are predominant in infant elite and broad neutralizers. Circulating viral variants in infant elite neutralizers are susceptible to V2-apex bnAbs. In infant elite neutralizers, multivariant infection is associated with plasma bnAbs targeting diverse autologous viruses. Our data provides information supportive of polyvalent vaccination approaches capable of inducing V2-apex bnAbs against HIV-1.
Collapse
Affiliation(s)
- Nitesh Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ayushman Dobhal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.,ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Himanshi Chawla
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.,Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 IBJ, UK
| | - Ravinder Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Muzamil Ashraf Makhdoomi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.,Department of Biochemistry, Government College for Women, Cluster University Srinagar, Srinagar, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
5
|
Martinez DR, Tu JJ, Kumar A, Mangold JF, Mangan RJ, Goswami R, Giorgi EE, Chen J, Mengual M, Douglas AO, Heimsath H, Saunders KO, Nicely NI, Eudailey J, Hernandez G, Morgan-Asiedu PK, Wiehe K, Haynes BF, Moody MA, LaBranche C, Montefiori DC, Gao F, Permar SR. Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. mBio 2020; 11:e00176-20. [PMID: 32156815 PMCID: PMC7064758 DOI: 10.1128/mbio.00176-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Each year, >180,000 infants become infected via mother-to-child transmission (MTCT) of HIV despite the availability of effective maternal antiretroviral treatments, underlining the need for a maternal HIV vaccine. We characterized 224 maternal HIV envelope (Env)-specific IgG monoclonal antibodies (MAbs) from seven nontransmitting and transmitting HIV-infected U.S. and Malawian mothers and examined their neutralization activities against nontransmitted autologous circulating viruses and infant-transmitted founder (infant-T/F) viruses. Only a small subset of maternal viruses, 3 of 72 (4%), were weakly neutralized by maternal linear V3 epitope-specific IgG MAbs, whereas 6 out of 6 (100%) infant-T/F viruses were neutralization resistant to these V3-specific IgG MAbs. We also show that maternal-plasma broadly neutralizing antibody (bNAb) responses targeting the V3 glycan supersite in a transmitting woman may have selected for an N332 V3 glycan neutralization-resistant infant-T/F virus. These data have important implications for bNAb-eliciting vaccines and passively administered bNAbs in the setting of MTCT.IMPORTANCE Efforts to eliminate MTCT of HIV with antiretroviral therapy (ART) have met little success, with >180,000 infant infections each year worldwide. It is therefore likely that additional immunologic strategies that can synergize with ART will be required to eliminate MTCT of HIV. To this end, understanding the role of maternal HIV Env-specific IgG antibodies in the setting of MTCT is crucial. In this study, we found that maternal-plasma broadly neutralizing antibody (bNAb) responses can select for T/F viruses that initiate infection in infants. We propose that clinical trials testing the efficacy of single bNAb specificities should not include HIV-infected pregnant women, as a single bNAb might select for neutralization-resistant infant-T/F viruses.
Collapse
Affiliation(s)
- David R Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | - Riley J Mangan
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Ria Goswami
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Juilin Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Michael Mengual
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Holly Heimsath
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
6
|
Kumar A, Smith CEP, Giorgi EE, Eudailey J, Martinez DR, Yusim K, Douglas AO, Stamper L, McGuire E, LaBranche CC, Montefiori DC, Fouda GG, Gao F, Permar SR. Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma. PLoS Pathog 2018; 14:e1006944. [PMID: 29672607 PMCID: PMC5908066 DOI: 10.1371/journal.ppat.1006944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/16/2018] [Indexed: 01/17/2023] Open
Abstract
Despite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant’s infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood. In this study, we amplified HIV-1 env genes by single genome amplification from 16 mother-infant transmitting pairs from the U.S. pre-antiretroviral era Women Infant Transmission Study (WITS). Infant T/F and representative maternal non-transmitted Env variants from plasma were identified and used to generate pseudoviruses for paired maternal plasma neutralization sensitivity analysis. Eighteen out of 21 (85%) infant T/F Env pseudoviruses were neutralization resistant to paired maternal plasma. Yet, all infant T/F viruses were neutralization sensitive to a panel of HIV-1 broadly neutralizing antibodies and variably sensitive to heterologous plasma neutralizing antibodies. Also, these infant T/F pseudoviruses were overall more neutralization resistant to paired maternal plasma in comparison to pseudoviruses from maternal non-transmitted variants (p = 0.012). Altogether, our findings suggest that autologous neutralization of circulating viruses by maternal plasma antibodies select for neutralization-resistant viruses that initiate peripartum transmission, raising the speculation that enhancement of this response at the end of pregnancy could further reduce infant HIV-1 infection risk. Mother to child transmission (MTCT) of HIV-1 can occur during pregnancy (in utero), at the time of delivery (peripartum) or by breastfeeding (postpartum). With the availability of anti-retroviral therapy (ART), rate of MTCT of HIV-1 have been significantly lowered. However, significant implementation challenges remain in resource-poor areas, making it difficult to eliminate pediatric HIV. An improved understanding of the viral population (escape variants from autologous neutralizing antibodies) that lead to infection of infants at time of transmission will help in designing immune interventions to reduce perinatal HIV-1 transmission. Here, we selected 16 HIV-1-infected mother-infant pairs from WITS cohort (from pre anti-retroviral era), where infants became infected peripartum. HIV-1 env gene sequences were obtained by the single genome amplification (SGA) method. The sensitivity of these infant Env pseudoviruses against paired maternal plasma and a panel of broadly neutralizing monoclonal antibodies (bNAbs) was analyzed. We demonstrated that the infant T/F viruses were more resistant against maternal plasma than non-transmitted maternal variants, but sensitive to most (bNAbs). Signature sequence analysis of infant T/F and non-transmitted maternal variants revealed the potential importance of V3 and MPER region for resistance against paired maternal plasma. These findings provide insights for the design of maternal immunization strategies to enhance neutralizing antibodies that target V3 region of autologous virus populations, which could work synergistically with maternal ARVs to further reduce the rate of peripartum HIV-1 transmission.
