1
|
Bougea A. Digital biomarkers in Parkinson's disease. Adv Clin Chem 2024; 123:221-253. [PMID: 39181623 DOI: 10.1016/bs.acc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Digital biomarker (DB) assessments provide objective measures of daily life tasks and thus hold promise to improve diagnosis and monitoring of Parkinson's disease (PD) patients especially those with advanced stages. Data from DB studies can be used in advanced analytics such as Artificial Intelligence and Machine Learning to improve monitoring, treatment and outcomes. Although early development of inertial sensors as accelerometers and gyroscopes in smartphones provided encouraging results, the use of DB remains limited due to lack of standards, harmonization and consensus for analytical as well as clinical validation. Accordingly, a number of clinical trials have been developed to evaluate the performance of DB vs traditional assessment tools with the goal of monitoring disease progression, improving quality of life and outcomes. Herein, we update current evidence on the use of DB in PD and highlight potential benefits and limitations and provide suggestions for future research study.
Collapse
Affiliation(s)
- Anastasia Bougea
- Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Koh V, Xuan LW, Zhe TK, Singh N, B Matchar D, Chan A. Performance of digital technologies in assessing fall risks among older adults with cognitive impairment: a systematic review. GeroScience 2024; 46:2951-2975. [PMID: 38436792 PMCID: PMC11009180 DOI: 10.1007/s11357-024-01098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Older adults with cognitive impairment (CI) are twice as likely to fall compared to the general older adult population. Traditional fall risk assessments may not be suitable for older adults with CI due to their reliance on attention and recall. Hence, there is an interest in using objective technology-based fall risk assessment tools to assess falls within this population. This systematic review aims to evaluate the features and performance of technology-based fall risk assessment tools for older adults with CI. A systematic search was conducted across several databases such as PubMed and IEEE Xplore, resulting in the inclusion of 22 studies. Most studies focused on participants with dementia. The technologies included sensors, mobile applications, motion capture, and virtual reality. Fall risk assessments were conducted in the community, laboratory, and institutional settings; with studies incorporating continuous monitoring of older adults in everyday environments. Studies used a combination of technology-based inputs of gait parameters, socio-demographic indicators, and clinical assessments. However, many missed the opportunity to include cognitive performance inputs as predictors to fall risk. The findings of this review support the use of technology-based fall risk assessment tools for older adults with CI. Further advancements incorporating cognitive measures and additional longitudinal studies are needed to improve the effectiveness and clinical applications of these assessment tools. Additional work is also required to compare the performance of existing methods for fall risk assessment, technology-based fall risk assessments, and the combination of these approaches.
Collapse
Affiliation(s)
- Vanessa Koh
- Programme in Health Services and Systems Research (HSSR), Duke-NUS Medical School, Singapore, Singapore.
- Centre for Ageing Research and Education (CARE), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Lai Wei Xuan
- Programme in Health Services and Systems Research (HSSR), Duke-NUS Medical School, Singapore, Singapore
| | - Tan Kai Zhe
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
| | - Navrag Singh
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
- Laboratory for Movement Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - David B Matchar
- Programme in Health Services and Systems Research (HSSR), Duke-NUS Medical School, Singapore, Singapore
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
- Department of Medicine (General Internal Medicine), Duke University Medical Center, Durham, NC, USA
| | - Angelique Chan
- Programme in Health Services and Systems Research (HSSR), Duke-NUS Medical School, Singapore, Singapore
- Centre for Ageing Research and Education (CARE), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Future Health Technologies Programme, Singapore-ETH Centre, Singapore, Singapore
| |
Collapse
|
3
|
Kluge F, Brand YE, Micó-Amigo ME, Bertuletti S, D'Ascanio I, Gazit E, Bonci T, Kirk C, Küderle A, Palmerini L, Paraschiv-Ionescu A, Salis F, Soltani A, Ullrich M, Alcock L, Aminian K, Becker C, Brown P, Buekers J, Carsin AE, Caruso M, Caulfield B, Cereatti A, Chiari L, Echevarria C, Eskofier B, Evers J, Garcia-Aymerich J, Hache T, Hansen C, Hausdorff JM, Hiden H, Hume E, Keogh A, Koch S, Maetzler W, Megaritis D, Niessen M, Perlman O, Schwickert L, Scott K, Sharrack B, Singleton D, Vereijken B, Vogiatzis I, Yarnall A, Rochester L, Mazzà C, Del Din S, Mueller A. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study. JMIR Form Res 2024; 8:e50035. [PMID: 38691395 PMCID: PMC11097052 DOI: 10.2196/50035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.1136/bmjopen-2021-050785.
