1
|
Menici V, Scalise R, Fasano A, Falotico E, Dubbini N, Prencipe G, Sgandurra G, Filogna S, Battini R. Assessment of Postural Control in Children with Movement Disorders by Means of a New Technological Tool: A Pilot Study. Bioengineering (Basel) 2024; 11:176. [PMID: 38391662 PMCID: PMC10886107 DOI: 10.3390/bioengineering11020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Considering the variability and heterogeneity of motor impairment in children with Movement Disorders (MDs), the assessment of postural control becomes essential. For its assessment, only a few tools objectively quantify and recognize the difference among children with MDs. In this study, we use the Virtual Reality Rehabilitation System (VRRS) for assessing the postural control in children with MD. Furthermore, 16 children (mean age 10.68 ± 3.62 years, range 4.29-18.22 years) were tested with VRRS by using a stabilometric balance platform. Postural parameters, related to the movements of the Centre of Pressure (COP), were collected and analyzed. Three different MD groups were identified according to the prevalent MD: dystonia, chorea and chorea-dystonia. Statistical analyses tested the differences among MD groups in the VRRS-derived COP variables. The mean distance, root mean square, excursion, velocity and frequency values of the dystonia group showed significant differences (p < 0.05) between the chorea group and the chorea-dystonia group. Technology provides quantitative data to support clinical assessment: in this case, the VRRS detected differences among the MD patterns, identifying specific group features. This tool could be useful also for monitoring the longitudinal trajectories and detecting post-treatment changes.
Collapse
Affiliation(s)
- Valentina Menici
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Ph.D. Programme in Clinical and Translational Sciences, University of Pisa, 56126 Pisa, Italy
| | - Roberta Scalise
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Alessio Fasano
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | | | - Giuseppe Prencipe
- Department of Computer Science, University of Pisa, 56127 Pisa, Italy
| | - Giuseppina Sgandurra
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Filogna
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Wang S, Hu X, Rivera-Lillo G. Editorial: The effect of musculoskeletal conditions on balance control. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1288322. [PMID: 37841065 PMCID: PMC10569292 DOI: 10.3389/fresc.2023.1288322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Shuaijie Wang
- Department of Physical Therapy, University of Illinois, Chicago, IL, United States
| | - Xinyao Hu
- Institute of Human Factor and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Gonzalo Rivera-Lillo
- Physical Therapy Department, University of Chile, Santiago, Chile
- Neuroscience Department, University of Chile, Santiago, Chile
- Research and Develop Unit, Los Coihues Clinic, Santiago, Chile
| |
Collapse
|
3
|
Rahmati Z, Behzadipour S, Taghizadeh G. Margins of postural stability in Parkinson's disease: an application of control theory. Front Bioeng Biotechnol 2023; 11:1226876. [PMID: 37781528 PMCID: PMC10539597 DOI: 10.3389/fbioe.2023.1226876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Postural instability is a restrictive feature in Parkinson's disease (PD), usually assessed by clinical or laboratory tests. However, the exact quantification of postural stability, using stability theorems that take into account human dynamics, is still lacking. We investigated the feasibility of control theory and the Nyquist stability criterion-gain margin (GM) and phase margin (PM)-in discriminating postural instability in PD, as well as the effects of a balance-training program. Methods: Center-of-pressure (COP) data of 40 PD patients before and after a 4-week balance-training program, and 20 healthy control subjects (HCs) (Study1) as well as COP data of 20 other PD patients at four time points during a 6-week balance-training program (Study2), collected in two earlier studies, were used. COP was recorded in four tasks, two on a rigid surface and two on foam, both with eyes open and eyes closed. A postural control model (an inverted pendulum with a Proportional-integral-derivative (PID) controller and time delay) was fitted to the COP data to subject-specifically identify the model parameters thereby calculating |GM| and PM for each subject in each task. Results: PD patients had a smaller margin of stability (|GM| and PM) compared with HCs. Particularly, patients, unlike HCs, showed a drastic drop in PM on foam. Clinical outcomes and margins of stability improved in patients after balance training. |GM| improved early in week 4, followed by a plateau during the rest of the training. In contrast, PM improved late (week 6) in a relatively continuous-progression form. Conclusion: Using fundamental stability theorems is a promising technique for the standardized quantification of postural stability in various tasks.
Collapse
Affiliation(s)
- Zahra Rahmati
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Saeed Behzadipour
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
- Djawad Movafaghian Research Center in Neurorehab Technologies, Sharif University of Technology, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shanbhag J, Wolf A, Wechsler I, Fleischmann S, Winkler J, Leyendecker S, Eskofier BM, Koelewijn AD, Wartzack S, Miehling J. Methods for integrating postural control into biomechanical human simulations: a systematic review. J Neuroeng Rehabil 2023; 20:111. [PMID: 37605197 PMCID: PMC10440942 DOI: 10.1186/s12984-023-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding of the human body's internal processes to maintain balance is fundamental to simulate postural control behaviour. The body uses multiple sensory systems' information to obtain a reliable estimate about the current body state. This information is used to control the reactive behaviour to maintain balance. To predict a certain motion behaviour with knowledge of the muscle forces, forward dynamic simulations of biomechanical human models can be utilized. We aim to use predictive postural control simulations to give therapy recommendations to patients suffering from postural disorders in the future. It is important to know which types of modelling approaches already exist to apply such predictive forward dynamic simulations. Current literature provides different models that aim to simulate human postural control. We conducted a systematic literature research to identify the different approaches of postural control models. The different approaches are discussed regarding their applied biomechanical models, sensory representation, sensory integration, and control methods in standing and gait simulations. We searched on Scopus, Web of Science and PubMed using a search string, scanned 1253 records, and found 102 studies to be eligible for inclusion. The included studies use different ways for sensory representation and integration, although underlying neural processes still remain unclear. We found that for postural control optimal control methods like linear quadratic regulators and model predictive control methods are used less, when models' level of details is increasing, and nonlinearities become more important. Considering musculoskeletal models, reflex-based and PD controllers are mainly applied and show promising results, as they aim to create human-like motion behaviour considering physiological processes.
Collapse
Affiliation(s)
- Julian Shanbhag
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Alexander Wolf
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Wechsler
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie Fleischmann
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrid Leyendecker
- Institute of Applied Dynamics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bjoern M Eskofier
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne D Koelewijn
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandro Wartzack
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Miehling
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Shen K, Li G, Chemori A, Hayashibe M. Self-organizing neural network for reproducing human postural mode alternation through deep reinforcement learning. Sci Rep 2023; 13:8966. [PMID: 37268710 PMCID: PMC10238493 DOI: 10.1038/s41598-023-35886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
A self-organized phenomenon in postural coordination is essential for understanding the auto-switching mechanism of in-phase and anti-phase postural coordination modes during standing and related supra-postural activities. Previously, a model-based approach was proposed to reproduce such self-organized phenomenon. However, if we set this problem including the process of how we establish the internal predictive model in our central nervous system, the learning process is critical to be considered for establishing a neural network for managing adaptive postural control. Particularly when body characteristics may change due to growth or aging or are initially unknown for infants, a learning capability can improve the hyper-adaptivity of human motor control for maintaining postural stability and saving energy in daily living. This study attempted to generate a self-organizing neural network that can adaptively coordinate the postural mode without assuming a prior body model regarding body dynamics and kinematics. Postural coordination modes are reproduced in head-target tracking tasks through a deep reinforcement learning algorithm. The transitions between the postural coordination types, i.e. in-phase and anti-phase coordination modes, could be reproduced by changing the task condition of the head tracking target, by changing the frequencies of the moving target. These modes are considered emergent phenomena existing in human head tracking tasks. Various evaluation indices, such as correlation, and relative phase of hip and ankle joint, are analyzed to verify the self-organizing neural network performance to produce the postural coordination transition between the in-phase and anti-phase modes. In addition, after learning, the neural network can also adapt to continuous task condition changes and even to unlearned body mass conditions keeping consistent in-phase and anti-phase mode alternation.