Collapse
Affiliation(s)
- Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Claire E. P. Smith
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David R. Martinez
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ayooluwa O. Douglas
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Lisa Stamper
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Erin McGuire
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Feng Gao
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Maternal Binding and Neutralizing IgG Responses Targeting the C-Terminal Region of the V3 Loop Are Predictive of Reduced Peripartum HIV-1 Transmission Risk. J Virol 2017; 91:JVI.02422-16. [PMID: 28202762 DOI: 10.1128/jvi.02422-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 01/07/2023] Open
Abstract
The development of an effective maternal HIV-1 vaccine that could synergize with antiretroviral therapy (ART) to eliminate pediatric HIV-1 infection will require the characterization of maternal immune responses capable of blocking transmission of autologous HIV to the infant. We previously determined that maternal plasma antibody binding to linear epitopes within the variable loop 3 (V3) region of HIV envelope (Env) and neutralizing responses against easy-to-neutralize tier 1 viruses were associated with reduced risk of peripartum HIV infection in the historic U.S. Woman and Infant Transmission Study (WITS) cohort. Here, we defined the fine specificity and function of the potentially protective maternal V3-specific IgG antibodies associated with reduced peripartum HIV transmission risk in this cohort. The V3-specific IgG binding that predicted low risk of mother-to-child-transmission (MTCT) was dependent on the C-terminal flank of the V3 crown and particularly on amino acid position 317, a residue that has also been associated with breakthrough transmission in the RV144 vaccine trial. Remarkably, the fine specificity of potentially protective maternal plasma V3-specific tier 1 virus-neutralizing responses was dependent on the same region in the V3 loop. Our findings suggest that MTCT risk is associated with neutralizing maternal IgG that targets amino acid residues in the C-terminal region of the V3 loop crown, suggesting the importance of the region in immunogen design for maternal vaccines to prevent MTCT.IMPORTANCE Efforts to curb HIV-1 transmission in pediatric populations by antiretroviral therapy (ART) have been highly successful in both developed and developing countries. However, more than 150,000 infants continue to be infected each year, likely due to a combination of late maternal HIV diagnosis, lack of ART access or adherence, and drug-resistant viral strains. Defining the fine specificity of maternal humoral responses that partially protect against MTCT of HIV is required to inform the development of a maternal HIV vaccine that will enhance these responses during pregnancy. In this study, we identified amino acid residues targeted by potentially protective maternal V3-specific IgG binding and neutralizing responses, localizing the potentially protective response in the C-terminal region of the V3 loop crown. Our findings have important implications for the design of maternal vaccination strategies that could synergize with ART during pregnancy to achieve the elimination of pediatric HIV infections.
Collapse
|
8
|
McFarland EJ, Powell TM, Onyango-Makumbi C, Zhang W, Melander K, Naluyima P, Okurut S, Eller MA, Fowler MG, Janoff EN. Ontogeny of CD4+ T Lymphocytes With Phenotypic Susceptibility to HIV-1 During Exclusive and Nonexclusive Breastfeeding in HIV-1-Exposed Ugandan Infants. J Infect Dis 2017; 215:368-377. [PMID: 27932619 PMCID: PMC5722036 DOI: 10.1093/infdis/jiw553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023] Open
Abstract
Background Among infants exposed to human immunodeficiency virus (HIV) type 1, mixed breastfeeding is associated with higher postnatal HIV-1 transmission than exclusive breastfeeding, but the mechanisms of this differential risk are uncertain. Methods HIV-1-exposed Ugandan infants were prospectively assessed during the first year of life for feeding practices and T-cell maturation, intestinal homing (β7hi), activation, and HIV-1 coreceptor (CCR5) expression in peripheral blood. Infants receiving only breast milk and those with introduction of other foods before 6 months were categorized as exclusive and nonexclusive, respectively. Results Among CD4+ and CD8+ T cells, the expression of memory, activation, and CCR5 markers increased rapidly from birth to week 2, peaking at week 6, whereas cells expressing the intestinal homing marker increased steadily in the central memory (CM) and effector memory T cells over 48 weeks. At 24 weeks, when feeding practices had diverged, nonexclusively breastfed infants showed increased frequencies and absolute counts of β7hi CM CD4+ and CD8+ T cells, including the HIV-1-targeted cells with CD4+β7hi/CCR5+ coexpression, as well as increased activation. Conclusions The T-cell phenotype associated with susceptibility to HIV-1 infection (CCR5+, gut-homing, CM CD4+ T cells) was preferentially expressed in nonexclusively breastfed infants, a group of infants at increased risk for HIV-1 acquisition.
