1
|
Tims AR, Unmack PJ, Hammer MP, Brown C, Adams M, McGee MD. Museum Genomics Reveals the Hybrid Origin of an Extinct Crater Lake Endemic. Syst Biol 2024; 73:506-520. [PMID: 38597146 PMCID: PMC11377190 DOI: 10.1093/sysbio/syae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Crater lake fishes are common evolutionary model systems, with recent studies suggesting a key role for gene flow in promoting rapid adaptation and speciation. However, the study of these young lakes can be complicated by human-mediated extinctions. Museum genomics approaches integrating genetic data from recently extinct species are, therefore, critical to understanding the complex evolutionary histories of these fragile systems. Here, we examine the evolutionary history of an extinct Southern Hemisphere crater lake endemic, the rainbowfish Melanotaenia eachamensis. We undertook a comprehensive sampling of extant rainbowfish populations of the Atherton Tablelands of Australia alongside historical museum material to understand the evolutionary origins of the extinct crater lake population and the dynamics of gene flow across the ecoregion. The extinct crater lake species is genetically distinct from all other nearby populations due to historic introgression between 2 proximate riverine lineages, similar to other prominent crater lake speciation systems, but this historic gene flow has not been sufficient to induce a species flock. Our results suggest that museum genomics approaches can be successfully combined with extant sampling to unravel complex speciation dynamics involving recently extinct species.
Collapse
Affiliation(s)
- Amy R Tims
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Peter J Unmack
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory 0801, Australia
| | - Culum Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Kochanova E, Mayor T, Väinölä R. Cryptic diversity and speciation in an endemic copepod crustacean Harpacticella inopinata within Lake Baikal. Ecol Evol 2024; 14:e11471. [PMID: 38826165 PMCID: PMC11140236 DOI: 10.1002/ece3.11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Ancient lakes are hotspots of species diversity, posing challenges and opportunities for exploration of the dynamics of endemic diversification. Lake Baikal in Siberia, the oldest lake in the world, hosts a particularly rich crustacean fauna, including the largest known species flock of harpacticoid copepods with some 70 species. Here, we focused on exploring the diversity and evolution within a single nominal species, Harpacticella inopinata Sars, 1908, using molecular markers (mitochondrial COI, nuclear ITS1 and 28S rRNA) and a set of qualitative and quantitative morphological traits. Five major mitochondrial lineages were recognized, with model-corrected COI distances of 0.20-0.37. A concordant pattern was seen in the nuclear data set, and qualitative morphological traits also distinguish a part of the lineages. All this suggests the presence of several hitherto unrecognized cryptic taxa within the baikalian H. inopinata, with long independent histories. The abundances, distributions and inferred demographic histories were different among taxa. Two taxa, H. inopinata CE and H. inopinata CW, were widespread on the eastern and western coasts, respectively, and were largely allopatric. Patterns in mitochondrial variation, that is, shallow star-like haplotype networks, suggest these taxa have spread through the lake relatively recently. Three other taxa, H. inopinata RE, RW and RW2, instead were rare and had more localized distributions on either coast, but showed deeper intraspecies genealogies, suggesting older regional presence. The rare taxa were often found in sympatry with the others and occasionally introgressed by mtDNA from the common ones. The mitochondrial divergence between and within the H. inopinata lineages is still unexpectedly deep, suggesting an unusually high molecular rate. The recognition of true systematic diversity in the evaluation and management of ecosystems is important in hotspots, as it is everywhere else, while the translation of the diversity into a formal taxonomy remains a challenge.
Collapse
Affiliation(s)
- Elena Kochanova
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Tatyana Mayor
- Laboratory of IchthyologyLimnological Institute SB RASIrkutskRussia
| | - Risto Väinölä
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Venkataraman P, Saini S. Ecological disruptive selection acting on quantitative loci can drive sympatric speciation. NPJ Syst Biol Appl 2024; 10:6. [PMID: 38225420 PMCID: PMC10789801 DOI: 10.1038/s41540-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
The process of speciation generates biodiversity. According to the null model of speciation, barriers between populations arise in allopatry, where, prior to biology, geography imposes barriers to gene flow. On the other hand, sympatric speciation requires that the process of speciation happen in the absence of a geographical barrier, where the members of the population have no spatial, temporal barriers. Several attempts have been made to theoretically identify the conditions in which speciation can occur in sympatry. However, these efforts suffer from several limitations. We propose a model for sympatric speciation based on adaptation for resource utilization. We use a genetics-based model to investigate the relative roles of prezygotic and postzygotic barriers, from the context of ecological disruptive selection, sexual selection, and genetic architecture, in causing and maintaining sympatric speciation. Our results show that sexual selection that acts on secondary sexual traits does not play any role in the process of speciation in sympatry and that assortative mating based on an ecologically relevant trait forces the population to show an adaptive response. We also demonstrate that understanding the genetic architecture of the trait under ecological selection is very important and that it is not required for the strength of ecological disruptive selection to be very high in order for speciation to occur in sympatry. Our results provide an insight into the kind of scenarios in which sympatric speciation can be demonstrated in the lab.