Collapse
Affiliation(s)
- Keli Shen
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Guanda Li
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ahmed Chemori
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Mitsuhiro Hayashibe
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
6
|
Noamani A, Vette AH, Rouhani H. Nonlinear Response of Human Trunk Musculature Explains Neuromuscular Stabilization Mechanisms in Sitting Posture. J Neural Eng 2022; 19. [PMID: 35378525 DOI: 10.1088/1741-2552/ac63ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Determining the roles of underlying mechanisms involved in stabilizing the human trunk during sitting is a fundamental challenge in human motor control. However, distinguishing their roles requires understanding their complex interrelations and describing them with physiologically meaningful neuromechanical parameters. The literature has shown that such mechanistic understanding contributes to diagnosing and improving impaired balance as well as developing assistive technologies for restoring trunk stability. This study aimed to provide a comprehensive characterization of the underlying neuromuscular stabilization mechanisms involved in human sitting. APPROACH This study characterized passive and active stabilization mechanisms involved in seated stability by identifying a nonlinear neuromechanical physiologically-meaningful model in ten able-bodied individuals during perturbed sitting via an adaptive unscented Kalman filter to account for the nonlinear time-varying process and measurement noises. MAIN RESULTS We observed that the passive mechanism provided instant resistance against gravitational disturbances, whereas the active mechanism provided delayed complementary phasic response against external disturbances by activating appropriate trunk muscles while showing non-isometric behavior. The model predicted the trunk sway behavior during perturbed sitting with high accuracy and correlation (average: 0.0007 [rad2] and 86.77%). This allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting. SIGNIFICANCE Our characterization approach accounts for the inherently nonlinear behavior of the neuromuscular mechanisms and physiological uncertainties, while allowing for real-time tracking and correction of parameters' variations due to external disturbances and muscle fatigue. The outcome of our research, for the first time, (1) allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting; (2) enables objective evaluation and targeted rehabilitative interventions for impaired balance; facilitate bio-inspired designs of assistive technologies, and (3) opens new horizons in mathematical identification of neuromechanical mechanisms employed in the stable control of human body postures and motions.
Collapse
Affiliation(s)
- Alireza Noamani
- Mechanical Engineering, University of Alberta, 4-09 Mechanical Engineering building , University of Alberta, 9211-116 Street NW, Edmonton, Edmonton, Alberta, T6G 2G8, CANADA
| | - Albert H Vette
- Kempten University of Applied Sciences Faculty of Electrical Engineering, Bahnhofstraße 61, Kempten, Bayern, 87435, GERMANY
| | - Hossein Rouhani
- Mechanical Engineering, University of Alberta, 10-368 Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, CANADA
| |
Collapse
|
7
|
Bayón C, Delgado-Oleas G, Avellar L, Bentivoglio F, Di Tommaso F, Tagliamonte NL, Rocon E, van Asseldonk EHF. Development and Evaluation of BenchBalance: A System for Benchmarking Balance Capabilities of Wearable Robots and Their Users. SENSORS (BASEL, SWITZERLAND) 2021; 22:119. [PMID: 35009661 PMCID: PMC8747156 DOI: 10.3390/s22010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Recent advances in the control of overground exoskeletons are being centered on improving balance support and decreasing the reliance on crutches. However, appropriate methods to quantify the stability of these exoskeletons (and their users) are still under development. A reliable and reproducible balance assessment is critical to enrich exoskeletons' performance and their interaction with humans. In this work, we present the BenchBalance system, which is a benchmarking solution to conduct reproducible balance assessments of exoskeletons and their users. Integrating two key elements, i.e., a hand-held perturbator and a smart garment, BenchBalance is a portable and low-cost system that provides a quantitative assessment related to the reaction and capacity of wearable exoskeletons and their users to respond to controlled external perturbations. A software interface is used to guide the experimenter throughout a predefined protocol of measurable perturbations, taking into account antero-posterior and mediolateral responses. In total, the protocol is composed of sixteen perturbation conditions, which vary in magnitude and location while still controlling their orientation. The data acquired by the interface are classified and saved for a subsequent analysis based on synthetic metrics. In this paper, we present a proof of principle of the BenchBalance system with a healthy user in two scenarios: subject not wearing and subject wearing the H2 lower-limb exoskeleton. After a brief training period, the experimenter was able to provide the manual perturbations of the protocol in a consistent and reproducible way. The balance metrics defined within the BenchBalance framework were able to detect differences in performance depending on the perturbation magnitude, location, and the presence or not of the exoskeleton. The BenchBalance system will be integrated at EUROBENCH facilities to benchmark the balance capabilities of wearable exoskeletons and their users.
Collapse
Affiliation(s)
- Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands;
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | - Gabriel Delgado-Oleas
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | - Leticia Avellar
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | | | - Francesco Di Tommaso
- Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (F.D.T.); (N.L.T.)
| | - Nevio L. Tagliamonte
- Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (F.D.T.); (N.L.T.)
- Fondazione Santa Lucia, 00179 Rome, Italy
| | - Eduardo Rocon
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | | |
Collapse
|
8
|
Paterna M, Dvir Z, De Benedictis C, Maffiodo D, Franco W, Ferraresi C, Roatta S. Center of pressure displacement due to graded controlled perturbations to the trunk in standing subjects: the force-impulse paradigm. Eur J Appl Physiol 2021; 122:425-435. [PMID: 34797437 DOI: 10.1007/s00421-021-04844-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Many studies have investigated postural reactions (PR) to body-delivered perturbations. However, attention has been focused on the descriptive variables of the PR rather than on the characterization of the perturbation. This study aimed to test the hypothesis that the impulse rather than the force magnitude of the perturbation mostly affects the PR in terms of displacement of the center of foot pressure (ΔCoP). METHODS Fourteen healthy young adults (7 males and 7 females) received 2 series of 20 perturbations, delivered to the back in the anterior direction, at mid-scapular level, while standing on a force platform. In one series, the perturbations had the same force magnitude (40 N) but different impulse (range: 2-10 Ns). In the other series, the perturbations had the same impulse (5 Ns) but different force magnitude (20-100 N). A simple model of postural control restricted to the sagittal plane was also developed. RESULTS The results showed that ΔCoP and impulse were highly correlated (on average: r = 0.96), while the correlation ΔCoP-force magnitude was poor (r = 0.48) and not statistically significant in most subjects. The normalized response, ΔCoPn = ΔCoP/I, was independent of the perturbation magnitude in a wide range of force amplitude and impulse and exhibited good repeatability across different sets of stimuli (on average: ICC = 0.88). These results were confirmed by simulations. CONCLUSION The present findings support the concept that the magnitude of the applied force alone is a poor descriptor of trunk-delivered perturbations and suggest that the impulse should be considered instead.
Collapse
Affiliation(s)
- Maria Paterna
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Zeevi Dvir
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carlo De Benedictis
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniela Maffiodo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Walter Franco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Silvestro Roatta
- Department of Neuroscience, University of Torino, c.so Raffaello 30, 10125, Turin, Italy.
| |
Collapse
|
9
|
Wang H, van den Bogert AJ. Identification of Postural Controllers in Human Standing Balance. J Biomech Eng 2021; 143:041001. [PMID: 33210140 DOI: 10.1115/1.4049159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/08/2022]
Abstract
Standing balance is a simple motion task for healthy humans but the actions of the central nervous system (CNS) have not been described by generalized and sufficiently sophisticated control laws. While system identification approaches have been used to extracted models of the CNS, they either focus on short balance motions, leading to task-specific control laws, or assume that the standing balance system is linear. To obtain comprehensive control laws for human standing balance, complex balance motions, long duration tests, and nonlinear controller models are all needed. In this paper, we demonstrate that trajectory optimization with the direct collocation method can achieve these goals to identify complex CNS models for the human standing balance task. We first examined this identification method using synthetic motion data and showed that correct control parameters can be extracted. Then, six types of controllers, from simple linear to complex nonlinear, were identified from 100 s of motion data from randomly perturbed standing. Results showed that multiple time-delay paths and nonlinear properties are both needed in order to fully explain human feedback control of standing balance.