Collapse
Affiliation(s)
- Elizabeth J McFarland
- Departments of Pediatrics
- Mucosal and Vaccine Research Program Colorado, Infectious Diseases. University of Colorado–Anschutz Medical Campus, Aurora
| | | | | | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health
| | | | | | - Samuel Okurut
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Springs
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda,
| | - Mary Glenn Fowler
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Makerere University–Johns Hopkins University Research Collaboration
| | - Edward N Janoff
- Medicine
- Mucosal and Vaccine Research Program Colorado, Infectious Diseases. University of Colorado–Anschutz Medical Campus, Aurora
- Denver Veterans Affairs Medical Center, Colorado
| |
Collapse
|
9
|
Sanborn KB, Somasundaran M, Luzuriaga K, Leitner T. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission. Retrovirology 2015; 12:96. [PMID: 26573574 PMCID: PMC4647327 DOI: 10.1186/s12977-015-0222-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing an advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined. RESULTS We analyzed full-length env sequences after single genome amplification from the plasma of four subtype B HIV-1 infected women (11-67 env clones from 1 time point within a month prior to delivery) and their non-breastfed, intrapartum-infected children (3-6 longitudinal time points per child starting at the time of HIV-1 diagnosis). To address the potential beneficial or detrimental effects of recombination, we used a recently developed hierarchical recombination detection method based on the pairwise homoplasy index (PHI)-test. Recombination was observed in 9-67% of the maternal sequences and in 25-60% of the child sequences. In the child, recombination only occurred between variants that had evolved after transmission; taking recombination into account, we identified transmission of only 1 or 2 phylogenetic lineages from mother to child. Effective HIV-1 evolutionary rates of HIV-1 were initially high in the child and slowed over time (after 1000 days). Recombination was associated with elevated evolutionary rates. CONCLUSIONS Our results confirm that 1-2 variants are typically transmitted from mothers to their newborns. They also demonstrate that early abundant recombination elevates the effective evolutionary rate, suggesting that recombination increases the rate of adaptation in HIV-1 evolution.
Collapse
Affiliation(s)
- Keri B Sanborn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Mohan Somasundaran
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, MA, USA.
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
10
|
Peters PJ, Gonzalez-Perez MP, Musich T, Moore Simas TA, Lin R, Morse AN, Shattock RJ, Derdeyn CA, Clapham PR. Infection of ectocervical tissue and universal targeting of T-cells mediated by primary non-macrophage-tropic and highly macrophage-tropic HIV-1 R5 envelopes. Retrovirology 2015; 12:48. [PMID: 26055104 PMCID: PMC4459458 DOI: 10.1186/s12977-015-0176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background HIV-1 variants carrying non-macrophage-tropic HIV-1 R5 envelopes (Envs) are predominantly transmitted and persist in immune tissue even in AIDS patients who have highly macrophage-tropic variants in the brain. Non-macrophage-tropic R5 Envs require high levels of CD4 for infection contrasting with macrophage-tropic Envs, which can efficiently mediate infection of cells via low CD4. Here, we investigated whether non-macrophage-tropic R5 Envs from the acute stage of infection (including transmitted/founder Env) mediated more efficient infection of ectocervical explant cultures compared to non-macrophage-tropic and highly macrophage-tropic R5 Envs from late disease. Results We used Env+ pseudovirions that carried a GFP reporter gene to measure infection of the first cells targeted in ectocervical explant cultures. In straight titrations of Env+ pseudovirus supernatants, mac-tropic R5 Envs from late disease mediated slightly higher infectivities for ectocervical explants although this was not significant. Surprisingly, explant infection by several T/F/acute Envs was lower than for Envs from late disease. However, when infectivity for explants was corrected to account for differences in the overall infectivity of each Env+ pseudovirus (measured on highly permissive HeLa TZM-bl cells), non-mac-tropic early and late disease Env+ pseudoviruses mediated significantly higher infection. This observation suggests that cervical tissue preferentially supports non-mac-tropic Env+ viruses compared to mac-tropic viruses. Finally, we show that T-cells were the main targets for infection regardless of whether explants were stimulated with T-cell or monocyte/macrophage cytokines. There was no evidence of macrophage infection even for pseudovirions carrying highly mac-tropic Envs from brain tissue or for the highly mac-tropic, laboratory strain, BaL, which targeted T-cells in the explant tissue. Conclusions Our data support ectocervical tissue as a favorable environment for non-mac-tropic HIV-1 R5 variants and emphasize the role of T-cells as initial targets for infection even for highly mac-tropic variants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0176-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul J Peters
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Thomas Musich
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Tiffany A Moore Simas
- Department of Ob/Gyn, University of Massachusetts Memorial Health Care, 119 Belmont Street, Worcester, MA, 01605, USA.