Collapse
Affiliation(s)
- Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| |
Collapse
|
4
|
Buck R, Ortega-Del Vecchyo D, Gehring C, Michelson R, Flores-Rentería D, Klein B, Whipple AV, Flores-Rentería L. Sequential hybridization may have facilitated ecological transitions in the Southwestern pinyon pine syngameon. THE NEW PHYTOLOGIST 2023; 237:2435-2449. [PMID: 36251538 DOI: 10.1111/nph.18543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multispecies interbreeding networks, or syngameons, have been increasingly reported in natural systems. However, the formation, structure, and maintenance of syngameons have received little attention. Through gene flow, syngameons can increase genetic diversity, facilitate the colonization of new environments, and contribute to hybrid speciation. In this study, we evaluated the history, patterns, and consequences of hybridization in a pinyon pine syngameon using morphological and genomic data to assess genetic structure, demographic history, and geographic and climatic data to determine niche differentiation. We demonstrated that Pinus edulis, a dominant species in the Southwestern US and a barometer of climate change, is a core participant in the syngameon, involved in the formation of two drought-adapted hybrid lineages including the parapatric and taxonomically controversial fallax-type. We found that species remain morphologically and genetically distinct at range cores, maintaining species boundaries while undergoing extensive gene flow in areas of sympatry at range peripheries. Our study shows that sequential hybridization may have caused relatively rapid speciation and facilitated the colonization of different niches, resulting in the rapid formation of two new lineages. Participation in the syngameon may allow adaptive traits to be introgressed across species barriers and provide the changes needed to survive future climate scenarios.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, 76230, Mexico
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Rhett Michelson
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, NV, 89146, USA
| | - Dulce Flores-Rentería
- CONACYT-CINVESTAV Unidad Saltillo, Grupo de Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, Mexico
| | - Barbara Klein
- Diné College, School of Science, Technology, Engineering and Mathematics, Tsaile, AZ, 86556, USA
| | - Amy V Whipple
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | |
Collapse
|
5
|
Galvez JR, St John ME, McLean K, Touokong CD, Gonwouo LN, Martin CH. Trophic specialization on unique resources despite limited niche divergence in a celebrated example of sympatric speciation. ECOLOGY OF FRESHWATER FISH 2022; 31:675-692. [PMID: 36211622 PMCID: PMC9542214 DOI: 10.1111/eff.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/02/2022] [Indexed: 06/16/2023]
Abstract
Trophic niche partitioning is observed in many adaptive radiations and is hypothesized to be a central process underlying species divergence. However, patterns of dietary niche partitioning are inconsistent across radiations and there are few studies of niche partitioning in putative examples of sympatric speciation. Here, we conducted the first quantitative study of dietary niche partitioning using stomach contents and stable isotope analyses in one of the most celebrated examples of sympatric speciation: the cichlid radiation from crater lake Barombi Mbo, Cameroon. We found little evidence for trophic niche partitioning among cichlids, including the nine species coexisting in the narrow littoral zone. Stable isotope analyses supported these conclusions of substantial dietary overlap. Our data, however, did reveal that five of eleven species consume rare dietary items, including freshwater sponge, terrestrial ants, and nocturnal foraging on shrimp. Stomach contents of the spongivore (Pungu maclareni) were 20% freshwater sponge, notable considering that only 0.04% of all fishes consume sponges. Overall, we conclude that cichlid species in lake Barombi Mbo overlap considerably in broad dietary niches-in part due to the large proportion of detritus in the stomach contents of all species-but there is evidence for divergence among species in their diet specializations on unique resources. We speculate that these species may utilize these additional specialized resources during periods of low resource abundance in support of Liem's paradox.
Collapse
Affiliation(s)
- Jacquelyn R Galvez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Keara McLean
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Legrand Nono Gonwouo
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Astudillo-Clavijo V, Stiassny MLJ, Ilves KL, Musilova Z, Salzburger W, López-Fernández H. Exon-based phylogenomics and the relationships of African cichlid fishes: tackling the challenges of reconstructing phylogenies with repeated rapid radiations. Syst Biol 2022; 72:134-149. [PMID: 35880863 DOI: 10.1093/sysbio/syac051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae, and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system.
Collapse
Affiliation(s)
- Viviana Astudillo-Clavijo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, 10024-5102, USA
| | - Katriina L Ilves
- Research & Collections, Zoology, Canadian Museum of Nature, Ottawa, K1P 6P4, Canada
| | - Zuzana Musilova
- Department of Zoology, Charles University in Prague, Vinicna 7, Prague, CZ-128 44, Czech Republic
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| |
Collapse
|
7
|
Buck R, Flores-Rentería L. The Syngameon Enigma. PLANTS (BASEL, SWITZERLAND) 2022; 11:895. [PMID: 35406874 PMCID: PMC9002738 DOI: 10.3390/plants11070895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Despite their evolutionary relevance, multispecies networks or syngameons are rarely reported in the literature. Discovering how syngameons form and how they are maintained can give insight into processes such as adaptive radiations, island colonizations, and the creation of new hybrid lineages. Understanding these complex hybridization networks is even more pressing with anthropogenic climate change, as syngameons may have unique synergistic properties that will allow participating species to persist. The formation of a syngameon is not insurmountable, as several ways for a syngameon to form have been proposed, depending mostly on the magnitude and frequency of gene flow events, as well as the relatedness of its participants. Episodic hybridization with small amounts of introgression may keep syngameons stable and protect their participants from any detrimental effects of gene flow. As genomic sequencing becomes cheaper and more species are included in studies, the number of known syngameons is expected to increase. Syngameons must be considered in conservation efforts as the extinction of one participating species may have detrimental effects on the survival of all other species in the network.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA 92182, USA;
| | | |
Collapse
|
8
|
Intergenus F1-hybrids of African weakly electric fish (Mormyridae: Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:355-371. [PMID: 35119505 PMCID: PMC9123046 DOI: 10.1007/s00359-022-01542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Hybridisation is an important element of adaptive radiation in fish but data are limited in weakly electric mormyrid fish in this respect. Recently, it has been shown that intragenus hybrids (Campylomormyrus) are fertile and are able to produce F2-fish. In this paper, we demonstrate that even intergenus hybrids (Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. Three artificial reproduction (AR) trials, with an average fertilisation rate of ca. 23%, yielded different numbers of survivals (maximally about 50%) of the F1-hybrids. The complete ontogenetic development of these hybrids is described concerning their morphology and electric organ discharge (EOD). Two EOD types emerged at the juvenile stage, which did not change up to adulthood. Type I consisted of four phases and Type II was triphasic. The minimum body length at sexual maturity was between 10 and 11 cm. Malformations, growth and mortality rates are also described.
Collapse
|
9
|
Feller AF, Selz OM, McGee MD, Meier JI, Mwaiko S, Seehausen O. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol Evol 2020; 10:7445-7462. [PMID: 32760540 PMCID: PMC7391563 DOI: 10.1002/ece3.6471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023] Open
Abstract
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second-generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Oliver M. Selz
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Matthew D. McGee
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Joana I. Meier
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Department of ZoologyUniversity of CambridgeCambridgeUK
- St John’s CollegeUniversity of CambridgeCambridgeUK
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| |
Collapse
|
10
|
Korniienko Y, Nguyen L, Baumgartner S, Vater M, Tiedemann R, Kirschbaum F. Intragenus F1-hybrids of African weakly electric fish (Mormyridae: Campylomormyrus tamandua ♂ × C. compressirostris ♀) are fertile. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:571-585. [PMID: 32468077 PMCID: PMC8520511 DOI: 10.1007/s00359-020-01425-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
Hybridization is widespread in fish and constitutes an important mechanism in fish speciation. There is, however, little knowledge about hybridization in mormyrids. F1-interspecies hybrids between Campylomormyrus tamandua ♂ × C. compressirostris ♀ were investigated concerning: (1) fertility; (2) survival of F2-fish and (3) new gene combinations in the F2-generation concerning the structure of the electric organ and features of the electric organ discharge. These F1-hybrids achieved sexual maturity at about 12–13.5 cm total length. A breeding group comprising six males and 13 females spawned 28 times naturally proving these F1-fish to be fertile. On average 228 eggs were spawned, the average fertilization rate was 47.8%. Eggs started to hatch 70–72 h after fertilization, average hatching rate was 95.6%. Average mortality rate during embryonic development amounted to 2.3%. Average malformation rate during the free embryonic stage was 27.7%. Exogenous feeding started on day 11. In total, we raised 353 normally developed larvae all of which died consecutively, the oldest specimen reaching an age of 5 months. During survival, the activities of the larval and adult electric organs were recorded and the structure of the adult electric organ was investigated histologically.