Collapse
Affiliation(s)
- Felix Kluge
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Yonatan E Brand
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stefano Bertuletti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arne Küderle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Francesca Salis
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
- Unit Digitale Geriatrie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Philip Brown
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joren Buekers
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Carlos Echevarria
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Bjoern Eskofier
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tilo Hache
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Rush Medical College, Chicago, IL, United States
| | - Hugo Hiden
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | | | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lars Schwickert
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alison Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Arne Mueller
- Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
4
|
Salaorni F, Bonardi G, Schena F, Tinazzi M, Gandolfi M. Wearable devices for gait and posture monitoring via telemedicine in people with movement disorders and multiple sclerosis: a systematic review. Expert Rev Med Devices 2024; 21:121-140. [PMID: 38124300 DOI: 10.1080/17434440.2023.2298342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Wearable devices and telemedicine are increasingly used to track health-related parameters across patient populations. Since gait and postural control deficits contribute to mobility deficits in persons with movement disorders and multiple sclerosis, we thought it interesting to evaluate devices in telemedicine for gait and posture monitoring in such patients. METHODS For this systematic review, we searched the electronic databases MEDLINE (PubMed), SCOPUS, Cochrane Library, and SPORTDiscus. Of the 452 records retrieved, 12 met the inclusion/exclusion criteria. Data about (1) study characteristics and clinical aspects, (2) technical, and (3) telemonitoring and teleconsulting were retrieved, The studies were quality assessed. RESULTS All studies involved patients with Parkinson's disease; most used triaxial accelerometers for general assessment (n = 4), assessment of motor fluctuation (n = 3), falls (n = 2), and turning (n = 3). Sensor placement and count varied widely across studies. Nine used lab-validated algorithms for data analysis. Only one discussed synchronous patient feedback and asynchronous teleconsultation. CONCLUSIONS Wearable devices enable real-world patient monitoring and suggest biomarkers for symptoms and behaviors related to underlying gait disorders. thus enriching clinical assessment and personalized treatment plans. As digital healthcare evolves, further research is needed to enhance device accuracy, assess user acceptability, and integrate these tools into telemedicine infrastructure. PROSPERO REGISTRATION CRD42022355460.
Collapse
Affiliation(s)
- Francesca Salaorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Bonardi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), University of Verona, Verona, Italy
- Neurorehabilitation Unit - Azienda Ospedaliera Universitaria Integrata, Verona
| |
Collapse
|
5
|
MacLean MK, Rehman RZU, Kerse N, Taylor L, Rochester L, Del Din S. Walking Bout Detection for People Living in Long Residential Care: A Computationally Efficient Algorithm for a 3-Axis Accelerometer on the Lower Back. SENSORS (BASEL, SWITZERLAND) 2023; 23:8973. [PMID: 37960674 PMCID: PMC10647554 DOI: 10.3390/s23218973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity. We designed two walking bout detection algorithms for people living in long-term residential care. Both algorithms used thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify data as "walking" or "non-walking". One algorithm had generic thresholds, whereas the other used personalized thresholds. To validate and evaluate the algorithms, we compared the classifications of walking/non-walking from our algorithms to the real-time research assistant annotated labels and the classification output from an algorithm validated on a healthy population. Both the generic and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best suited to determine input data for gait characteristic extraction. The developed algorithms were almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for real-time processing.