| | - Rongheng Lin
- School of Public Health and Health Sciences, University of Massachusetts, 411 Arnold House, 715 North Pleasant Street, Amherst, MA, 01003-9304, USA.
| | - Abraham N Morse
- Department of Ob/Gyn, University of Massachusetts Memorial Health Care, 119 Belmont Street, Worcester, MA, 01605, USA.
| | - Robin J Shattock
- Department of Medicine, St Mary's Campus, Imperial College, Medical School Building, London, W21PG, UK.
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center at Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| | - Paul R Clapham
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| |
Collapse
|
11
|
Musich T, O'Connell O, Gonzalez-Perez MP, Derdeyn CA, Peters PJ, Clapham PR. HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages. Retrovirology 2015; 12:25. [PMID: 25809903 PMCID: PMC4373511 DOI: 10.1186/s12977-015-0141-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. RESULTS Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+ virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. CONCLUSIONS Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.
Collapse
|
12
|
Luzuriaga K, Gay H, Ziemniak C, Sanborn K, Somasundaran M, Rainwater-Lovett K, Mellors J, Rosenbloom DI, Persaud D. Viremic relapse after HIV-1 remission in a perinatally infected child. N Engl J Med 2015; 372:786-8. [PMID: 25693029 PMCID: PMC4440331 DOI: 10.1056/nejmc1413931] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Katherine Luzuriaga
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | - Hannah Gay
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Carrie Ziemniak
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Keri Sanborn
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | - Mohan Somasundaran
- Department of Pediatrics, Molecular Medicine, and Center for Clinical and Translational Science, University of MA Medical School, Worcester, MA
| | | | - John Mellors
- Department of Medicine, University of Pittsburg, Pittsburg, PA
| | | | - Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Li C, Jin W, Du T, Wu B, Liu Y, Shattock RJ, Hu Q. Binding of HIV-1 virions to α4β 7 expressing cells and impact of antagonizing α4β 7 on HIV-1 infection of primary CD4+ T cells. Virol Sin 2014; 29:381-92. [PMID: 25527342 DOI: 10.1007/s12250-014-3525-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain BaL, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4(+) T cells. In α4β7-activated CD4(+) T cells, both anti-α4β7 antibodies and introduction of short-hairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Chaillon A, Samleerat T, Zoveda F, Ballesteros S, Moreau A, Ngo-Giang-Huong N, Jourdain G, Gianella S, Lallemant M, Depaulis F, Barin F. Estimating the timing of mother-to-child transmission of the human immunodeficiency virus type 1 using a viral molecular evolution model. PLoS One 2014; 9:e90421. [PMID: 24717647 PMCID: PMC3981669 DOI: 10.1371/journal.pone.0090421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background Mother-to-child transmission (MTCT) is responsible for most pediatric HIV-1 infections worldwide. It can occur during pregnancy, labor, or breastfeeding. Numerous studies have used coalescent and molecular clock methods to understand the epidemic history of HIV-1, but the timing of vertical transmission has not been studied using these methods. Taking advantage of the constant accumulation of HIV genetic variation over time and using longitudinally sampled viral sequences, we used a coalescent approach to investigate the timing of MTCT. Materials and Methods Six-hundred and twenty-two clonal env sequences from the RNA and DNA viral population were longitudinally sampled from nine HIV-1 infected mother-and-child pairs [range: 277–1034 days]. For each transmission pair, timing of MTCT was determined using a coalescent-based model within a Bayesian statistical framework. Results were compared with available estimates of MTCT timing obtained with the classic biomedical approach based on serial HIV DNA detection by PCR assays. Results Four children were infected during pregnancy, whereas the remaining five children were infected at time of delivery. For eight out of nine pairs, results were consistent with the transmission periods assessed by standard PCR-based assay. The discordance in the remaining case was likely confused by co-infection, with simultaneous introduction of multiple maternal viral variants at the time of delivery. Conclusions The study provided the opportunity to validate the Bayesian coalescent approach that determines the timing of MTCT of HIV-1. It illustrates the power of population genetics approaches to reliably estimate the timing of transmission events and deepens our knowledge about the dynamics of viral evolution in HIV-infected children, accounting for the complexity of multiple transmission events.