Collapse
Affiliation(s)
- Yevheniia Korniienko
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
| | - Linh Nguyen
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Stephanie Baumgartner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
| | - Marianne Vater
- Institute of Biochemistry and Biology, Unit of General Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany.
| |
Collapse
|
11
|
Carleton KL, Escobar-Camacho D, Kocher TD. Visual adaptation could aid sympatric speciation in a deep crater lake. Mol Ecol 2019; 28:5007-5009. [PMID: 31749242 DOI: 10.1111/mec.15278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 01/26/2023]
Abstract
Allopatric speciation was originally suggested to be the primary mechanism of animal speciation (Mayr, 1942; Figure 1). During allopatric speciation, populations diverge when gene flow is reduced across significant biogeographic barriers. Sympatric speciation, where species diverge while inhabiting the same location, was thought to be essentially impossible. However, the advent of theoretical models followed by new experimental evidence made sympatric speciation more plausible (Via, 2001). The cichlid fishes of Barombi Mbo, a small crater lake in western Cameroon, became one of the most widely accepted examples of sympatric speciation (Schliewen, Tautz, & Paabo, 1994). Although the phylogenetic history of this clade is not quite as simple as originally thought, it remains one of the best examples of sympatric speciation (Richards, Poelstra, & Martin, 2018). However, little is known about the molecular mechanisms contributing to the splitting of these species in situ. In a From the Cover article in this issue of Molecular Ecology, Musilova et al. (2019) focus on the diversity of visual systems among these fishes. They identify genetic changes associated with several aspects of visual adaptation that may have contributed to the ecological specialization and sympatric speciation of cichlids in this lake.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Selz OM, Seehausen O. Interspecific hybridization can generate functional novelty in cichlid fish. Proc Biol Sci 2019; 286:20191621. [PMID: 31640510 DOI: 10.1098/rspb.2019.1621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of interspecific hybridization in evolution is still being debated. Interspecific hybridization has been suggested to facilitate the evolution of ecological novelty, and hence the invasion of new niches and adaptive radiation when ecological opportunity is present beyond the parental species niches. On the other hand, hybrids between two ecologically divergent species may perform less well than parental species in their respective niches because hybrids would be intermediate in performance in both niches. The evolutionary consequences of hybridization may hence be context-dependent, depending on whether ecological opportunities, beyond those of the parental species, do or do not exist. Surprisingly, these complementary predictions may never have been tested in the same experiment in animals. To do so, we investigate if hybrids between ecologically distinct cichlid species perform less well than the parental species when feeding on food either parent is adapted to, and if the same hybrids perform better than their parents when feeding on food none of the species are adapted to. We generated two first-generation hybrid crosses between species of African cichlids. In feeding efficiency experiments we measured the performance of hybrids and parental species on food types representing both parental species niches and additional 'novel' niches, not used by either of the parental species but by other species in the African cichlid radiations. We found that hybrids can have higher feeding efficiencies on the 'novel' food types but typically have lower efficiencies on parental food types when compared to parental species. This suggests that hybridization can generate functional variation that can be of ecological relevance allowing the access to resources outside of either parental species niche. Hence, we provide support for the hypothesis of ecological context-dependency of the evolutionary impact of interspecific hybridization.
Collapse
Affiliation(s)
- O M Selz
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - O Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Majtánová Z, Indermaur A, Nyom ARB, Ráb P, Musilova Z. Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon. Int J Mol Sci 2019; 20:ijms20204994. [PMID: 31601021 PMCID: PMC6834198 DOI: 10.3390/ijms20204994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic.
| | - Adrian Indermaur
- Zoological Institute, University of Basel, 4051 Basel, Switzerland.
| | - Arnold Roger Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O Box 454, Cameroon.
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O Box 2701, Cameroon.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic.
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic.
| |
Collapse
|
14
|
Musilova Z, Indermaur A, Bitja‐Nyom AR, Omelchenko D, Kłodawska M, Albergati L, Remišová K, Salzburger W. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol 2019; 28:5010-5031. [DOI: 10.1111/mec.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Zuzana Musilova
- Department of Zoology Charles University in Prague Prague Czech Republic
- Zoological Institute University of Basel Basel Switzerland
| | | | - Arnold Roger Bitja‐Nyom
- Department of Biological Sciences University of Ngaoundéré Ngaoundéré Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems University of Douala Douala Cameroon
| | - Dmytro Omelchenko
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Monika Kłodawska
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Lia Albergati
- Zoological Institute University of Basel Basel Switzerland
| | - Kateřina Remišová
- Department of Physiology Charles University in Prague Prague Czech Republic
| | | |
Collapse
|
15
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Ford AG, Bullen TR, Pang L, Genner MJ, Bills R, Flouri T, Ngatunga BP, Rüber L, Schliewen UK, Seehausen O, Shechonge A, Stiassny ML, Turner GF, Day JJ. Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Mol Phylogenet Evol 2019; 136:215-226. [DOI: 10.1016/j.ympev.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
|
17
|
Schedel FDB, Musilova Z, Schliewen UK. East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation. BMC Evol Biol 2019; 19:94. [PMID: 31023223 PMCID: PMC6482553 DOI: 10.1186/s12862-019-1417-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cichlids are a prime model system in evolutionary research and several of the most prominent examples of adaptive radiations are found in the East African Lakes Tanganyika, Malawi and Victoria, all part of the East African cichlid radiation (EAR). In the past, great effort has been invested in reconstructing the evolutionary and biogeographic history of cichlids (Teleostei: Cichlidae). In this study, we present new divergence age estimates for the major cichlid lineages with the main focus on the EAR based on a dataset encompassing representative taxa of almost all recognized cichlid tribes and ten mitochondrial protein genes. We have thoroughly re-evaluated both fossil and geological calibration points, and we included the recently described fossil †Tugenchromis pickfordi in the cichlid divergence age estimates. RESULTS Our results estimate the origin of the EAR to Late Eocene/Early Oligocene (28.71 Ma; 95% HPD: 24.43-33.15 Ma). More importantly divergence ages of the most recent common ancestor (MRCA) of several Tanganyika cichlid tribes were estimated to be substantially older than the oldest estimated maximum age of the Lake Tanganyika: Trematocarini (16.13 Ma, 95% HPD: 11.89-20.46 Ma), Bathybatini (20.62 Ma, 95% HPD: 16.88-25.34 Ma), Lamprologini (15.27 Ma; 95% HPD: 12.23-18.49 Ma). The divergence age of the crown haplochromine H-lineage is estimated to 22.8 Ma (95% HPD: 14.40-26.32 Ma) and of the Lake Malawi radiation to 4.07 Ma (95% HDP: 2.93-5.26 Ma). In addition, we recovered a novel lineage within the Lamprologini tribe encompassing only Lamprologus of the lower and central Congo drainage with its divergence estimated to the Late Miocene or early Pliocene. Furthermore we recovered two novel mitochondrial haplotype lineages within the Haplochromini tribe: 'Orthochromis' indermauri and 'Haplochormis' vanheusdeni. CONCLUSIONS Divergence time estimates of the MRCA of several Tanganyika cichlid tribes predate the age of the extant Lake Tanganyika basin, and hence are in line with the recently formulated "Melting-Pot Tanganyika" hypothesis. The radiation of the 'Lower Congo Lamprologus clade' might be linked with the Pliocene origin of the modern lower Congo rapids as has been shown for other Lower Congo cichlid assemblages. Finally, the age of origin of the Lake Malawi cichlid flock agrees well with the oldest age estimate for lacustrine conditions in Lake Malawi.