Collapse
Affiliation(s)
- Huawei Wang
- Human Motion & Control Laboratory, Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115
| | - Antonie J van den Bogert
- Human Motion & Control Laboratory, Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
10
|
Goodworth A, Saavedra S. Postural mechanisms in moderate-to-severe cerebral palsy. J Neurophysiol 2021; 125:1698-1719. [PMID: 33788612 DOI: 10.1152/jn.00549.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People with moderate-to-severe cerebral palsy (CP) have the greatest need for postural control research yet are usually excluded from research due to deficits in sitting ability. We use a support system that allows us to quantify and model postural mechanisms in nonambulatory children with CP. A continuous external bench tilt stimulus was used to evoke trunk postural responses in seven sitting children with CP (ages 2.5 to 13 yr) in several test sessions. Eight healthy adults were also included. Postural sway was analyzed with root mean square (RMS) sway and RMS sway velocity, along with frequency response functions (FRF, gain and phase) and coherence functions across two different stimulus amplitudes. A feedback model (including sensorimotor noise, passive, reflexive, and sensory integration mechanisms) was developed to hypothesize how postural control mechanisms are organized and function. Experimental results showed large RMS sway, FRF gains, and variability compared with adults. Modeling suggested that many subjects with CP adopted "simple" control with major contributions from a passive and reflexive mechanism and only a small contribution from active sensory integration. In contrast, mature trunk postural control includes major contributions from sensory integration and sensory reweighting. Relative to their body size, subjects with CP showed significantly lower damping, three to five times larger corrective torque, and much higher sensorimotor noise compared with the healthy mature system. Results are the first characterization of trunk postural responses and the first attempt at system identification in moderate-to-severe CP, an important step toward developing and evaluating more targeted interventions.NEW & NOTEWORTHY Cerebral palsy (CP) is the most common cause of motor disability in children. People with moderate-to-severe CP are typically nonambulatory and have major impairments in trunk postural control. We present the first systems identification study to investigate postural responses to external stimulus in this population and hypothesize at how the atypical postural control system functions with use of a feedback model. People with moderate-to-severe CP may use a simple control system with significant sensorimotor noise.
Collapse
Affiliation(s)
- Adam Goodworth
- Department of Kinesiology, Westmont University, Santa Barbara, California.,Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| | - Sandra Saavedra
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| |
Collapse
|
11
|
Porciuncula F, Wasserman P, Marder KS, Rao AK. Quantifying Postural Control in Premanifest and Manifest Huntington Disease Using Wearable Sensors. Neurorehabil Neural Repair 2020; 34:771-783. [PMID: 32672492 DOI: 10.1177/1545968320939560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Impairments in postural control in Huntington disease (HD) have important consequences for daily functioning. This observational study systematically examined baseline postural control and the effect of sensory attenuation and sensory enhancement on postural control across the spectrum of HD. Methods. Participants (n = 39) included healthy controls and individuals in premanifest (pHD) and manifest stages (mHD) of HD. Using wearable sensors, postural control was assessed according to (1) postural set (sit vs stand), (2) sensory attenuation using clinical test of sensory integration, and (3) sensory enhancement with gaze fixation. Outcomes included sway smoothness, amplitude, and frequency. Results. Based on postural set, pHD reduced postural sway in sitting relative to standing, whereas mHD had pronounced sway in standing and sitting, highlighting a baseline postural deficit. During sensory attenuation, postural control in pHD deteriorated relative to controls when proprioceptive demands were high (eyes closed on foam), whereas mHD had significant deterioration of postural control when proprioception was attenuated (eyes open and closed on foam). Finally, gaze fixation improved sway smoothness, amplitude, and frequency in pHD; however, no benefit was observed in mHD. Conclusions. Systematic examination of postural control revealed a fundamental postural deficit in mHD, which further deteriorates when proprioception is challenged. Meanwhile, postural deficits in pHD are detectable when proprioceptive challenge is high. Sensory enhancing strategies using gaze fixation to benefit posture may be useful when introduced well before motor diagnosis. These findings encourage further examination of wearable sensors as part of routine clinical assessments in HD.
Collapse
Affiliation(s)
- Franchino Porciuncula
- Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Paula Wasserman
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Karen S Marder
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Psychiatry, G.H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ashwini K Rao
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Rehabilitation and Regenerative Medicine (Program in Physical Therapy), G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Wang H, van den Bogert AJ. Identification of the human postural control system through stochastic trajectory optimization. J Neurosci Methods 2020; 334:108580. [PMID: 31926202 DOI: 10.1016/j.jneumeth.2020.108580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/23/2019] [Accepted: 01/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND System identification can be used to obtain a model of the human postural control system from experimental data in which subjects are mechanically perturbed while standing. However, unstable controllers were sometimes found, which obviously do not explain human balance and cannot be applied in control of humanoid robots. Eigenvalue constraints can be used to avoid unstable controllers. However, this method is hard to apply to highly nonlinear systems and large identification datasets. NEW METHOD To address these issues, we perform the system identification with a stochastic system model where process noise is modeled. The parameter identification is performed by simultaneous trajectory optimizations on multiple episodes that have different instances of the process noise. RESULTS The stochastic and deterministic identification methods were tested on three types of controllers, including both linear and nonlinear controller architectures. Stochastic identification tracked the experimental data nearly as well as the deterministic identification, while avoiding the unstable controllers that were found with a deterministic system model. COMPARISON WITH EXISTING METHOD Comparing to eigenvalue constraints, stochastic identification has wider application potentials. Since linearization is not needed in the stochastic identification, it is applicable to highly nonlinear systems, and it can be applied on large data-sets. CONCLUSIONS Stochastic identification can be used to avoid unstable controllers in human postural control identification.
Collapse
Affiliation(s)
- Huawei Wang
- Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
| | - Antonie J van den Bogert
- Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
| |
Collapse
|
13
|
Schut IM, Pasma JH, Veij Mestdagh JCD, Kooij HVD, Schouten AC. Effect of Amplitude and Number of Repetitions of the Perturbation on System Identification of Human Balance Control During Stance. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2336-2343. [PMID: 31545739 DOI: 10.1109/tnsre.2019.2943206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To unravel the underlying mechanisms of human balance control, system identification techniques are applied in combination with dedicated perturbations, like support surface translations. However, it remains unclear what the optimal amplitude and number of repetitions of the perturbation signal are. In this study we investigated the effect of the amplitude and number of repetitions on the identification of the neuromuscular controller (NMC). Healthy participants were asked to stand on a treadmill while small continuous support surface translations were applied in the form of a periodic multisine signal. The perturbation amplitude varied over seven conditions between 0.02 and 0.20 m peak-to-peak (ptp), where 6.5 repetitions of the multisine signal were applied for each amplitude, resulting in a trial length of 130 sec. For one of the conditions, 24 repetitions were recorded. The recorded external perturbation torque, body sway and ankle torque were used to calculate both the relative variability of the frequency response function (FRF) of the NMC, i.e., a measure for precision, depending on the noise-to-signal ratio (NSR) and the nonlinear distortions. Results showed that the perturbation amplitude should be minimally 0.05 m ptp, but higher perturbation amplitudes are preferred since they resulted in a higher precision, due to a lower noise-to-signal ratio (NSR). There is, however, no need to further increase the perturbation amplitude than 0.14 m ptp. Increasing the number of repetitions improves the precision, but the number of repetitions minimally required, depends on the perturbation amplitude and the preferred precision. Nonlinear contributions are low and, for the ankle torque, constant over perturbation amplitude.