Collapse
Affiliation(s)
- Mhairi K. MacLean
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, 7522 LW Enschede, The Netherlands
| | - Rana Zia Ur Rehman
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
| | - Ngaire Kerse
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (N.K.); (L.T.)
| | - Lynne Taylor
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (N.K.); (L.T.)
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Moreau C, Rouaud T, Grabli D, Benatru I, Remy P, Marques AR, Drapier S, Mariani LL, Roze E, Devos D, Dupont G, Bereau M, Fabbri M. Overview on wearable sensors for the management of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:153. [PMID: 37919332 PMCID: PMC10622581 DOI: 10.1038/s41531-023-00585-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Parkinson's disease (PD) is affecting about 1.2 million patients in Europe with a prevalence that is expected to have an exponential increment, in the next decades. This epidemiological evolution will be challenged by the low number of neurologists able to deliver expert care for PD. As PD is better recognized, there is an increasing demand from patients for rigorous control of their symptoms and for therapeutic education. In addition, the highly variable nature of symtoms between patients and the fluctuations within the same patient requires innovative tools to help doctors and patients monitor the disease in their usual living environment and adapt treatment in a more relevant way. Nowadays, there are various body-worn sensors (BWS) proposed to monitor parkinsonian clinical features, such as motor fluctuations, dyskinesia, tremor, bradykinesia, freezing of gait (FoG) or gait disturbances. BWS have been used as add-on tool for patients' management or research purpose. Here, we propose a practical anthology, summarizing the characteristics of the most used BWS for PD patients in Europe, focusing on their role as tools to improve treatment management. Consideration regarding the use of technology to monitor non-motor features is also included. BWS obviously offer new opportunities for improving management strategy in PD but their precise scope of use in daily routine care should be clarified.
Collapse
Affiliation(s)
- Caroline Moreau
- Department of Neurology, Parkinson's disease expert Center, Lille University, INSERM UMRS_1172, University Hospital Center, Lille, France
- The French Ns-Park Network, Paris, France
| | - Tiphaine Rouaud
- The French Ns-Park Network, Paris, France
- CHU Nantes, Centre Expert Parkinson, Department of Neurology, Nantes, F-44093, France
| | - David Grabli
- The French Ns-Park Network, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Isabelle Benatru
- The French Ns-Park Network, Paris, France
- Department of Neurology, University Hospital of Poitiers, Poitiers, France
- INSERM, CHU de Poitiers, University of Poitiers, Centre d'Investigation Clinique CIC1402, Poitiers, France
| | - Philippe Remy
- The French Ns-Park Network, Paris, France
- Centre Expert Parkinson, NS-Park/FCRIN Network, CHU Henri Mondor, AP-HP, Equipe NPI, IMRB, INSERM et Faculté de Santé UPE-C, Créteil, FranceService de neurologie, hôpital Henri-Mondor, AP-HP, Créteil, France
| | - Ana-Raquel Marques
- The French Ns-Park Network, Paris, France
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, Clermont-Ferrand, France
| | - Sophie Drapier
- The French Ns-Park Network, Paris, France
- Pontchaillou University Hospital, Department of Neurology, CIC INSERM 1414, Rennes, France
| | - Louise-Laure Mariani
- The French Ns-Park Network, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- The French Ns-Park Network, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - David Devos
- The French Ns-Park Network, Paris, France
- Parkinson's Disease Centre of Excellence, Department of Medical Pharmacology, Univ. Lille, INSERM; CHU Lille, U1172 - Degenerative & Vascular Cognitive Disorders, LICEND, NS-Park Network, F-59000, Lille, France
| | - Gwendoline Dupont
- The French Ns-Park Network, Paris, France
- Centre hospitalier universitaire François Mitterrand, Département de Neurologie, Université de Bourgogne, Dijon, France
| | - Matthieu Bereau
- The French Ns-Park Network, Paris, France
- Service de neurologie, université de Franche-Comté, CHRU de Besançon, 25030, Besançon, France
| | - Margherita Fabbri
- The French Ns-Park Network, Paris, France.