Collapse
Affiliation(s)
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44 Prague, Czech Republic
| | - Ulrich Kurt Schliewen
- Department of Ichthyology, SNSB - Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 Munich, Germany
| |
Collapse
|
18
|
Richards EJ, Poelstra JW, Martin CH. Don't throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol Lett 2018; 2:524-540. [PMID: 30283699 PMCID: PMC6145409 DOI: 10.1002/evl3.78] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Genomic data has revealed complex histories of colonization and repeated gene flow previously unrecognized in some of the most celebrated examples of sympatric speciation and radiation. However, much of the evidence for secondary gene flow into these radiations comes from summary statistics calculated from sparse genomic sampling without knowledge of which specific genomic regions introgressed. This tells us little about how gene flow potentially influenced sympatric diversification. Here, we investigated whole genomes of Barombi Mbo crater lake cichlids for fine-scale patterns of introgression with neighboring riverine cichlid populations. We found evidence of secondary gene flow into the radiation scattered across <0.24% of the genome; however, from our analyses, it is not clear if the functional diversity in these regions contributed to the ecological, sexual, and morphological diversity found in the lake. Unlike similar studies, we found no obvious candidate genes for adaptive introgression and we cannot rule out that secondary gene flow was predominantly neutral with respect to the diversification process. We also found evidence for differential assortment of ancestral polymorphisms found in riverine populations between sympatric sister species, suggesting the presence of an ancestral hybrid swarm. Although the history of gene flow and colonization is more complicated than previously assumed, the lack of compelling evidence for secondary gene flow's role in species diversification suggests that we should not yet rule out one of the most celebrated examples of sympatric speciation in nature without a more thorough investigation of the timing and functional role of each introgressed region.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Jelmer W. Poelstra
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
- Biology DepartmentDuke UniversityDurhamNorth Carolina27710
| | - Christopher H. Martin
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| |
Collapse
|
19
|
Vreven EJWMN, Musschoot T, Decru E, Wamuini Lunkayilakio S, Obiero K, Cerwenka AF, Schliewen UK. The complex origins of mouth polymorphism in the Labeobarbus (Cypriniformes: Cyprinidae) of the Inkisi River basin (Lower Congo, DRC, Africa): insights from an integrative approach. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Emmanuel J W M N Vreven
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Charles Deberiotstraat, Leuven, Belgium
| | - Tobias Musschoot
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
| | - Eva Decru
- Vertebrate Section, Ichthyology, Royal Museum for Central Africa, RMCA, Leuvensesteenweg, Tervuren, Belgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Charles Deberiotstraat, Leuven, Belgium
| | | | - Kevin Obiero
- Kenya Marine and Fisheries Research Institute, Lake Turkana Research Station, Lodwar, Kenya
| | - Alexander F Cerwenka
- SNSB Bavarian Natural History Collections, Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstrasse, München, Germany
| | - Ulrich K Schliewen
- SNSB Bavarian Natural History Collections, Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstrasse, München, Germany
| |
Collapse
|
20
|
Poelstra JW, Richards EJ, Martin CH. Speciation in sympatry with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. Mol Ecol 2018; 27:4270-4288. [DOI: 10.1111/mec.14784] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Jelmer W. Poelstra
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
- Department of Biology; Duke University; Durham North Carolina
| | - Emilie J. Richards
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Christopher H. Martin
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| |
Collapse
|
21
|
Chiozzi G, Stiassny MLJ, de Marchi G, Lamboj A, Fasola M, Fruciano C. A diversified kettle of fish: phenotypic variation in the endemic cichlid genus Danakilia of the Danakil Depression of northeastern Africa. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Giorgio Chiozzi
- Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy
- Museo di Storia Naturale di Milano, Corso Venezia, Milano, Italy
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| | - Giuseppe de Marchi
- Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Anton Lamboj
- Department of Integrative Zoology, University of Vienna, UZA, Vienna, Austria
| | - Mauro Fasola
- Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Carmelo Fruciano
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Foote AD. Sympatric Speciation in the Genomic Era. Trends Ecol Evol 2017; 33:85-95. [PMID: 29198471 DOI: 10.1016/j.tree.2017.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Sympatric speciation has been of key interest to biologists investigating how natural and sexual selection drive speciation without the confounding variable of geographic isolation. The advent of the genomic era has provided a more nuanced and quantitative understanding of the different and often complex modes of speciation by which sympatric sister taxa arose, and a reassessment of some of the most compelling empirical case studies of sympatric speciation. However, I argue that genomic studies based on contemporary populations may never be able to provide unequivocal evidence of true primary sympatric speciation, and there is a need to incorporate palaeogenomic studies into this field. This inability to robustly distinguish cases of primary and secondary 'divergence with gene flow' may be inconsequential, as both are useful for understanding the role of large effect barrier loci in the progression from localised genic isolation to genome-wide reproductive isolation. I argue that they can be of equivalent interest due to shared underlying mechanisms driving divergence and potentially leaving similar patterns of coalescence.
Collapse
Affiliation(s)
- Andrew D Foote
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
23
|
Diversification and Phylogenetics of Mobilid Peritrichs (Ciliophora) with Description of Urceolaria parakorschelti sp. nov. Protist 2017; 168:481-493. [DOI: 10.1016/j.protis.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 11/24/2022]
|
24
|
Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun 2017; 8:14363. [PMID: 28186104 PMCID: PMC5309898 DOI: 10.1038/ncomms14363] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding why some evolutionary lineages generate exceptionally high species diversity is an important goal in evolutionary biology. Haplochromine cichlid fishes of Africa's Lake Victoria region encompass >700 diverse species that all evolved in the last 150,000 years. How this 'Lake Victoria Region Superflock' could evolve on such rapid timescales is an enduring question. Here, we demonstrate that hybridization between two divergent lineages facilitated this process by providing genetic variation that subsequently became recombined and sorted into many new species. Notably, the hybridization event generated exceptional allelic variation at an opsin gene known to be involved in adaptation and speciation. More generally, differentiation between new species is accentuated around variants that were fixed differences between the parental lineages, and that now appear in many new combinations in the radiation species. We conclude that hybridization between divergent lineages, when coincident with ecological opportunity, may facilitate rapid and extensive adaptive radiation.