Collapse
|
14
|
Kaminishi K, Jiang P, Chiba R, Takakusaki K, Ota J. Postural control of a musculoskeletal model against multidirectional support surface translations. PLoS One 2019; 14:e0212613. [PMID: 30840650 PMCID: PMC6402659 DOI: 10.1371/journal.pone.0212613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 02/06/2019] [Indexed: 11/19/2022] Open
Abstract
The human body is a complex system driven by hundreds of muscles, and its control mechanisms are not sufficiently understood. To understand the mechanisms of human postural control, neural controller models have been proposed by different research groups, including our feed-forward and feedback control model. However, these models have been evaluated under forward and backward perturbations, at most. Because a human body experiences perturbations from many different directions in daily life, neural controller models should be evaluated in response to multidirectional perturbations, including in the forward/backward, lateral, and diagonal directions. The objective of this study was to investigate the validity of an NC model with FF and FB control under multidirectional perturbations. We developed a musculoskeletal model with 70 muscles and 15 degrees of freedom of joints, positioned it in a standing posture by using the neural controller model, and translated its support surface in multiple directions as perturbations. We successfully determined the parameters of the neural controller model required to maintain the stance of the musculoskeletal model for each perturbation direction. The trends in muscle response magnitudes and the magnitude of passive ankle stiffness were consistent with the results of experimental studies. We conclude that the neural controller model can adapt to multidirectional perturbations by generating suitable muscle activations. We anticipate that the neural controller model could be applied to the study of the control mechanisms of patients with torso tilt and diagnosis of the change in control mechanisms from patients' behaviors.
Collapse
Affiliation(s)
- Kohei Kaminishi
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Ping Jiang
- Research into Artifacts, Center for Engineering (RACE), The University of Tokyo, Kashiwa, Japan
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Jun Ota
- Research into Artifacts, Center for Engineering (RACE), The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
15
|
Parrell B, Lammert AC, Ciccarelli G, Quatieri TF. Current models of speech motor control: A control-theoretic overview of architectures and properties. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1456. [PMID: 31067944 DOI: 10.1121/1.5092807] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
This paper reviews the current state of several formal models of speech motor control, with particular focus on the low-level control of the speech articulators. Further development of speech motor control models may be aided by a comparison of model attributes. The review builds an understanding of existing models from first principles, before moving into a discussion of several models, showing how each is constructed out of the same basic domain-general ideas and components-e.g., generalized feedforward, feedback, and model predictive components. This approach allows for direct comparisons to be made in terms of where the models differ, and their points of agreement. Substantial differences among models can be observed in their use of feedforward control, process of estimating system state, and method of incorporating feedback signals into control. However, many commonalities exist among the models in terms of their reliance on higher-level motor planning, use of feedback signals, lack of time-variant adaptation, and focus on kinematic aspects of control and biomechanics. Ongoing research bridging hybrid feedforward/feedback pathways with forward dynamic control, as well as feedback/internal model-based state estimation, is discussed.
Collapse
Affiliation(s)
- Benjamin Parrell
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Adam C Lammert
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Gregory Ciccarelli
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Thomas F Quatieri
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| |
Collapse
|
16
|
Peterka RJ, Murchison CF, Parrington L, Fino PC, King LA. Implementation of a Central Sensorimotor Integration Test for Characterization of Human Balance Control During Stance. Front Neurol 2018; 9:1045. [PMID: 30619027 PMCID: PMC6300494 DOI: 10.3389/fneur.2018.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Abstract
Balance during stance is regulated by active control mechanisms that continuously estimate body motion, via a "sensory integration" mechanism, and generate corrective actions, via a "sensory-to-motor transformation" mechanism. The balance control system can be modeled as a closed-loop feedback control system for which appropriate system identification methods are available to separately quantify the sensory integration and sensory-to-motor components of the system. A detailed, functionally meaningful characterization of balance control mechanisms has potential to improve clinical assessment and to provide useful tools for answering clinical research questions. However, many researchers and clinicians do not have the background to develop systems and methods appropriate for performing identification of balance control mechanisms. The purpose of this report is to provide detailed information on how to perform what we refer to as "central sensorimotor integration" (CSMI) tests on a commercially available balance test device (SMART EquiTest CRS, Natus Medical Inc, Seattle WA) and then to appropriately analyze and interpret results obtained from these tests. We describe methods to (1) generate pseudorandom stimuli that apply cyclically-repeated rotations of the stance surface and/or visual surround (2) measure and calibrate center-of-mass (CoM) body sway, (3) calculate frequency response functions (FRFs) that quantify the dynamic characteristics of stimulus-evoked CoM sway, (4) estimate balance control parameters that quantify sensory integration by measuring the relative contribution of different sensory systems to balance control (i.e., sensory weights), and (5) estimate balance control parameters that quantify sensory-to-motor transformation properties (i.e., feedback time delay and neural controller stiffness and damping parameters). Additionally, we present CSMI test results from 40 subjects (age range 21-59 years) with normal sensory function, 2 subjects with results illustrating deviations from normal balance function, and we summarize results from previous studies in subjects with vestibular deficits. A bootstrap analysis was used to characterize confidence limits on parameters from CSMI tests and to determine how test duration affected the confidence with which parameters can be measured. Finally, example results are presented that illustrate how various sensory and central balance deficits are revealed by CSMI testing.
Collapse
Affiliation(s)
- Robert J. Peterka
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| | - Charles F. Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Peter C. Fino
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Laurie A. King
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
17
|
Goodworth AD, Barrett C, Rylander J, Garner B. Specificity and variability of trunk kinematics on a mechanical horse. Hum Mov Sci 2018; 63:82-95. [PMID: 30503985 DOI: 10.1016/j.humov.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
As perturbation training is gaining popularity, it is important to better understand postural control during complex three-dimensional stimuli. One clinically relevant and commonly used three-dimensional stimulus is found in hippotherapy and simulated hippotherapy on a mechanical horse. We tested nine healthy participants on a horse simulator, measured head and trunk kinematics, and characterized data in time (root-mean-square and variability) and frequency (amplitude spectra, gains, and phases) domains. We addressed three fundamental questions: 1) What is the specificity of postural responses to the simulator? 2) Which plane of motion is associated with the most and least variability (repeatable movements across repeated stimuli and across participants)? 3) To what extent are postural responses influenced by different degrees of stability (addition of pelvis straps and trunk support)? We found head and trunk responses were highly specific to the three-dimensional simulator perturbation direction and frequency. Frontal plane responses had the least variability across repetitions and participants whereas transverse motion was most variable. Head motion was more variable than the trunk at low frequencies and exhibited a marked decrease in tilt in the sagittal plane. Finally, the inclusion of pelvis straps had minimal effect on kinematics at low frequencies but altered higher frequencies; whereas added trunk support reduced head and trunk responses to perturbations and altered timing characteristics in all three planes. In conclusion, the present study suggests that frontal plane motion was under a high level of control, and results support the idea that specific head and trunk postural responses can be elicited from a complex three-dimensional stimuli, such as those found in hippotherapy. Researchers and clinicians can use results from this study to help interpret variability, implement mechanical adjustments to stability, and assess responses in pathological populations.
Collapse
Affiliation(s)
- Adam D Goodworth
- University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States.
| | - Cody Barrett
- Baylor University, One Bear Place #97356, Waco, TX 76798, United States
| | - Jonathan Rylander
- Baylor University, One Bear Place #97356, Waco, TX 76798, United States
| | - Brian Garner
- Baylor University, One Bear Place #97356, Waco, TX 76798, United States
| |
Collapse
|
18
|
Pasma JH, Assländer L, van Kordelaar J, de Kam D, Mergner T, Schouten AC. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot. Front Comput Neurosci 2018; 12:13. [PMID: 29615886 PMCID: PMC5869934 DOI: 10.3389/fncom.2018.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.