- Department of Neurosciences, Clinical Investigation Center CIC 1436, Parkinson Toulouse Expert Centre, NS-Park/FCRIN Network and NeuroToul COEN Center, Toulouse University Hospital, INSERM, University of Toulouse 3, Toulouse, France.
| |
Collapse
|
7
|
Romijnders R, Salis F, Hansen C, Küderle A, Paraschiv-Ionescu A, Cereatti A, Alcock L, Aminian K, Becker C, Bertuletti S, Bonci T, Brown P, Buckley E, Cantu A, Carsin AE, Caruso M, Caulfield B, Chiari L, D'Ascanio I, Del Din S, Eskofier B, Fernstad SJ, Fröhlich MS, Garcia Aymerich J, Gazit E, Hausdorff JM, Hiden H, Hume E, Keogh A, Kirk C, Kluge F, Koch S, Mazzà C, Megaritis D, Micó-Amigo E, Müller A, Palmerini L, Rochester L, Schwickert L, Scott K, Sharrack B, Singleton D, Soltani A, Ullrich M, Vereijken B, Vogiatzis I, Yarnall A, Schmidt G, Maetzler W. Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases. Front Neurol 2023; 14:1247532. [PMID: 37909030 PMCID: PMC10615212 DOI: 10.3389/fneur.2023.1247532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.
Collapse
Affiliation(s)
- Robbin Romijnders
- Digital Signal Processing and System Theory, Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kiel, Germany
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Clint Hansen
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Arne Küderle
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Polytechnic of Turin, Turin, Italy
| | - Lisa Alcock
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Gesellschaft für Medizinische Forschung, Robert-Bosch Foundation GmbH, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tecla Bonci
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Philip Brown
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ellen Buckley
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Alma Cantu
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Polytechnic of Turin, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRISDV), University of Bologna, Bologna, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Silvia Del Din
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Björn Eskofier
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Judith Garcia Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hugo Hiden
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Cameron Kirk
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Felix Kluge
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Novartis Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Claudia Mazzà
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Encarna Micó-Amigo
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arne Müller
- Novartis Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRISDV), University of Bologna, Bologna, Italy
| | - Lynn Rochester
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lars Schwickert
- Gesellschaft für Medizinische Forschung, Robert-Bosch Foundation GmbH, Stuttgart, Germany
| | - Kirsty Scott
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Digital Health Department, CSEM SA, Neuchâtel, Switzerland
| | - Martin Ullrich
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alison Yarnall
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Gerhard Schmidt
- Digital Signal Processing and System Theory, Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Arbeitsgruppe Neurogeriatrie, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Micó-Amigo ME, Bonci T, Paraschiv-Ionescu A, Ullrich M, Kirk C, Soltani A, Küderle A, Gazit E, Salis F, Alcock L, Aminian K, Becker C, Bertuletti S, Brown P, Buckley E, Cantu A, Carsin AE, Caruso M, Caulfield B, Cereatti A, Chiari L, D'Ascanio I, Eskofier B, Fernstad S, Froehlich M, Garcia-Aymerich J, Hansen C, Hausdorff JM, Hiden H, Hume E, Keogh A, Kluge F, Koch S, Maetzler W, Megaritis D, Mueller A, Niessen M, Palmerini L, Schwickert L, Scott K, Sharrack B, Sillén H, Singleton D, Vereijken B, Vogiatzis I, Yarnall AJ, Rochester L, Mazzà C, Del Din S. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. J Neuroeng Rehabil 2023; 20:78. [PMID: 37316858 PMCID: PMC10265910 DOI: 10.1186/s12984-023-01198-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.