Collapse
Affiliation(s)
- Joana I. Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - David A. Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Biodiversity Institute & Department of Botany, University of Wyoming, Laramie Wyoming 82071, USA
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
25
|
Ford AGP, Rüber L, Newton J, Dasmahapatra KK, Balarin JD, Bruun K, Day JJ. Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation. Evolution 2016; 70:2718-2735. [PMID: 27659769 PMCID: PMC5132037 DOI: 10.1111/evo.13072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 12/22/2022]
Abstract
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.
Collapse
Affiliation(s)
- Antonia G P Ford
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Current Address: School of Biological Sciences, Bangor University, ECW Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, Wales, United Kingdom
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jason Newton
- NERC Life Sciences Mass Spectrometry Facility, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, United Kingdom
| | | | | | - Kristoffer Bruun
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Meier JI, Sousa VC, Marques DA, Selz OM, Wagner CE, Excoffier L, Seehausen O. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Mol Ecol 2016; 26:123-141. [PMID: 27613570 DOI: 10.1111/mec.13838] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 01/15/2023]
Abstract
Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation.
Collapse
Affiliation(s)
- Joana I Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Vitor C Sousa
- CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Oliver M Selz
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Catherine E Wagner
- Biodiversity Institute & Department of Botany, University of Wyoming, Berry Center, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| |
Collapse
|
27
|
Kide NG, Dunz A, Agnèse JF, Dilyte J, Pariselle A, Carneiro C, Correia E, Brito JC, Yarba LO, Kone Y, Durand JD. Cichlids of the Banc d'Arguin National Park, Mauritania: insight into the diversity of the genus Coptodon. JOURNAL OF FISH BIOLOGY 2016; 88:1369-1393. [PMID: 26856797 DOI: 10.1111/jfb.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
To determine the species diversity of cichlids in the Banc d'Arguin National Park (PNBA) and their phylogenetic relationships with other species in West Africa, a morphometric and meristic and molecular phylogenetic study was conducted. Both approaches not only confirm the presence of Sarotherodon melanotheron in PNBA but also demonstrate the presence of a second species from the genus Coptodon. While morphometric characteristics match the description of the Guinean tilapia Coptodon guineensis, phylogenetic reconstructions based on three mitochondrial and one nuclear DNA fragment demonstrate that C. guineensis is paraphyletic over its range. Because different lineages of C. guineensis are allopatric, the distribution of C. guineensis should be restricted to Ghana and Côte d'Ivoire. The many other lineages of this species should be considered as C. sp. aff. guineensis.
Collapse
Affiliation(s)
- N G Kide
- Université Abdel Maleck Essaâdi - Faculté des Sciences, Département de Biologie, Laboratoire Biologie Appliqué et Pathologie, Tétouan, Morocco
| | - A Dunz
- Bavarian State Collection of Zoology, Department of Ichthyology, Münchhausenstr. 21, 81247, München, Germany
| | - J-F Agnèse
- Institut de Recherche pour le Développement (IRD), Université Montpellier, UMR 226, Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, CC 65, F-34095, Montpellier cedex 5, France
| | - J Dilyte
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - A Pariselle
- Institut de Recherche pour le Développement (IRD), Université Montpellier, UMR 226, Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, CC 65, F-34095, Montpellier cedex 5, France
- IRD, ISE-M, BP 1857, Yaoundé, Cameroon
| | - C Carneiro
- Observatoire du Parc National du Banc d'Arguin, Nouakchott, Mauritania
| | - E Correia
- Observatoire du Parc National du Banc d'Arguin, Nouakchott, Mauritania
| | - J C Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - L O Yarba
- Observatoire du Parc National du Banc d'Arguin, Nouakchott, Mauritania
| | - Y Kone
- Faculté des Sciences de l'Université de Nouakchott, Nouakchott, Mauritania
| | - J-D Durand
- Institut de Recherche pour le Développement (IRD), Université Montpellier, UMR MARBEC, Place Eugène Bataillon, CC 93, F-34095, Montpellier cedex 5, France
| |
Collapse
|
28
|
Schneider K, Koblmüller S, Sefc KM. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test. Methods Ecol Evol 2015; 7:358-368. [PMID: 27066216 PMCID: PMC4824276 DOI: 10.1111/2041-210x.12490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Abstract
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis.With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria ; Department of Systematic Botany and Geobotany, Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
29
|
Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 2015; 69:1406-1422. [PMID: 25929355 DOI: 10.1111/evo.12674] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph S Cutler
- Department of Conservation Biology, University of California, Santa Cruz, California
| | - John P Friel
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama
| | | | - Graham Coop
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| | - Peter C Wainwright
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| |
Collapse
|
30
|
Weiss JD, Cotterill FPD, Schliewen UK. Lake Tanganyika--a 'melting pot' of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One 2015; 10:e0125043. [PMID: 25928886 PMCID: PMC4415804 DOI: 10.1371/journal.pone.0125043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/08/2015] [Indexed: 11/19/2022] Open
Abstract
A long history of research focused on the East Africa cichlid radiations (EAR) revealed discrepancies between mtDNA and nuclear phylogenies, suggesting that interspecific hybridisation may have been significant during the radiation of these fishes. The approximately 250 cichlid species of Lake Tanganyika have their roots in a monophyletic African cichlid assemblage, but controversies remain about the precise phylogenetic origin and placement of different lineages and consequently about L. Tanganyika colonization scenarios. 3312 AFLP loci and the mitochondrial ND2 gene were genotyped for 91 species representing almost all major lacustrine and riverine haplotilapiine east African cichlid lineages with a focus on L. Tanganyika endemics. Explicitly testing for the possibility of ancient hybridisation events, a comprehensive phylogenetic network hypothesis is proposed for the origin and diversification of L. Tanganyika cichlids. Inference of discordant phylogenetic signal strongly suggests that the genomes of two endemic L. Tanganyika tribes, Eretmodini and Tropheini, are composed of an ancient mixture of riverine and lacustrine lineages. For the first time a strong monophyly signal of all non-haplochromine mouthbrooding species endemic to L. Tanganyika (“ancient mouthbrooders”) was detected. Further, in the genomes of early diverging L. Tanganyika endemics Trematocarini, Bathybatini, Hemibatini and Boulengerochromis genetic components of other lineages belonging to the East African Radiation appear to be present. In combination with recent palaeo-geological results showing that tectonic activity in the L. Tanganyika region resulted in highly dynamic and heterogeneous landscape evolution over the Neogene and Pleistocene, the novel phylogenetic data render a single lacustrine basin as the geographical cradle of the endemic L. Tanganyika cichlid lineages unlikely. Instead a scenario of a pre-rift origin of several independent L. Tanganyika precursor lineages which diversified in ancient rivers and precursor lakes and then amalgamated in the extant L. Tanganyika basin is put forward as an alternative: the 'melting pot Tanganyika' hypothesis.