Collapse
Affiliation(s)
- Jantsje H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Lorenz Assländer
- Department of Neurology, University Clinics Freiburg, Freiburg, Germany.,Sensorimotor Performance Lab, University of Konstanz, Konstanz, Germany
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thomas Mergner
- Department of Neurology, University Clinics Freiburg, Freiburg, Germany
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands
| |
Collapse
|
19
|
Filli L, Sutter T, Easthope CS, Killeen T, Meyer C, Reuter K, Lörincz L, Bolliger M, Weller M, Curt A, Straumann D, Linnebank M, Zörner B. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 2018; 8:4984. [PMID: 29563533 PMCID: PMC5862880 DOI: 10.1038/s41598-018-22676-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
Gait dysfunction is a common and relevant symptom in multiple sclerosis (MS). This study aimed to profile gait pathology in gait-impaired patients with MS using comprehensive 3D gait analysis and clinical walking tests. Thirty-seven patients with MS walked on the treadmill at their individual, sustainable speed while 20 healthy control subjects walked at all the different patient's paces, allowing for comparisons independent of walking velocity. Kinematic analysis revealed pronounced restrictions in knee and ankle joint excursion, increased gait variability and asymmetry along with impaired dynamic stability in patients. The most discriminative single gait parameter, differentiating patients from controls with an accuracy of 83.3% (χ2 test; p = 0.0001), was reduced knee range of motion. Based on hierarchical cluster and principal component analysis, three principal pathological gait patterns were identified: a spastic-paretic, an ataxia-like, and an unstable gait. Follow-up assessments after 1 year indicated deterioration of walking function, particularly in patients with spastic-paretic gait patterns. Our findings suggest that impaired knee/ankle control is common in patients with MS. Personalised gait profiles and clustering algorithms may be promising tools for stratifying patients and to inform patient-tailored exercise programs. Responsive, objective outcome measures are important for monitoring disease progression and treatment effects in MS trials.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| | - Tabea Sutter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Katja Reuter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, Helios-Klinik Hagen-Ambrock, /University Witten/Herdecke, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Björn Zörner
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
20
|
Goodworth AD, Tetreault K, Lanman J, Klidonas T, Kim S, Saavedra S. Sensorimotor control of the trunk in sitting sway referencing. J Neurophysiol 2018; 120:37-52. [PMID: 29488840 DOI: 10.1152/jn.00330.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a sway-referenced system for sitting to highlight the role of vestibular and visual contributions to trunk control. Motor control was investigated by measuring trunk kinematics in the frontal plane while manipulating visual availability and introducing a concurrent cognitive task. We examined motor learning on three timescales (within the same trial, minutes), within the same test session (1 h), and between sessions (1 wk). Posture sway was analyzed through time-based measures [root mean square (RMS) sway and RMS velocity], frequency-based measures (amplitude spectra), and parameterized feedback modeling. We found that posture differed in both magnitude and frequency distribution during sway referencing compared with quiet sitting. Modeling indicated that sway referencing caused greater uncertainty/noise in sensory feedback and motor outputs. Sway referencing was also associated with lower active stiffness and damping model parameters. The influence of vision and a cognitive task was more apparent during sway referencing compared with quiet sitting. Short-term learning was reflected by reduced RMS velocity in quiet sitting immediately following sway referencing. Longer term learning was evident from one week to the next, with a 23% decrease in RMS sway and 9% decrease in RMS velocity. These changes occurred predominantly during cognitive tests at lower frequencies and were associated with lower sensory noise and higher stiffness and integral gains in the model. With the findings taken together, the sitting sway-referenced test elicited neural changes consistent with optimal integration and sensory reweighting, similar to standing, and should be a valuable tool to closely examine sensorimotor control of the trunk. NEW & NOTEWORTHY We developed the first sway-referenced system for sitting to highlight the role of vestibular and visual contributions to trunk control. A parametric feedback model explained sensorimotor control and motor learning in the task with and between two test sessions. The sitting sway-referenced test elicited neural changes consistent with optimal integration and sensory reweighting, similar to standing, and should be a valuable tool to closely examine sensorimotor control of the trunk.
Collapse
Affiliation(s)
| | | | | | | | - Seyoung Kim
- Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | | |
Collapse
|
21
|
Identifying mechanisms of stance control: A single stimulus multiple output model-fit approach. J Neurosci Methods 2017; 296:44-56. [PMID: 29277721 DOI: 10.1016/j.jneumeth.2017.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Posture control models are instrumental to interpret experimental data and test hypotheses. However, as models have increased in complexity to include multi-segmental dynamics, discrepancy has arisen amongst researchers regarding the accuracy and limitations of identifying neural control parameters using a single stimulus. NEW METHOD The current study examines this topic using simulations with a parameterized model-fit approach. We first determine if the model-fit approach can identify parameters in the theoretical situation with no noise. Then, we measure variability and bias of parameter estimates when realistic noise is included. We also address how the accuracy is influenced by the frequency bandwidth of the stimulus, signal-to-noise of the data, and fitting procedures. RESULTS We found perfect identification of parameters in the theoretical model without noise. With realistic noise, bias errors were 4.4% and 7.6% for fits that included frequencies 0.02-1.2 Hz and 0.02-0.4 Hz, respectively. Fits between 0.02-1.2 Hz also had the lowest variability in parameter estimates compared to other bandwidths. Parameters with the lowest variability tended to have the largest influence on body sways. Results also demonstrated the importance of closely examining model fits because of limitations in fitting algorithms. COMPARISON WITH EXISTING METHOD The single-input model-fit approach may be a simpler and more practical method for identifying neural control mechanisms compared to a multi-stimulus alternative. CONCLUSIONS This study provides timely theoretical and practical considerations applicable to the design and analysis of experiments contributing to the identification of mechanisms underlying stance control of a multi-segment body.
Collapse
|
22
|
Ashtiani MN, Azghani MR. Effects of visual and cognitive interference on joint contributions in perturbed standing: a temporal and spectral analysis. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 41:21-30. [PMID: 29210020 DOI: 10.1007/s13246-017-0606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
Abstract
Postural balance requires using joint strategies which may be changed from normal conditions by interfering with the sensory information. The goal of the present study was to quantitatively evaluate the role of the joint mechanisms during perturbed stance. Visual and cognitive interference was imposed to sixteen healthy young males under rotational toes-down or up perturbations. Power spectral analysis was employed to distinguish the joint contribution and their in- or out-phase co-works. Results showed that addition of cognitive loads reduce the stability by increasing the center of mass (CoM) power to three times greater. Besides the CoM, the knee and hip powers were also significantly enhanced by the cognitive loads (p < .004), but the ankle was not influenced by cognition involvement (p > .05). Elimination of the vision had lower effect on the time and spectral functions of the knee and hip while the ankle rotations were increased due to the lack of visual feedback (p = .001). The toes-down perturbations resulted in more prominent contribution of the knee while the toes-up evoked the hip joint to keep the balance more than the other joints. Addition of the cognitive loads hindered the reactions of the joint mechanisms and vision caused more conservative responses of the joints.
Collapse
Affiliation(s)
- Mohammed N Ashtiani
- Faculty of Biomedical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mahmood-Reza Azghani
- Faculty of Biomedical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
23
|
Pasma JH, Boonstra TA, van Kordelaar J, Spyropoulou VV, Schouten AC. A Sensitivity Analysis of an Inverted Pendulum Balance Control Model. Front Comput Neurosci 2017; 11:99. [PMID: 29163116 PMCID: PMC5664365 DOI: 10.3389/fncom.2017.00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022] Open
Abstract
Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1–1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.
Collapse
Affiliation(s)
- Jantsje H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Tjitske A Boonstra
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands
| | - Vasiliki V Spyropoulou
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands
| |
Collapse
|
24
|
Houten D, Cooper D. How does cryotherapy effect ankle proprioception in healthy individuals? Somatosens Mot Res 2017; 34:158-171. [PMID: 28952410 DOI: 10.1080/08990220.2017.1372739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives To investigate how a 15-min cryotherapy intervention effects proprioception by measuring joint positional sense (JPS) and static single legged balance. Design Repeated measures design. Setting Laboratory. Participants Eighteen healthy university sports team students (11 males, 7 females) aged between 20 and 21 years old. Main outcome measures Participants were treated with 15 min of Aircast Cryo-cuff. The subject's skin temperature was measured before and immediately after 15 min of cryotherapy treatment. Ankle active joint positional sense (A-JPS) and passive joint positional sense (P-JPS) were measured at pre-test, immediately post-test, and 5 min post-test. Static balance was measured by centre of pressure (CoP) mean path length, medial-lateral (ML) CoP mean deviation, and anterior-posterior (AP) CoP mean deviation and mean time-to-boundary (TtB) minima for AP and ML directions. Results No significant differences were found for the variables of JPS and static single balance testing after 15 min of cryotherapy treatment. However, mean differences for CoP mean path length and ML mean deviation were shown to improve following cryotherapy treatment, results not previously found in the literature. Conclusion Results suggest that 15 min of Cryo-cuff treatment does not significantly affect proprioception. Although the effect of cryotherapy on proprioception depends on cooling modality used, time frame applied, and joint applied to.