Collapse
Affiliation(s)
- Antoine Chaillon
- Université François-Rabelais, Institut National de la Santé et de la Recherche Médicale - Unité 966 et Laboratoire de Virologie, Centre Hopsitalier Universitaire Bretonneau, Tours, France
- University of California San Diego, Department of Pathology, San Diego, California, United States of America
- * E-mail:
| | - Tanawan Samleerat
- Université François-Rabelais, Institut National de la Santé et de la Recherche Médicale - Unité 966 et Laboratoire de Virologie, Centre Hopsitalier Universitaire Bretonneau, Tours, France
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Faustine Zoveda
- Laboratoire Ecologie et Evolution, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 7625- Ecole Normale Supérieure, Paris, France
| | - Sébastien Ballesteros
- Laboratoire Ecologie et Evolution, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 7625- Ecole Normale Supérieure, Paris, France
| | - Alain Moreau
- Université François-Rabelais, Institut National de la Santé et de la Recherche Médicale - Unité 966 et Laboratoire de Virologie, Centre Hopsitalier Universitaire Bretonneau, Tours, France
| | - Nicole Ngo-Giang-Huong
- Institut de Recherche pour le Développement, Chiang Mai, Thailand
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts, United States of America
| | - Gonzague Jourdain
- Institut de Recherche pour le Développement, Chiang Mai, Thailand
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts, United States of America
| | - Sara Gianella
- University of California San Diego, Department of Pathology, San Diego, California, United States of America
| | - Marc Lallemant
- Institut de Recherche pour le Développement, Chiang Mai, Thailand
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts, United States of America
| | - Frantz Depaulis
- Laboratoire Ecologie et Evolution, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 7625- Ecole Normale Supérieure, Paris, France
| | - Francis Barin
- Université François-Rabelais, Institut National de la Santé et de la Recherche Médicale - Unité 966 et Laboratoire de Virologie, Centre Hopsitalier Universitaire Bretonneau, Tours, France
| |
Collapse
|
15
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
16
|
HIV-1 autologous antibody neutralization associates with mother to child transmission. PLoS One 2013; 8:e69274. [PMID: 23874931 PMCID: PMC3714266 DOI: 10.1371/journal.pone.0069274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri-partum (PP) or via breastfeeding (BF) (P = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.
Collapse
|
17
|
Russell ES, Ojeda S, Fouda GG, Meshnick SR, Montefiori D, Permar SR, Swanstrom R. Short communication: HIV type 1 subtype C variants transmitted through the bottleneck of breastfeeding are sensitive to new generation broadly neutralizing antibodies directed against quaternary and CD4-binding site epitopes. AIDS Res Hum Retroviruses 2013; 29:511-5. [PMID: 23075434 DOI: 10.1089/aid.2012.0197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mother-to-child transmission of HIV-1 subtype C can occur in utero, intrapartum, or via breast milk exposure. While not well understood, there are putative differences in the mechanisms involved with the distinct routes of vertical HIV transmission. Here, we address the question of whether specific viral characteristics are common to variants transmitted through breastfeeding that may facilitate evasion of innate or adaptive immune responses. We amplified the envelope gene (env) from the plasma of six infants during acute infection who were infected with HIV-1 subtype C through breastfeeding, and from three available matched maternal samples. We sequenced the full-length env genes in these subjects revealing heterogeneous viral populations in the mothers and homogeneous populations in the infants. In five infants, the viral population arose from a single variant, while two variants were detected in the remaining infant. Infant env sequences had fewer N-linked glycosylation sites and shorter sequences than those of the available matched maternal samples. Though the small size of the study precluded our ability to test statistical significance, these results are consistent with selection for virus with shorter variable loops and fewer glycosylation sites during transmission of HIV-1 subtype C in other settings. Transmitted envs were resistant to neutralization by antibodies 2G12 and 2F5, but were generally sensitive to the more broadly neutralizing PG9, PG16, and VRC01, indicating that this new generation of broadly neutralizing monoclonal antibodies could be efficacious in passive immunization strategies.
Collapse
Affiliation(s)
- Elizabeth S. Russell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Suany Ojeda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Genevieve G. Fouda
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Steven R. Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - David Montefiori
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Center for Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Fouda GG, Mahlokozera T, Salazar-Gonzalez JF, Salazar MG, Learn G, Kumar SB, Dennison SM, Russell E, Rizzolo K, Jaeger F, Cai F, Vandergrift NA, Gao F, Hahn B, Shaw GM, Ochsenbauer C, Swanstrom R, Meshnick S, Mwapasa V, Kalilani L, Fiscus S, Montefiori D, Haynes B, Kwiek J, Alam SM, Permar SR. Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants. Retrovirology 2013; 10:3. [PMID: 23305422 PMCID: PMC3564832 DOI: 10.1186/1742-4690-10-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/21/2012] [Indexed: 11/11/2022] Open
Abstract
Background Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n=13 viruses), five clinically-matched nontransmitting mothers (n=16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). Results There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. Conclusion Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies.