Collapse
Affiliation(s)
- Juliane D. Weiss
- Department of Ichthyology, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany
| | - Fenton P. D. Cotterill
- Geoecodynamics Research Hub, c/o Department of Botany and Zoology, University of Stellenbosch, Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Ulrich K. Schliewen
- Department of Ichthyology, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany
- * E-mail:
| |
Collapse
|
31
|
Van Steenberge M, Pariselle A, Huyse T, Volckaert FAM, Snoeks J, Vanhove MPM. Morphology, molecules, and monogenean parasites: an example of an integrative approach to cichlid biodiversity. PLoS One 2015; 10:e0124474. [PMID: 25923665 PMCID: PMC4414595 DOI: 10.1371/journal.pone.0124474] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/01/2015] [Indexed: 12/28/2022] Open
Abstract
The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over a century; its unique cichlid communities are a preferred model for evolutionary research. Although species delineation is, in most cases, relatively straightforward, higher-order classifications were shown not to agree with monophyletic groups. Here, traditional morphological methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread and abundant cichlids are poorly understood. Molecular work suggested that genus and species boundaries should be revised. Moreover, previous morphological results indicated that intraspecific variation should be considered to delineate species in Lake Tanganyika cichlids. We review the genera Simochromis and Pseudosimochromis using an integrative approach. Besides a morphometric study and a barcoding approach, monogenean Cichlidogyrus (Platyhelminthes: Ancyrocephalidae) gill parasites, often highly species-specific, are used as complementary markers. Six new species are described. Cichlidogyrus raeymaekersi sp. nov., C. muterezii sp. nov. and C. banyankimbonai sp. nov. infect S. diagramma. Cichlidogyrus georgesmertensi sp. nov. was found on S. babaulti and S. pleurospilus, C. franswittei sp. nov. on both S. marginatus and P. curvifrons and C. frankwillemsi sp. nov. only on P. curvifrons. As relatedness between Cichlidogyrus species usually reflects relatedness between hosts, we considered Simochromis monotypic because the three Cichlidogyrus species found on S. diagramma belonged to a different morphotype than those found on the other Simochromis. The transfer of S. babaulti, S. marginatus, S. pleurospilus and S. margaretae to Pseudosimochromis was justified by the similarity of their Cichlidogyrus fauna and the intermediate morphology of S. margaretae. Finally parasite data also supported the synonymy between S. pleurospilus and S. babaulti, a species that contains a large amount of geographical morphological variation.
Collapse
Affiliation(s)
- Maarten Van Steenberge
- Biology Department, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
- Institute of Zoology, University of Graz, Graz, Austria
| | - Antoine Pariselle
- Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier, Montpellier, France
| | - Tine Huyse
- Biology Department, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Jos Snoeks
- Biology Department, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Maarten P. M. Vanhove
- Biology Department, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece
| |
Collapse
|
32
|
Musilová Z, Indermaur A, Nyom ARB, Tropek R, Martin C, Schliewen UK. Persistence ofStomatepia mongo, an Endemic Cichlid Fish of the Barombi Mbo Crater Lake, Southwestern Cameroon, with Notes on Its Life History and Behavior. COPEIA 2014. [DOI: 10.1643/ci-14-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Litsios G, Salamin N. Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol Biol 2014; 14:245. [PMID: 25433367 PMCID: PMC4264551 DOI: 10.1186/s12862-014-0245-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown. RESULTS We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids. CONCLUSIONS Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
Collapse
Affiliation(s)
- Glenn Litsios
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Génopode, Quartier Sorge, 1015, Lausanne, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Génopode, Quartier Sorge, 1015, Lausanne, Switzerland.
| |
Collapse
|
34
|
Abstract
The extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.
Collapse
Affiliation(s)
- Ole Seehausen
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
35
|
Eschbach E, Nolte AW, Kohlmann K, Kersten P, Kail J, Arlinghaus R. Population differentiation of zander (Sander lucioperca) across native and newly colonized ranges suggests increasing admixture in the course of an invasion. Evol Appl 2014; 7:555-68. [PMID: 24944569 PMCID: PMC4055177 DOI: 10.1111/eva.12155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
In addition to ecological factors, evolutionary processes can determine the invasion success of a species. In particular, genetic admixture has the potential to induce rapid evolutionary change, which can result from natural or human-assisted secondary contact between differentiated populations. We studied the recent range expansion of zander in Germany focusing on the interplay between invasion and genetic admixture. Historically, the rivers Elbe and Danube harboured the most north-western source populations from which a north-westward range expansion occurred. This was initiated by introducing zander outside its native range into rivers and lakes, and was fostered by migration through artificial canals and stocking from various sources. We analysed zander populations of the native and invaded ranges using nuclear and mitochondrial genetic markers. Three genetic lineages were identified, which were traced to ancestral ranges. Increased genetic diversity and admixture in the invaded region highlighted asymmetric gene flow towards this area. We suppose that the adaptive potential of the invading populations was promoted by genetic admixture, whereas competitive exclusion in the native areas provided a buffer against introgression by novel genotypes. These explanations would be in line with evidence that hybridization can drive evolutionary change under conditions when new niches can be exploited.
Collapse
Affiliation(s)
- Erik Eschbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany
| | - Arne W Nolte
- Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Klaus Kohlmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany
| | - Petra Kersten
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany
| | - Jochem Kail
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen Essen, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany ; Chair of Integrative Fisheries Management, Faculty of Agriculture and Horticulture, Humboldt-Universität zu Berlin Berlin, Germany
| |
Collapse
|
36
|
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. PLoS One 2014; 9:e89769. [PMID: 24587023 PMCID: PMC3937351 DOI: 10.1371/journal.pone.0089769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual. Methodology/Principal Findings In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively. Conclusions These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation.