Collapse
Affiliation(s)
- Daniel Houten
- a Sports Therapy , University of Worcester , Worcester , UK
| | - Darren Cooper
- b Institute of Sport and Exercise Science , University of Worcester , Worcester , UK
| |
Collapse
|
25
|
Pasma JH, van Kordelaar J, de Kam D, Weerdesteyn V, Schouten AC, van der Kooij H. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation. J Neuroeng Rehabil 2017; 14:97. [PMID: 28915821 PMCID: PMC5603100 DOI: 10.1186/s12984-017-0299-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying the underlying systems. Methods Standing balance behaviour of 20 healthy young participants was measured using continuous rotations of the support surface (SS). The dynamic balance behaviour obtained with CLSIT was expressed by sensitivity functions of the ankle torque, body sway and muscle activation of the lower legs to the SS rotation. Balance control models, 1) without activation dynamics, 2) with activation dynamics and 3) with activation dynamics and acceleration feedback, were fitted on the data of all possible combinations of the 3 sensitivity functions. The reliability of the estimated model parameters was represented by the mean relative standard errors of the mean (mSEM) of the estimated parameters, expressed for the basic parameters, the activation dynamics parameters and the acceleration feedback parameter. To investigate the accuracy, a model validation study was performed using simulated data obtained with a comprehensive balance control model. The accuracy of the estimated model parameters was described by the mean relative difference (mDIFF) between the estimated parameters and original parameters. Results The experimental data showed a low mSEM of the basic parameters, activation dynamics parameters and acceleration feedback parameter by adding muscle activation in combination with activation dynamics and acceleration feedback to the fitted model. From the simulated data, the mDIFF of the basic parameters varied from 22.2–22.4% when estimated using the torque and body sway sensitivity functions. Adding the activation dynamics, acceleration feedback and muscle activation improved mDIFF to 13.1–15.1%. Conclusions Adding the muscle activation in combination with the activation dynamics and acceleration feedback to CLSIT improves the accuracy and reliability of the estimated parameters and gives the possibility to separate the neural time delay, electromechanical delay and the intrinsic and reflexive dynamics. To diagnose impaired balance more specifically, it is recommended to add electromyography (EMG) to body sway (with or without torque) measurements in the assessment of the underlying systems. Electronic supplementary material The online version of this article (10.1186/s12984-017-0299-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - J van Kordelaar
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - D de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - V Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - A C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Pagel A, Ranzani R, Riener R, Vallery H. Bio-Inspired Adaptive Control for Active Knee Exoprosthetics. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2355-2364. [PMID: 28858807 DOI: 10.1109/tnsre.2017.2744987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
On the quest to bring function of prosthetic legs closer to their biological counterparts, the intuitive interplay of their control with the user's impedance modulation is key. We present two control features to enable more physiological and more user-adaptive control of prosthetic legs: a neuromusculoskeletal impedance model ( ) including a reflexive component, and a human model reference adaptive controller ( ), which can be combined with the former. In stance-phase simulations, the allowed to control a prosthetic leg with physiological knee joint angle and moment. When perturbations were applied, the reduced the resulting root mean square error (RMSE) between simulated and physiological reference angle by 96%. In a pilot experiment with two unimpaired and one amputee subject, gait with the deviated more from a physiological reference than with a conventional visco-elastic impedance controller. Subjects, however, preferred the . When adding the to either of the two impedance controllers, the RMSE between the actual and the physiological reference angle was reduced by up to 54%. Subjects confirmed this finding and reported an easier stance-to-swing transition. Simulation and pilot experiment suggest that a reflex-based impedance controller combined with an adaptive controller may improve user-cooperative behavior of active knee exoprostheses.
Collapse
|
27
|
Birinci T, Demirbas SB. Relationship between the mobility of medial longitudinal arch and postural control. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2017; 51:233-237. [PMID: 28462802 PMCID: PMC6197327 DOI: 10.1016/j.aott.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 12/07/2015] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the relationship between the medial longitudinal arch mobility and static and dynamic balance. METHODS A total of 50 subjects (25 female, and 25 male; Mean age: 22.2 ± 1.3 years; BMI: 22.8 ± 3.8 kg/m2) were included in this study. The relative arch deformity (RAD) was calculated with both 10% and 90% weight bearing (WB). Static balance was evaluated with Single Leg Stance Test and dynamic balance with TechnoBody PK 200WL computerized balance device. Subjects were evaluated for goniometric measurements of lower extremity joints, leg dominance and leg-length discrepancy. RESULTS Bipedal dynamic balance was correlated with both feet length at 10% WB and 90% WB. There was a correlation between the dynamic balance on dominant foot and RAD value on the aspect of Medium Speed (r = -0.32, p = 0.02), Perimeter Length (r = -0.32, p = 0.02) and Anterior-Posterior Sway (r = 0.36, p = 0.01). Static balance was unaffected by RAD value when the visual system was eliminated. CONCLUSION Our results suggest that decrease of arch mobility on the dominant foot is associated with posterior sway by causing knee or hip strategy and preventing ankle strategy even in small perturbations. The rate of deviation from the equilibrium point and the degree of total swaying increase when arch mobility decreases.
Collapse
|
28
|
Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay. PLoS One 2016; 11:e0163212. [PMID: 27655271 PMCID: PMC5031453 DOI: 10.1371/journal.pone.0163212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption.
Collapse
|
29
|
Koopman B, van Asseldonk EHF, van der Kooij H. Estimation of Human Hip and Knee Multi-Joint Dynamics Using the LOPES Gait Trainer. IEEE T ROBOT 2016. [DOI: 10.1109/tro.2016.2572695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Hwang S, Agada P, Kiemel T, Jeka JJ. Identification of the Unstable Human Postural Control System. Front Syst Neurosci 2016; 10:22. [PMID: 27013990 PMCID: PMC4786559 DOI: 10.3389/fnsys.2016.00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 11/25/2022] Open
Abstract
Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input–output (JIO) method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders.
Collapse
Affiliation(s)
- Sungjae Hwang
- Department of Kinesiology, Temple University Philadelphia, PA, USA
| | - Peter Agada
- Department of Kinesiology, University of Maryland College Park, MD, USA
| | - Tim Kiemel
- Department of Kinesiology, University of Maryland College Park, MD, USA
| | - John J Jeka
- Department of Kinesiology, Temple UniversityPhiladelphia, PA, USA; Department of Bioengineering, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
31
|
Pasma JH, Engelhart D, Maier AB, Aarts RGKM, van Gerven JMA, Arendzen JH, Schouten AC, Meskers CGM, van der Kooij H. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly. PLoS One 2016; 11:e0151012. [PMID: 26953694 PMCID: PMC4783059 DOI: 10.1371/journal.pone.0151012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/23/2016] [Indexed: 11/30/2022] Open
Abstract
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day.
Collapse
Affiliation(s)
- Jantsje H. Pasma
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- * E-mail:
| | - Denise Engelhart
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands
| | - Andrea B. Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ronald G. K. M. Aarts
- Department of Mechanical Automation and Mechatronics, University of Twente, Enschede, the Netherlands
| | | | - J. Hans Arendzen
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C. Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands
| | - Carel G. M. Meskers
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands
| |
Collapse
|
32
|
Boonstra TA, van Kordelaar J, Engelhart D, van Vugt JPP, van der Kooij H. Asymmetries in reactive and anticipatory balance control are of similar magnitude in Parkinson's disease patients. Gait Posture 2016; 43:108-13. [PMID: 26475760 DOI: 10.1016/j.gaitpost.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 02/02/2023]
Abstract
Many Parkinson's disease (PD) patients show asymmetries in balance control during quiet stance and in response to perturbations (i.e., reactive balance control) in the sagittal plane. In addition, PD patients show a reduced ability to anticipate to self-induced disturbances, but it is not clear whether these anticipatory responses can be asymmetric too. Furthermore, it is not known how reactive balance control and anticipatory balance control are related in PD patients. Therefore, we investigated whether reactive and anticipatory balance control are asymmetric to the same extent in PD patients. 14 PD patients and 10 controls participated. Reactive balance control (RBC) was investigated by applying external platform and force perturbations and relating the response of the left and right ankle torque to the body sway angle at the excited frequencies. Anticipatory postural adjustments (APAs) were investigated by determining the increase in the left and right ankle torque just before the subjects released a force exerted with the hands against a force sensor. The symmetry ratio between the contribution of the left and right ankle was used to express the asymmetry in reactive and anticipatory balance control; the correlation between the two ratio's was investigated with Spearman's rank correlation coefficients. PD patients were more asymmetric in anticipatory (p=0.026) and reactive balance control (p=0.004) compared to controls and the symmetry ratios were significantly related (ρ=0.74; p=0.003) in PD patients. These findings suggest that asymmetric reactive balance control during bipedal stance may share a common pathophysiology with asymmetries in the anticipation of voluntary perturbations during, for instance, gait initiation.