Collapse
Affiliation(s)
- Genevieve G Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
O'Connell O, Repik A, Reeves JD, Gonzalez-Perez MP, Quitadamo B, Anton ED, Duenas-Decamp M, Peters P, Lin R, Zolla-Pazner S, Corti D, Wallace A, Wang S, Kong XP, Lu S, Clapham PR. Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism. J Virol 2013; 87:187-98. [PMID: 23055568 PMCID: PMC3536387 DOI: 10.1128/jvi.01834-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/07/2012] [Indexed: 01/09/2023] Open
Abstract
HIV-1 R5 viruses vary extensively in their capacity to infect macrophages. R5 viruses that confer efficient infection of macrophages are able to exploit low levels of CD4 for infection and predominate in brain tissue, where macrophages are a major target for infection. HIV-1 R5 founder viruses that are transmitted were reported to be non-macrophage-tropic. Here, we investigated the sensitivities of macrophage-tropic and non-macrophage-tropic R5 envelopes to neutralizing antibodies. We observed striking differences in the sensitivities of Env(+) pseudovirions to soluble CD4 (sCD4) and to neutralizing monoclonal antibodies (MAbs) that target the CD4 binding site. Macrophage-tropic R5 Envs were sensitive to sCD4, while non-macrophage-tropic Envs were significantly more resistant. In contrast, all Envs were sensitive to VRC01 regardless of tropism, while MAb b12 conferred an intermediate neutralization pattern where all the macrophage-tropic and about half of the non-macrophage-tropic Envs were sensitive. CD4, b12, and VRC01 share binding specificities on the outer domain of gp120. However, these antibodies differ in their ability to induce conformational changes on the trimeric envelope and in specificity for residues on the V1V2 loop stem and β20-21 junction that are targets for CD4 in recruiting the bridging sheet. These distinct specificities of CD4, b12, and VRC01 likely explain the observed differences in Env sensitivity to inhibition by these reagents and provide an insight into the envelope mechanisms that control macrophage tropism. We present a model where the efficiency of bridging-sheet recruitment by CD4 is a major determinant of HIV-1 R5 envelope sensitivity to soluble CD4 and macrophage tropism.
Collapse
Affiliation(s)
- Olivia O'Connell
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alexander Repik
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Briana Quitadamo
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Maria Duenas-Decamp
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul Peters
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rongheng Lin
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Susan Zolla-Pazner
- Department of Pathology, New York University Langone School of Medicine, New York, New York, USA
| | | | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- China-U.S. Vaccine Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Paul R. Clapham
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
20
|
Wang S, Kishko M, Wan S, Wang Y, Brewster F, Gray GE, Violari A, Sullivan JL, Somasundaran M, Luzuriaga K, Lu S. Pilot study on the immunogenicity of paired Env immunogens from mother-to-child transmitted HIV-1 isolates. Hum Vaccin Immunother 2012; 8:1638-47. [PMID: 23151449 PMCID: PMC3601138 DOI: 10.4161/hv.22414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have reported that founder viruses play unique roles in establishing HIV-1 infection. Understanding the biological and immunological features of envelope glycoproteins (Env) from such viruses may facilitate the development of effective vaccines against HIV-1. In this report, we evaluated the immunogenicity of gp120 immunogens from two pairs of clade B and two pairs of clade C mother-to-child transmitted (MTCT) HIV-1 variants that had various levels of sensitivity to broadly neutralizing monoclonal antibodies. Individual gp120 DNA and protein vaccines were produced from each of the eight MTCT Env antigens included in the current study. Rabbits were immunized with these gp120 immunogens by the DNA prime-protein boost approach. High level Env-specific antibody responses were elicited by all MTCT gp120 immunogens. However, their abilities to elicit neutralizing antibody (NAb) responses differed and those from relatively neutralization-resistant variants tended to be more effective in eliciting broader NAb. Results of this pilot study indicated that not all MTCT Env proteins have the same potential to elicit NAb. Understanding the mechanism(s) behind such variation may provide useful information in formulating the next generation of HIV vaccines.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
| | - Michael Kishko
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Shengqin Wan
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Yan Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Frank Brewster
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Glenda E. Gray
- Perinatal HIV Research Unit; University of the Witwatersrand; Johannesburg, South Africa
| | - Avye Violari
- Perinatal HIV Research Unit; University of the Witwatersrand; Johannesburg, South Africa
| | - John L. Sullivan
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Mohan Somasundaran
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Katherine Luzuriaga
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
21
|
Guo H, Abrahamyan LG, Liu C, Waltke M, Geng Y, Chen Q, Wood C, Kong X. Comparative analysis of the fusion efficiency elicited by the envelope glycoprotein V1-V5 regions derived from human immunodeficiency virus type 1 transmitted perinatally. J Gen Virol 2012; 93:2635-2645. [PMID: 22956734 DOI: 10.1099/vir.0.046771-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the properties of viruses preferentially establishing infection during perinatal transmission of human immunodeficiency virus type 1 (HIV-1) is critical for the development of effective measures to prevent transmission. A previous study demonstrated that the newly transmitted viruses (in infants) of chronically infected mother-infant pairs (MIPs) were fitter in terms of growth, which was imparted by their envelope (Env) glycoprotein V1-V5 regions, than those in the corresponding chronically infected mothers. In order to investigate whether the higher fitness of transmitted viruses was conferred by their higher entry efficiency directed by the V1-V5 regions during perinatal transmission, the fusogenicity of Env containing V1-V5 regions derived from transmitted and non-tranmsmitted viruses of five chronically infected MIPs and two acutely infected MIPs was analysed using two different cell-cell fusion assays. The results showed that, in one chronically infected MIP, a higher fusion efficiency was induced by the infant Env V1-V5 compared with that of the corresponding mother. Moreover, the V4-V5 regions played an important role in discriminating the transmitted and non-transmitted viruses in this pair. However, neither a consistent pattern nor significant differences in fusogenicity mediated by the V1-V5 regions between maternal and infant variants was observed in the other MIPs. This study suggests that there is no consistent and significant correlation between viral fitness selection and entry efficiency directed by the V1-V5 regions during perinatal transmission. Other factors such as the route and timing of transmission may also be involved.