Collapse
|
37
|
Kirchberger PC, Sefc KM, Sturmbauer C, Koblmüller S. Outgroup effects on root position and tree topology in the AFLP phylogeny of a rapidly radiating lineage of cichlid fish. Mol Phylogenet Evol 2014; 70:57-62. [PMID: 24055738 PMCID: PMC3842234 DOI: 10.1016/j.ympev.2013.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Phylogenetic analyses of rapid radiations are particularly challenging as short basal branches and incomplete lineage sorting complicate phylogenetic inference. Multilocus data of presence-absence polymorphisms such as obtained by AFLP genotyping overcome some of the difficulties, but also present their own intricacies. Here we analyze >1000 AFLP markers to address the evolutionary history of the Limnochromini, a cichlid fish lineage endemic to Lake Tanganyika, and to test for potential effects of outgroup composition on tree topology. The data support previous mitochondrial evidence on the tribe's taxonomy by confirming the polyphyly of the genus Limnochromis and - in contradiction to a recent taxonomic revision - nesting the genus Greenwoodochromis within the Limnochromini. Species relationships suggest that ecological segregation occurred during the rapid basal radiation of the Limnochromini. The large phylogenetic distance between candidate outgroup taxa and the Limnochromini radiation caused random outgroup effects. Bootstrap support for ingroup nodes was lower in outgroup-rooted than in midpoint-rooted trees, and root positions and ingroup tree topologies varied in response to the composition of the outgroup. These observations suggest that the predisposition for homoplastic evolution makes AFLP-based phylogenetic analyses particularly susceptible to random biases introduced by too-distant outgroup taxa.
Collapse
Affiliation(s)
| | | | | | - Stephan Koblmüller
- Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
38
|
McGee MD, Schluter D, Wainwright PC. Functional basis of ecological divergence in sympatric stickleback. BMC Evol Biol 2013; 13:277. [PMID: 24380474 PMCID: PMC3890603 DOI: 10.1186/1471-2148-13-277] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of ecological divergence in closely related species is a key component of adaptive radiation. However, in most examples of adaptive radiation the mechanistic basis of ecological divergence remains unclear. A classic example is seen in the young benthic and limnetic stickleback species pairs of British Columbia. In each pair the benthic species feeds on littoral macroinvertebrates whereas the limnetic feeds on pelagic zooplankton. Previous studies indicate that in both short-term feeding trials and long-term enclosure studies, benthics and limnetics exhibit enhanced performance on their own resource but fare more poorly on the other species’ resource. We examined the functional basis of ecological divergence in the stickleback species pair from Paxton Lake, BC, using biomechanical models of fish feeding applied to morphological traits. We examined the consequences of morphological differences using high speed video of feeding fish. Results Benthic stickleback possess morphological traits that predict high suction generation capacity, including greatly hypertrophied epaxial musculature. In contrast, limnetic stickleback possess traits thought to enhance capture of evasive planktonic prey, including greater jaw protrusion than benthics and greater displacement advantage in both the lower jaw-opening lever system and the opercular four-bar linkage. Kinematic data support the expectations from the morphological analysis that limnetic stickleback exhibit faster strikes and greater jaw protrusion than benthic fish, whereas benthics exert greater suction force on attached prey. Conclusions We reveal a previously unknown suite of complex morphological traits that affect rapid ecological divergence in sympatric stickleback. These results indicate that postglacial divergence in stickleback involves many functional systems and shows the value of investigating the functional consequences of phenotypic divergence in adaptive radiation.
Collapse
Affiliation(s)
- Matthew D McGee
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
39
|
Selz OM, Thommen R, Maan ME, Seehausen O. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. J Evol Biol 2013; 27:275-89. [DOI: 10.1111/jeb.12287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/06/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
Affiliation(s)
- O. M. Selz
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - R. Thommen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - M. E. Maan
- Behavioural Biology Research Group; Center for Behaviour and Neurosciences; University of Groningen; Groningen The Netherlands
| | - O. Seehausen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
40
|
Selz OM, Lucek K, Young KA, Seehausen O. Relaxed trait covariance in interspecific cichlid hybrids predicts morphological diversity in adaptive radiations. J Evol Biol 2013; 27:11-24. [DOI: 10.1111/jeb.12283] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/27/2013] [Indexed: 01/29/2023]
Affiliation(s)
- O. M. Selz
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - K. Lucek
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | | | - O. Seehausen
- Division of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
41
|
Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc Biol Sci 2013; 280:20131733. [PMID: 24048155 PMCID: PMC3779330 DOI: 10.1098/rspb.2013.1733] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022] Open
Abstract
Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography.
Collapse
Affiliation(s)
- Matt Friedman
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Benjamin P. Keck
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alex Dornburg
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Ron I. Eytan
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | | | - C. Darrin Hulsey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Vaillant JJ, Bock DG, Haffner GD, Cristescu ME. Speciation patterns and processes in the zooplankton of the ancient lakes of Sulawesi Island, Indonesia. Ecol Evol 2013; 3:3083-94. [PMID: 24101996 PMCID: PMC3790553 DOI: 10.1002/ece3.697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/09/2022] Open
Abstract
Although studies of ancient lake fauna have provided important insights about speciation patterns and processes of organisms in heterogeneous benthic environments, evolutionary forces responsible for speciation in the relatively homogenous planktonic environment remain largely unexplored. In this study, we investigate possible mechanisms of speciation in zooplankton using the freshwater diaptomids of the ancient lakes of Sulawesi, Indonesia, as a model system. We integrate phylogenetic and population genetic analyses of mitochondrial and nuclear genes with morphological and genome size data. Overall, our results support the conclusion that colonization order and local adaptation are dominant at the large, island scale, whereas at local and intralacustrine scales, speciation processes are regulated by gene flow among genetically differentiated and locally adapted populations. In the Malili lakes, the diaptomid populations are homogenous at nuclear loci, but show two highly divergent mitochondrial clades that are geographically restricted to single lakes despite the interconnectivity of the lake systems. Our study, based on coalescent simulations and population genetic analyses, indicates that unidirectional hybridization allows gene flow across the nuclear genome, but prevents the introgression of mitochondria into downstream populations. We suggest that hybridization and introgression between young lineages is a significant evolutionary force in freshwater plankton.