Collapse
Affiliation(s)
- Tjitske A Boonstra
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Joost van Kordelaar
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Denise Engelhart
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | - Herman van der Kooij
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
33
|
Engelhart D, Pasma JH, Schouten AC, Aarts RGKM, Meskers CGM, Maier AB, van der Kooij H. Adaptation of multijoint coordination during standing balance in healthy young and healthy old individuals. J Neurophysiol 2015; 115:1422-35. [PMID: 26719084 DOI: 10.1152/jn.00030.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields.
Collapse
Affiliation(s)
- D Engelhart
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands;
| | - J H Pasma
- Department of Rehabilitation Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - A C Schouten
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R G K M Aarts
- Department of Mechanical Automation, University of Twente, Enschede, The Netherlands
| | - C G M Meskers
- Department of Rehabilitation Medicine, VU University Medical Centre, Amsterdam, The Netherlands; and
| | - A B Maier
- Section of Geriatrics and Gerontology, Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - H van der Kooij
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
34
|
Pasma JH, Engelhart D, Maier AB, Schouten AC, van der Kooij H, Meskers CGM. Changes in sensory reweighting of proprioceptive information during standing balance with age and disease. J Neurophysiol 2015; 114:3220-33. [PMID: 26424578 DOI: 10.1152/jn.00414.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
With sensory reweighting, reliable sensory information is selected over unreliable information during balance by dynamically combining this information. We used system identification techniques to show the weight and the adaptive process of weight change of proprioceptive information during standing balance with age and specific diseases. Ten healthy young subjects (aged between 20 and 30 yr) and 44 elderly subjects (aged above 65 yr) encompassing 10 healthy elderly, 10 with cataract, 10 with polyneuropathy, and 14 with impaired balance, participated in the study. During stance, proprioceptive information of the ankles was disturbed by rotation of the support surface with specific frequency content where disturbance amplitude increased over trials. Body sway and reactive ankle torque were measured to determine sensitivity functions of these responses to the disturbance amplitude. Model fits resulted in a proprioceptive weight (changing over trials), time delay, force feedback, reflexive stiffness, and damping. The proprioceptive weight was higher in healthy elderly compared with young subjects and higher in elderly subjects with cataract and with impaired balance compared with healthy elderly subjects. Proprioceptive weight decreased with increasing disturbance amplitude; decrease was similar in all groups. In all groups, the time delay was higher and the reflexive stiffness was lower compared with young or healthy elderly subjects. In conclusion, proprioceptive information is weighted more with age and in patients with cataract and impaired balance. With age and specific diseases the time delay was higher and reflexive stiffness was lower. These results illustrate the opportunity to detect the underlying cause of impaired balance in the elderly with system identification.
Collapse
Affiliation(s)
- J H Pasma
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands;
| | - D Engelhart
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - A B Maier
- Section of Gerontology and Geriatrics, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A C Schouten
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; and
| | - H van der Kooij
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; and
| | - C G M Meskers
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Crétual A. Which biomechanical models are currently used in standing posture analysis? Neurophysiol Clin 2015; 45:285-95. [PMID: 26388359 DOI: 10.1016/j.neucli.2015.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
In 1995, David Winter concluded that postural analysis of upright stance was often restricted to studying the trajectory of the center of pressure (CoP). However, postural control means regulation of the center of mass (CoM) with respect to CoP. As CoM is only accessible by using a biomechanical model of the human body, the present article proposes to determine which models are actually used in postural analysis, twenty years after Winter's observation. To do so, a selection of 252 representative articles dealing with upright posture and published during the four last years has been checked. It appears that the CoP model largely remains the most common one (accounting for nearly two thirds of the selection). Other models, CoP/CoM and segmental models (with one, two or more segments) are much less used. The choice of the model does not appear to be guided by the population studied. Conversely, while some confusion remains between postural control and the associated concepts of stability or strategy, this choice is better justified for real methodological concerns when dealing with such high-level parameters. Finally, the computation of the CoM continues to be a limitation in achieving a more complete postural analysis. This unfortunately implies that the model is chosen for technological reasons in many cases (choice being a euphemism here). Some effort still has to be made so that bioengineering developments allow us to go beyond this limit.
Collapse
Affiliation(s)
- A Crétual
- M2S lab (Mouvement Sport Santé), University Rennes 2 - ENS Rennes - UEB, avenue Robert-Schuman, campus de Ker Lann, 35170 Bruz, France; MimeTIC team, INRIA Rennes, campus universitaire de Beaulieu, 35042 Rennes, France.
| |
Collapse
|
36
|
Collado-Mateo D, Adsuar JC, Olivares PR, Cano-Plasencia R, Gusi N. Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis. Somatosens Mot Res 2015; 32:219-26. [PMID: 26369901 DOI: 10.3109/08990220.2015.1074566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. OBJECTIVE The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. METHOD Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. RESULTS In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. CONCLUSION Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.
Collapse
Affiliation(s)
- Daniel Collado-Mateo
- a University of Extremadura , Cáceres , Spain .,b San Pedro de Alcántara Hospital, Clinical Neurophysiology, Avda. Universidad s/n , Cáceres , Spain , and
| | | | - Pedro R Olivares
- c Facultad de Educación , Universidad Autonoma de Chile , Talca , Chile
| | - Ricardo Cano-Plasencia
- b San Pedro de Alcántara Hospital, Clinical Neurophysiology, Avda. Universidad s/n , Cáceres , Spain , and
| | - Narcis Gusi
- a University of Extremadura , Cáceres , Spain
| |
Collapse
|
37
|
Bonnet CT, Delval A, Defebvre L. Parkinson's Disease-Related Impairments in Body Movement, Coordination and Postural Control Mechanisms When Performing 80$^{\circ}$ Lateral Gaze Shifts. IEEE Trans Neural Syst Rehabil Eng 2015; 23:849-56. [PMID: 25423653 DOI: 10.1109/tnsre.2014.2369455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Tan KK, Narayanan AS, Koh CH, Caves K, Hoenig H. Extraction of spatial information for low-bandwidth telerehabilitation applications. ACTA ACUST UNITED AC 2015; 51:825-40. [PMID: 25509058 DOI: 10.1682/jrrd.2013.09.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telemedicine applications, based on two-dimensional (2D) video conferencing technology, have been around for the past 15 to 20 yr. They have been demonstrated to be acceptable for face-to-face consultations and useful for visual examination of wounds and abrasions. However, certain telerehabilitation assessments need the use of spatial information in order to accurately assess the patient's condition and sending three-dimensional video data over low-bandwidth networks is extremely challenging. This article proposes an innovative way of extracting the key spatial information from the patient's movement during telerehabilitation assessment based on 2D video and then presenting the extracted data by using graph plots alongside the video to help physicians in assessments with minimum burden on existing video data transfer. Some common rehabilitation scenarios are chosen for illustrations, and experiments are conducted based on skeletal tracking and color detection algorithms using the Microsoft Kinect sensor. Extracted data are analyzed in detail and their usability discussed.