Collapse
Affiliation(s)
- Hongyan Guo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China.,Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Levon G Abrahamyan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Mackenzie Waltke
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Yunqi Geng
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qimin Chen
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| |
Collapse
|
22
|
The breadth and titer of maternal HIV-1-specific heterologous neutralizing antibodies are not associated with a lower rate of mother-to-child transmission of HIV-1. J Virol 2012; 86:10540-6. [PMID: 22811522 DOI: 10.1128/jvi.00518-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been hypothesized that neutralizing antibodies (NAbs) should have broad specificity to be effective in protection against diverse HIV-1 variants. The mother-to-child transmission model of HIV-1 provides the opportunity to examine whether the breadth of maternal NAbs is associated with protection of infants from infection. Samples were obtained at delivery from 57 transmitting mothers (T) matched with 57 nontransmitting mothers (NT) enrolled in the multicenter French perinatal cohort (ANRS EPF CO1) between 1990 and 1996. Sixty-eight (59.6%) and 46 (40.4%) women were infected by B and non-B viruses, respectively. Neutralization assays were carried out with TZM-bl cells, using a panel of 10 primary isolates of 6 clades (A, B, C, F, CRF01_AE, and CRF02_AG), selected for their moderate or low sensitivity to neutralization. Neutralization breadths were not statistically different between T and NT mothers. However, a few statistically significant differences were observed, with higher frequencies or titers of NAbs toward several individual strains for NT mothers when the clade B-infected or non-clade B-infected mothers were analyzed separately. Our study confirms that the breadth of maternal NAbs is not associated with protection of infants from infection.
Collapse
|
23
|
Neutralizing antibody escape during HIV-1 mother-to-child transmission involves conformational masking of distal epitopes in envelope. J Virol 2012; 86:9566-82. [PMID: 22740394 DOI: 10.1128/jvi.00953-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
HIV-1 variants transmitted to infants are often resistant to maternal neutralizing antibodies (NAbs), suggesting that they have escaped maternal NAb pressure. To define the molecular basis of NAb escape that contributes to selection of transmitted variants, we analyzed 5 viruses from 2 mother-to-child transmission pairs, in which the infant virus, but not the maternal virus, was resistant to neutralization by maternal plasma near transmission. We generated chimeric viruses between maternal and infant envelope clones obtained near transmission and examined neutralization by maternal plasma. The molecular determinants of NAb escape were distinct, even when comparing two maternal variants to the transmitted infant virus within one pair, in which insertions in V4 of gp120 and substitutions in HR2 of gp41 conferred neutralization resistance. In another pair, deletions and substitutions in V1 to V3 conferred resistance, but neither V1/V2 nor V3 alone was sufficient. Although the sequence determinants of escape were distinct, all of them involved modifications of potential N-linked glycosylation sites. None of the regions that mediated escape were major linear targets of maternal NAbs because corresponding peptides failed to compete for neutralization. Instead, these regions disrupted multiple distal epitopes targeted by HIV-1-specific monoclonal antibodies, suggesting that escape from maternal NAbs occurred through conformational masking of distal epitopes. This strategy likely allows HIV-1 to utilize relatively limited changes in the envelope to preserve the ability to infect a new host while simultaneously evading multiple NAb specificities present in maternal plasma.