Collapse
Affiliation(s)
- James J Vaillant
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, N9B 3P4, Canada
| | | | | | | |
Collapse
|
43
|
Dunz AR, Schliewen UK. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Mol Phylogenet Evol 2013; 68:64-80. [DOI: 10.1016/j.ympev.2013.03.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022]
|
44
|
Firmat C, Alibert P, Losseau M, Baroiller JF, Schliewen UK. Successive invasion-mediated interspecific hybridizations and population structure in the endangered cichlid Oreochromis mossambicus. PLoS One 2013; 8:e63880. [PMID: 23671704 PMCID: PMC3650077 DOI: 10.1371/journal.pone.0063880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/08/2013] [Indexed: 01/09/2023] Open
Abstract
Hybridization between invasive and native species accounts among the major and pernicious threats to biodiversity. The Mozambique tilapia Oreochromis mossambicus, a widely used freshwater aquaculture species, is especially imperiled by this phenomenon since it is recognized by the IUCN as an endangered taxon due to genetic admixture with O. niloticus an invasive congeneric species. The Lower Limpopo and the intermittent Changane River (Mozambique) drain large wetlands of potentially great importance for conservation of O. mossambicus, but their populations have remained unstudied until today. Therefore we aimed (1) to estimate the autochthonous diversity and population structure among genetically pure O. mossambicus populations to provide a baseline for the conservation genetics of this endangered species, (2) to quantify and describe genetic variation of the invasive populations and investigate the most likely factors influencing their spread, (3) to identify O. mossambicus populations unaffected by hybridization. Bayesian assignment tests based on 423 AFLP loci and the distribution of 36 species-specific mitochondrial haplotypes both indicate a low frequency of invasive and hybrid genotypes throughout the system, but nevertheless reveal evidence for limited expansion of two alien species (O. niloticus and O. andersonii) and their hybrids in the Lower Limpopo. O. mossambicus populations with no traces of hybridization are identified. They exhibit a significant genetic structure. This contrasts with previously published estimates and provides rather promising auspices for the conservation of O. mossambicus. Especially, parts of the Upper Changane drainage and surrounding wetlands are identified as refugial zones for O. mossambicus populations. They should therefore receive high conservation priority and could represent valuable candidates for the development of aquaculture strains based on local genetic resources.
Collapse
Affiliation(s)
- Cyril Firmat
- UMR CNRS 6282 Biogéosciences - Université de Bourgogne, Dijon, France.
| | | | | | | | | |
Collapse
|
45
|
Martin CH. STRONG ASSORTATIVE MATING BY DIET, COLOR, SIZE, AND MORPHOLOGY BUT LIMITED PROGRESS TOWARD SYMPATRIC SPECIATION IN A CLASSIC EXAMPLE: CAMEROON CRATER LAKE CICHLIDS. Evolution 2013; 67:2114-23. [DOI: 10.1111/evo.12090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher H. Martin
- Department of Evolution and Ecology and Center for Population Biology; University of California; Davis California 95616
| |
Collapse
|
46
|
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D. Hybridization and speciation. J Evol Biol 2013; 26:229-46. [DOI: 10.1111/j.1420-9101.2012.02599.x] [Citation(s) in RCA: 1370] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/25/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022]
|
47
|
Schwarzer J, Swartz ER, Vreven E, Snoeks J, Cotterill FPD, Misof B, Schliewen UK. Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proc Biol Sci 2012; 279:4389-98. [PMID: 22951733 DOI: 10.1098/rspb.2012.1667] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The megadiverse haplochromine cichlid radiations of the East African lakes, famous examples of explosive speciation and adaptive radiation, are according to recent studies, introgressed by different riverine lineages. This study is based on the first comprehensive mitochondrial and nuclear DNA dataset from extensive sampling of riverine haplochromine cichlids. It includes species from the lower River Congo and Angolan (River Kwanza) drainages. Reconstruction of phylogenetic hypotheses revealed the paradox of clearly discordant phylogenetic signals. Closely related mtDNA haplotypes are distributed thousands of kilometres apart and across major African watersheds, whereas some neighbouring species carry drastically divergent mtDNA haplotypes. At shallow and deep phylogenetic layers, strong signals of hybridization are attributed to the complex Late Miocene/Early Pliocene palaeohistory of African rivers. Hybridization of multiple lineages across changing watersheds shaped each of the major haplochromine radiations in lakes Tanganyika, Victoria, Malawi and the Kalahari Palaeolakes, as well as a miniature species flock in the Congo basin (River Fwa). On the basis of our results, introgression occurred not only on a spatially restricted scale, but massively over almost the whole range of the haplochromine distribution. This provides an alternative view on the origin and exceptional high diversity of this enigmatic vertebrate group.
Collapse
Affiliation(s)
- Julia Schwarzer
- Bavarian State Collection of Zoology, Münchhausenstrasse 21, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Elmer KR, Lehtonen TK, Fan S, Meyer A. CRATER LAKE COLONIZATION BY NEOTROPICAL CICHLID FISHES. Evolution 2012; 67:281-8. [DOI: 10.1111/j.1558-5646.2012.01755.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Martin CH. Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: cameroon crater lake cichlids. Am Nat 2012; 180:E90-E109. [PMID: 22976018 DOI: 10.1086/667586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent documentation of a few compelling examples of sympatric speciation led to a proliferation of theoretical models. Unfortunately, plausible examples from nature have rarely been used to test model predictions, such as the initial presence of strong disruptive selection. Here I estimated the form and strength of selection in two classic examples of sympatric speciation: radiations of Cameroon cichlids restricted to Lakes Barombi Mbo and Ejagham. I measured five functional traits and relative growth rates in over 500 individuals within incipient species complexes from each lake. Disruptive selection was prevalent in both groups on single and multivariate trait axes but weak relative to stabilizing selection on other traits and most published estimates of disruptive selection. Furthermore, despite genetic structure, assortative mating, and bimodal species-diagnostic coloration, trait distributions were unimodal in both species complexes, indicating the earliest stages of speciation. Long waiting times or incomplete sympatric speciation may result when disruptive selection is initially weak. Alternatively, I present evidence of additional constraints in both species complexes, including weak linkage between coloration and morphology, reduced morphological variance aligned with nonlinear selection surfaces, and minimal ecological divergence. While other species within these radiations show complete phenotypic separation, morphological and ecological divergence in these species complexes may be slow or incomplete outside optimal parameter ranges, in contrast to rapid divergence of their sexual coloration.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, California 95616, USA.
| |
Collapse
|
50
|
Culumber ZW, Shepard DB, Coleman SW, Rosenthal GG, Tobler M. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus). J Evol Biol 2012; 25:1800-14. [PMID: 22827312 DOI: 10.1111/j.1420-9101.2012.02562.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local adaptation is often invoked to explain hybrid zone structure, but empirical evidence of this is generally rare. Hybrid zones between two poeciliid fishes, Xiphophorus birchmanni and X. malinche, occur in multiple tributaries with independent replication of upstream-to-downstream gradients in morphology and allele frequencies. Ecological niche modelling revealed that temperature is a central predictive factor in the spatial distribution of pure parental species and their hybrids and explains spatial and temporal variation in the frequency of neutral genetic markers in hybrid populations. Among populations of parentals and hybrids, both thermal tolerance and heat-shock protein expression vary strongly, indicating that spatial and temporal structure is likely driven by adaptation to local thermal environments. Therefore, hybrid zone structure is strongly influenced by interspecific differences in physiological mechanisms for coping with the thermal environment.
Collapse
Affiliation(s)
- Z W Culumber
- Department of Biology, Texas A&M University, TAMU, College Station, TX 77840, USA.
| | | | | | | | | |
Collapse
|