Collapse
|
39
|
Boonstra TA, Schouten AC, van Vugt JPP, Bloem BR, van der Kooij H. Parkinson's disease patients compensate for balance control asymmetry. J Neurophysiol 2014; 112:3227-39. [DOI: 10.1152/jn.00813.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Parkinson's disease (PD) subtle balance abnormalities can already be detected in early-stage patients. One feature of impaired balance control in PD is asymmetry: one leg produces more corrective joint torque than the other. We hypothesize that in mild to moderately affected PD patients, the least impaired leg compensates for the more impaired leg. Twenty PD patients and eleven healthy matched control subjects participated. Clinical asymmetry was determined by the difference between the left and right body side scores on the Unified Parkinson's Disease Rating Scale. Balance was perturbed with two independent continuous multisine perturbations in the forward-backward direction. Subsequently, we applied closed-loop system identification, which determined the spectral estimate of the stabilizing mechanisms, for each leg. Balance control behavior was similar in PD patients and control subjects at the ankle, but at the hip stiffness was increased. Control subjects exhibited symmetric balance control, but in PD patients the balance contribution of the leg of the clinically least affected body side was higher whereas the leg of the clinically most affected body side contributed less. The ratio between the legs helped to preserve a normal motor output at the ankle. Our results suggest that PD patients compensate for balance control asymmetries by increasing the relative contribution of the leg of their least affected body side. This compensation appears to be successful at the ankle but is accompanied by an increased stiffness at the hip. We discuss the possible implications of these findings for postural stability and fall risk in PD patients.
Collapse
Affiliation(s)
- T. A. Boonstra
- Department of Biomechanical Engineering, University of Twente, MIRA Institute for Biomechanical Technology and Technical Medicine, Enschede, The Netherlands
| | - A. C. Schouten
- Department of Biomechanical Engineering, University of Twente, MIRA Institute for Biomechanical Technology and Technical Medicine, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - J. P. P. van Vugt
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands; and
| | - B. R. Bloem
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - H. van der Kooij
- Department of Biomechanical Engineering, University of Twente, MIRA Institute for Biomechanical Technology and Technical Medicine, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
40
|
Bekkers EMJ, Dockx K, Heremans E, Vercruysse S, Verschueren SMP, Mirelman A, Nieuwboer A. The contribution of proprioceptive information to postural control in elderly and patients with Parkinson's disease with a history of falls. Front Hum Neurosci 2014; 8:939. [PMID: 25505395 PMCID: PMC4241823 DOI: 10.3389/fnhum.2014.00939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022] Open
Abstract
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.
Collapse
Affiliation(s)
- Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Kim Dockx
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Elke Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Sarah Vercruysse
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Sabine M P Verschueren
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center , Tel-Aviv , Israel
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven , Leuven , Belgium
| |
Collapse
|
41
|
Engelhart D, Schouten AC, Aarts RGKM, van der Kooij H. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique. IEEE Trans Neural Syst Rehabil Eng 2014; 23:973-82. [PMID: 25423654 DOI: 10.1109/tnsre.2014.2372172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance.
Collapse
|
42
|
Yoshida T, Ikemiyagi F, Ikemiyagi Y, Tanaka T, Yamamoto M, Suzuki M. The dominant foot affects the postural control mechanism: examination by body tracking test. Acta Otolaryngol 2014; 134:1146-50. [PMID: 25252704 PMCID: PMC4245181 DOI: 10.3109/00016489.2014.940556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Conclusion The antero-posterior (AP) body tracking test (BTT) showed that the dominant foot could affect the tilt angle of the sway movement, delineated by primary component analysis. Differences associated with the dominant foot could represent the difference in space perception of each person. Objectives To examine whether the dominant foot could affect the postural control mechanism using the BTT. Methods Ninety-seven healthy participants enrolled in the study were classified into right-foot and left-foot dominance groups, and their performances were compared. For the BTT, each participant stood on a stabilometer and caught the movement of a visual target moving vertically (anterior-posterior) or horizontally by the center of pressure movement, displayed on a 14-inch screen monitor at 100 cm in front of the subject. The mean displacement angle of the obtained stabilogram was evaluated by principal component analysis. Results The AP BTT in the right-foot dominance group showed a clockwise tilt with a mean displacement angle of 3.022 ± 3.761°, whereas the group with left-foot dominance had a modest counter-clockwise tilt with a mean displacement angle of –0.694 ± 4.497°. This difference was found to be significant by the independent t test (p < 0.0001). In the lateral BTT, the mean displacement angles were not significant.
Collapse
Affiliation(s)
- Tomoe Yoshida
- Department Otorhinolaryngology, Toho University, Sakura City, Chiba, Japan
| | - Fuyuko Ikemiyagi
- Department Otorhinolaryngology, Toho University, Sakura City, Chiba, Japan
| | | | - Tositake Tanaka
- Department Otorhinolaryngology, Toho University, Sakura City, Chiba, Japan
| | - Masahiko Yamamoto
- Department Otorhinolaryngology, Toho University, Sakura City, Chiba, Japan
| | - Mitsuya Suzuki
- Department Otorhinolaryngology, Toho University, Sakura City, Chiba, Japan
| |
Collapse
|
43
|
Hettich G, Assländer L, Gollhofer A, Mergner T. Human hip–ankle coordination emerging from multisensory feedback control. Hum Mov Sci 2014; 37:123-46. [DOI: 10.1016/j.humov.2014.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 12/20/2022]
|
44
|
Boonstra TA, van Vugt JPP, van der Kooij H, Bloem BR. Balance asymmetry in Parkinson's disease and its contribution to freezing of gait. PLoS One 2014; 9:e102493. [PMID: 25032994 PMCID: PMC4102504 DOI: 10.1371/journal.pone.0102493] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson's disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson's disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to healthy controls and non-freezers. However, this relationship should be investigated further in larger groups of patients.
Collapse
Affiliation(s)
- Tjitske A. Boonstra
- Department of Biomechanical Engineering, University of Twente, MIRA institute for biomechanical technology and technical medicine, Enschede, The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, MIRA institute for biomechanical technology and technical medicine, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Bastiaan R. Bloem
- Radboud University Nijmegen Medical Centre, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Impaired standing balance: The clinical need for closing the loop. Neuroscience 2014; 267:157-65. [DOI: 10.1016/j.neuroscience.2014.02.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/09/2023]
|
46
|
Engelhart D, Pasma JH, Schouten AC, Meskers CGM, Maier AB, Mergner T, van der Kooij H. Impaired standing balance in elderly: a new engineering method helps to unravel causes and effects. J Am Med Dir Assoc 2013; 15:227.e1-227.e6. [PMID: 24220138 DOI: 10.1016/j.jamda.2013.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022]
Abstract
Deteriorated balance control is the most frequent cause of falls and injuries in the elderly. Balance control comprises a complex interplay of several underlying systems (ie, the sensory systems, the motor system, and the nervous system). Available clinical balance tests determine the patient's ability to maintain standing balance under defined test conditions and aim to describe the current state of this ability. However, these tests do not reveal which of the underlying systems is deteriorated and to what extent, so that the relation between cause and effect often remains unclear. Especially detection of early-stage balance control deterioration is difficult, because the balance control system is redundant and elderly may use compensation strategies. This article describes a new method that is able to identify causal relationships in deteriorated balance control, called CLSIT (Closed Loop System Identification Technique). Identification of impaired balance with CLSIT is a base for development of tailored interventions and compensation strategies to reduce the often serious consequences of deteriorated balance control in the elderly.
Collapse
Affiliation(s)
- Denise Engelhart
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands.
| | - Jantsje H Pasma
- Department of Rehabilitation Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alfred C Schouten
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrea B Maier
- Section of Geriatrics and Gerontology, Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Herman van der Kooij
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
47
|
Sasagawa S, Shinya M, Nakazawa K. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis. J Neurophysiol 2013; 111:313-22. [PMID: 24089399 DOI: 10.1152/jn.01082.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an "induced acceleration analysis." We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s(2) and 3.3 ± 1.2°/s(2)) and hip (9.1 ± 3.2°/s(2) and 10.5 ± 3.5°/s(2)) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain.
Collapse
Affiliation(s)
- Shun Sasagawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan; and
| | | | | |
Collapse
|
48
|
James EG. Metastable postural coordination dynamics. Neurosci Lett 2013; 548:176-80. [DOI: 10.1016/j.neulet.2013.05.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 12/01/2022]
|