Collapse
Affiliation(s)
- M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tecla Bonci
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Abolfazl Soltani
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Arne Küderle
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Clemens Becker
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Philip Brown
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ellen Buckley
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Alma Cantu
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Brian Caulfield
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Lorenzo Chiari
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Ilaria D'Ascanio
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
| | - Bjoern Eskofier
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sara Fernstad
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hugo Hiden
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Felix Kluge
- Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Arne Mueller
- Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Luca Palmerini
- Department of Electrical, Electronic and Information Engineering «Guglielmo Marconi», University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Lars Schwickert
- Robert Bosch Gesellschaft für Medizinische Forschung, Stuttgart, Germany
| | - Kirsty Scott
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - David Singleton
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Nouriani A, Jonason A, Sabal LT, Hanson JT, Jean JN, Lisko T, Reid E, Moua Y, Rozeboom S, Neverman K, Stowe C, Rajamani R, McGovern RA. Real world validation of activity recognition algorithm and development of novel behavioral biomarkers of falls in aged control and movement disorder patients. Front Aging Neurosci 2023; 15:1117802. [PMID: 36909945 PMCID: PMC9995757 DOI: 10.3389/fnagi.2023.1117802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
The use of wearable sensors in movement disorder patients such as Parkinson's disease (PD) and normal pressure hydrocephalus (NPH) is becoming more widespread, but most studies are limited to characterizing general aspects of mobility using smartphones. There is a need to accurately identify specific activities at home in order to properly evaluate gait and balance at home, where most falls occur. We developed an activity recognition algorithm to classify multiple daily living activities including high fall risk activities such as sit to stand transfers, turns and near-falls using data from 5 inertial sensors placed on the chest, upper-legs and lower-legs of the subjects. The algorithm is then verified with ground truth by collecting video footage of our patients wearing the sensors at home. Our activity recognition algorithm showed >95% sensitivity in detection of activities. Extracted features from our home monitoring system showed significantly better correlation (~69%) with prospectively measured fall frequency of our subjects compared to the standard clinical tests (~30%) or other quantitative gait metrics used in past studies when attempting to predict future falls over 1 year of prospective follow-up. Although detecting near-falls at home is difficult, our proposed model suggests that near-fall frequency is the most predictive criterion in fall detection through correlation analysis and fitting regression models.
Collapse
Affiliation(s)
- Ali Nouriani
- Laboratory for Innovations in Sensing, Estimation and Control, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alec Jonason
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Luke T Sabal
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jacob T Hanson
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, United States
| | - James N Jean
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Thomas Lisko
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Yeng Moua
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shane Rozeboom
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kaiser Neverman
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Casey Stowe
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Rajesh Rajamani
- Laboratory for Innovations in Sensing, Estimation and Control, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Robert A McGovern
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States.,Division of Neurosurgery, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| |
Collapse
|
10
|
Nouredanesh M, Godfrey A, Powell D, Tung J. Egocentric vision-based detection of surfaces: towards context-aware free-living digital biomarkers for gait and fall risk assessment. J Neuroeng Rehabil 2022; 19:79. [PMID: 35869527 PMCID: PMC9308210 DOI: 10.1186/s12984-022-01022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Falls in older adults are a critical public health problem. As a means to assess fall risks, free-living digital biomarkers (FLDBs), including spatiotemporal gait measures, drawn from wearable inertial measurement unit (IMU) data have been investigated to identify those at high risk. Although gait-related FLDBs can be impacted by intrinsic (e.g., gait impairment) and/or environmental (e.g., walking surfaces) factors, their respective impacts have not been differentiated by the majority of free-living fall risk assessment methods. This may lead to the ambiguous interpretation of the subsequent FLDBs, and therefore, less precise intervention strategies to prevent falls.