Collapse
|
24
|
Gonzalez-Perez MP, O'Connell O, Lin R, Sullivan WM, Bell J, Simmonds P, Clapham PR. Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 2012; 9:20. [PMID: 22420378 PMCID: PMC3362761 DOI: 10.1186/1742-4690-9-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/15/2012] [Indexed: 01/05/2023] Open
Abstract
Background Transmitted HIV-1 clade B or C R5 viruses have been reported to infect macrophages inefficiently, while other studies have described R5 viruses in late disease with either an enhanced macrophage-tropism or carrying envelopes with an increased positive charge and fitness. In contrast, our previous data suggested that viruses carrying non-macrophage-tropic R5 envelopes were still predominant in immune tissue of AIDS patients. To further investigate the tropism and charge of HIV-1 viruses in late disease, we evaluated the properties of HIV-1 envelopes amplified from immune and brain tissues of AIDS patients with neurological complications. Results Almost all envelopes amplified were R5. There was clear compartmentalization of envelope sequences for four of the five subjects. However, strong compartmentalization of macrophage-tropism in brain was observed even when brain and immune tissue envelope sequences were not segregated. R5 envelopes from immune tissue of four subjects carried a higher positive charge compared to brain envelopes. We also confirm a significant correlation between macrophage tropism and sensitivity to soluble CD4, a weak association with sensitivity to the CD4 binding site antibody, b12, but no clear relationship with maraviroc sensitivity. Conclusions Our study shows that non-macrophage-tropic R5 envelopes carrying gp120s with an increased positive charge were predominant in immune tissue in late disease. However, highly macrophage-tropic variants with lower charged gp120s were nearly universal in the brain. These results are consistent with HIV-1 R5 envelopes evolving gp120s with an increased positive charge in immune tissue or sites outside the brain that likely reflect an adaptation for increased replication or fitness for CD4+ T-cells. Our data are consistent with the presence of powerful pressures in brain and in immune tissues selecting for R5 envelopes with very different properties; high macrophage-tropism, sCD4 sensitivity and low positive charge in brain and non-macrophage-tropism, sCD4 resistance and high positive charge in immune tissue.
Collapse
Affiliation(s)
- Maria Paz Gonzalez-Perez
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2377, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Envelope glycoproteins of human immunodeficiency virus type 1 variants issued from mother-infant pairs display a wide spectrum of biological properties. Virology 2012; 426:12-21. [PMID: 22310702 DOI: 10.1016/j.virol.2012.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the early virus population present in HIV-1 infected infants usually is homogeneous when compared to the highly diversified viral population present at delivery in their mothers. We explored the antigenic and functional properties of pseudotyped viruses expressing gp120 encoded by env clones issued from four mother-infant pairs infected by CRF01_AE viruses. We compared their sensitivity to neutralization and to entry inhibitors, their infectivity levels and the Env processing and incorporation levels. We found that both transmitted viruses present in infants and the variants present in their chronically infected mothers display a wide spectrum of biological properties that could not distinguish between them. In contrast, we found that all the transmitted viruses in the infants were more sensitive to neutralization by PG9 and PG16 than the maternal variants, an observation that may have implications for the development of prophylactic strategies to prevent mother-to-child transmission.
Collapse
|
26
|
Gijsbers EF, Schuitemaker H, Kootstra NA. HIV-1 transmission and viral adaptation to the host. Future Virol 2012. [DOI: 10.2217/fvl.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV-1 transmission predominantly occurs via mucosal transmission and blood–blood contact. In most newly infected individuals, outgrowth of a single virus variant has been described. This indicates that HIV-1 transmission is a very inefficient process and is restricted by an extensive transmission bottleneck. The transmission rate is directly correlated to the viral load in the donor and the susceptibility of the recipient, which is influenced by factors such as the integrity of mucosal barriers, target cell availability and genetic host factors. After establishment of infection in the new host, the viral population remains very homogenous until the host immune response drives evolution of the viral quasispecies. This review describes our current knowledge on HIV-1 transmission and recent insights in viral adaption to its host.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Duncan CJA, Sattentau QJ. Viral determinants of HIV-1 macrophage tropism. Viruses 2011; 3:2255-79. [PMID: 22163344 PMCID: PMC3230851 DOI: 10.3390/v3112255] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 01/23/2023] Open
Abstract
Macrophages are important target cells for HIV-1 infection that play significant roles in the maintenance of viral reservoirs and other aspects of pathogenesis. Understanding the determinants of HIV-1 tropism for macrophages will inform HIV-1 control and eradication strategies. Tropism for macrophages is both qualitative (infection or not) and quantitative (replication capacity). For example many R5 HIV-1 isolates cannot infect macrophages, but for those that can the macrophage replication capacity can vary by up to 1000-fold. Some X4 viruses are also capable of replication in macrophages, indicating that cellular tropism is partially independent of co-receptor preference. Preliminary data obtained with a small number of transmitted/founder viruses indicate inefficient macrophage infection, whereas isolates from later in disease are more frequently tropic for macrophages. Thus tropism may evolve over time, and more macrophage tropic viruses may be implicated in the pathogenesis of advanced HIV-1 infection. Compartmentalization of macrophage-tropic brain-derived envelope glycoproteins (Envs), and non-macrophage tropic non-neural tissue-derived Envs points to adaptation of HIV-1 quasi-species in distinct tissue microenvironments. Mutations within and adjacent to the Env-CD4 binding site have been identified that determine macrophage tropism at the entry level, but post-entry molecular determinants of macrophage replication capacity involving HIV-1 accessory proteins need further definition.
Collapse
|