Methods
With the aim of improving the interpretability of gait-related FLDBs and investigating the impact of environment on older adults’ gait, a vision-based framework was proposed to automatically detect the most common level walking surfaces. Using a belt-mounted camera and IMUs worn by fallers and non-fallers (mean age 73.6 yrs), a unique dataset (i.e., Multimodal Ambulatory Gait and Fall Risk Assessment in the Wild (MAGFRA-W)) was acquired. The frames and image patches attributed to nine participants’ gait were annotated: (a) outdoor terrains: pavement (asphalt, cement, outdoor bricks/tiles), gravel, grass/foliage, soil, snow/slush; and (b) indoor terrains: high-friction materials (e.g., carpet, laminated floor), wood, and tiles. A series of ConvNets were developed: EgoPlaceNet categorizes frames into indoor and outdoor; and EgoTerrainNet (with outdoor and indoor versions) detects the enclosed terrain type in patches. To improve the framework’s generalizability, an independent training dataset with 9,424 samples was curated from different databases including GTOS and MINC-2500, and used for pretrained models’ (e.g., MobileNetV2) fine-tuning.
Results
EgoPlaceNet detected outdoor and indoor scenes in MAGFRA-W with 97.36$$\%$$
%
and 95.59$$\%$$
%
(leave-one-subject-out) accuracies, respectively. EgoTerrainNet-Indoor and -Outdoor achieved high detection accuracies for pavement (87.63$$\%$$
%
), foliage (91.24$$\%$$
%
), gravel (95.12$$\%$$
%
), and high-friction materials (95.02$$\%$$
%
), which indicate the models’ high generalizabiliy.
Conclusions
Encouraging results suggest that the integration of wearable cameras and deep learning approaches can provide objective contextual information in an automated manner, towards context-aware FLDBs for gait and fall risk assessment in the wild.
Collapse
|
11
|
Brand YE, Schwartz D, Gazit E, Buchman AS, Gilad-Bachrach R, Hausdorff JM. Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22187094. [PMID: 36146441 PMCID: PMC9502704 DOI: 10.3390/s22187094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 05/14/2023]
Abstract
Remote assessment of the gait of older adults (OAs) during daily living using wrist-worn sensors has the potential to augment clinical care and mobility research. However, hand movements can degrade gait detection from wrist-sensor recordings. To address this challenge, we developed an anomaly detection algorithm and compared its performance to four previously published gait detection algorithms. Multiday accelerometer recordings from a wrist-worn and lower-back sensor (i.e., the “gold-standard” reference) were obtained in 30 OAs, 60% with Parkinson’s disease (PD). The area under the receiver operator curve (AUC) and the area under the precision−recall curve (AUPRC) were used to evaluate the performance of the algorithms. The anomaly detection algorithm obtained AUCs of 0.80 and 0.74 for OAs and PD, respectively, but AUPRCs of 0.23 and 0.31 for OAs and PD, respectively. The best performing detection algorithm, a deep convolutional neural network (DCNN), exhibited high AUCs (i.e., 0.94 for OAs and 0.89 for PD) but lower AUPRCs (i.e., 0.66 for OAs and 0.60 for PD), indicating trade-offs between precision and recall. When choosing a classification threshold of 0.9 (i.e., opting for high precision) for the DCNN algorithm, strong correlations (r > 0.8) were observed between daily living walking time estimates based on the lower-back (reference) sensor and the wrist sensor. Further, gait quality measures were significantly different in OAs and PD compared to healthy adults. These results demonstrate that daily living gait can be quantified using a wrist-worn sensor.
Collapse
Affiliation(s)
- Yonatan E. Brand
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6492416, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dafna Schwartz
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6492416, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6492416, Israel
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ran Gilad-Bachrach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6492416, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopedic Surgery, Rush University, Chicago, IL 60612, USA
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
12
|
Choi A, Kim TH, Yuhai O, Jeong S, Kim K, Kim H, Mun JH. Deep Learning-Based Near-Fall Detection Algorithm for Fall Risk Monitoring System Using a Single Inertial Measurement Unit. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2385-2394. [PMID: 35969550 DOI: 10.1109/tnsre.2022.3199068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proactively detecting falls and preventing injuries are among the primary keys to a healthy life for the elderly. Near-fall remote monitoring in daily life could provide key information to prevent future falls and obtain quantitative rehabilitation status for patients with weak balance ability. In this study, we developed a deep learning-based novel classification algorithm to precisely categorize three classes (falls, near-falls, and activities of daily living (ADLs)) using a single inertial measurement unit (IMU) device attached to the waist. A total of 34 young participants were included in this study. An IMU containing accelerometer and gyroscope sensors was fabricated to acquire acceleration and angular velocity signals. A comprehensive experiment including thirty-six types of activities (10 types of falls, 10 types of near-falls, and 16 types of ADLs) was designed based on previous studies. A modified directed acyclic graph-convolution neural network (DAG-CNN) architecture with hyperparameter optimization was proposed to predict fall, near-fall, and ADLs. Prediction results of the modified DAG-CNN structure were found to be approximately 7% more accurate than the traditional CNN structure. For the case of near-falls, the modified DAG-CNN demonstrated excellent prediction performance with accuracy of over 98% by combining gyroscope and accelerometer features. Additionally, by combining acceleration and angular velocity the trained model showed better performance than each model of acceleration and angular velocity. It is believed that information to preemptively handle the risk of falls and quantitatively evaluate the rehabilitation status of the elderly with weak balance will be provided by monitoring near-falls.
Collapse
|
13
|
Mollà-Casanova S, Pedrero-Sánchez J, Inglés M, López-Pascual J, Muñoz-Gómez E, Aguilar-Rodríguez M, Sempere-Rubio N, Serra-Añó P. Impact of Parkinson’s Disease on Functional Mobility at Different Stages. Front Aging Neurosci 2022; 14:935841. [PMID: 35783141 PMCID: PMC9249436 DOI: 10.3389/fnagi.2022.935841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Specific functional assessments to determine the progression of Parkinson’s Disease (PD) are important to slow down such progression and better plan rehabilitation. This study aimed to explore possible differences in the performance of different functional tasks included in a mobility test using sensors embedded in an Android device, in people at different PD stages. Materials and Methods Eighty-seven participants with PD agreed to participate in this cross-sectional study. They were assessed once using an inertial sensor and variables related to functional status were recorded (i.e., MLDisp, APDisp, DispA, Vrange, MLRange, PTurnSit, PStand, TTime, and RTime). Results There was significant impairment of the vertical range during gait between stages I and II. Further, when stages II and III were compared, the sit-to-stand power was significantly impaired, and the total time required to complete the test increased significantly (p < 0.05). Even more significant differences were obtained when stages I and III were compared, in particular, dysfunction in postural control, vertical range, sit to stand power and total time. Finally, there were no significant differences between stages in the medial-lateral displacements and reaction time (p > 0.05). Conclusion Functional mobility becomes more significantly impaired in the PD population as the PD stages progress. This implies impaired postural control, decreased ability to sit down or stand up from a chair, increased metabolic cost during walking, and overall slowing-down of motor function.
Collapse
Affiliation(s)
- Sara Mollà-Casanova
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
| | - Jose Pedrero-Sánchez
- Instituto de Biomecánica de Valencia, Universidad Politécnica de Valencia, Valencia, Spain
| | - Marta Inglés
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
| | - Juan López-Pascual
- Instituto de Biomecánica de Valencia, Universidad Politécnica de Valencia, Valencia, Spain
| | - Elena Muñoz-Gómez
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
| | - Nuria Sempere-Rubio
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
- *Correspondence: Nuria Sempere-Rubio,
| | - Pilar Serra-Añó
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de Valéncia, Valencia, Spain
| |
Collapse
|
14
|
Nouredanesh M, Ojeda L, Alexander NB, Godfrey A, Schwenk M, Melek W, Tung J. Automated Detection of Older Adults’ Naturally-Occurring Compensatory Balance Reactions: Translation From Laboratory to Free-Living Conditions. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022. [DOI: 10.1109/jtehm.2022.3163967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mina Nouredanesh
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lauro Ojeda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil B. Alexander
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
| | - Michael Schwenk
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - William Melek
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - James Tung
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Polhemus A, Delgado-Ortiz L, Brittain G, Chynkiamis N, Salis F, Gaßner H, Gross M, Kirk C, Rossanigo R, Taraldsen K, Balta D, Breuls S, Buttery S, Cardenas G, Endress C, Gugenhan J, Keogh A, Kluge F, Koch S, Micó-Amigo ME, Nerz C, Sieber C, Williams P, Bergquist R, Bosch de Basea M, Buckley E, Hansen C, Mikolaizak AS, Schwickert L, Scott K, Stallforth S, van Uem J, Vereijken B, Cereatti A, Demeyer H, Hopkinson N, Maetzler W, Troosters T, Vogiatzis I, Yarnall A, Becker C, Garcia-Aymerich J, Leocani L, Mazzà C, Rochester L, Sharrack B, Frei A, Puhan M. Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes. NPJ Digit Med 2021; 4:149. [PMID: 34650191 PMCID: PMC8516969 DOI: 10.1038/s41746-021-00513-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.
Collapse
Affiliation(s)
- Ashley Polhemus
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
| | - Laura Delgado-Ortiz
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Gavin Brittain
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, England
| | - Nikolaos Chynkiamis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle, UK
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Michaela Gross
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachele Rossanigo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kristin Taraldsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Diletta Balta
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Sofie Breuls
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University hospitals Leuven, Leuven, Belgium
| | - Sara Buttery
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gabriela Cardenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Christoph Endress
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Julia Gugenhan
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Alison Keogh
- Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Felix Kluge
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Koch
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Corinna Nerz
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Chloé Sieber
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Parris Williams
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ronny Bergquist
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magda Bosch de Basea
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Ellen Buckley
- Insigneo Institute, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Lars Schwickert
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Kirsty Scott
- Insigneo Institute, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Sabine Stallforth
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Janet van Uem
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrea Cereatti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Heleen Demeyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University hospitals Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University hospitals Leuven, Leuven, Belgium
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle, UK
| | - Alison Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Clemens Becker
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Letizia Leocani
- Department of Neurology, San Raffaele University, Milan, Italy
| | - Claudia Mazzà
- Insigneo Institute, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, England
| | - Anja Frei
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Milo Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Ullrich M, Mucke A, Kuderle A, Roth N, Gladow T, Gabner H, Marxreiter F, Klucken J, Eskofier BM, Kluge F. Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2103-2111. [PMID: 34633932 DOI: 10.1109/tnsre.2021.3119390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gait tests as part of home monitoring study protocols for patients with movement disorders may provide valuable standardized anchor-points for real-world gait analysis using inertial measurement units (IMUs). However, analyzing unsupervised gait tests relies on reliable test annotations by the patients requiring a potentially error-prone interaction with the recording system. To overcome this limitation, this work presents a novel algorithmic pipeline for the automated detection of unsupervised standardized gait tests from continuous real-world IMU data. In a study with twelve Parkinson's disease patients, we recorded real-world gait data over two weeks using foot-worn IMUs. During continuous daily recordings, the participants performed series of three consecutive 4×10 -Meters-Walking-Tests ( 4×10 MWTs) at different walking speeds, besides their usual daily-living activities. The algorithm first detected these gait test series using a gait sequence detection algorithm, a peak enhancement pipeline, and subsequence Dynamic Time Warping and then decomposed them into single 4×10 MWTs based on the walking speed. In the evaluation with 419 available gait test series, the detection reached an F1-score of 88.9% and the decomposition an F1-score of 94.0%. A concurrent validity evaluation revealed very good agreement between spatio-temporal gait parameters derived from manually labelled and automatically detected 4×10 MWTs. Our algorithm allows to remove the burden of system interaction from the patients and reduces the time for manual data annotation for researchers. The study contributes to an improved automated processing of real-world IMU gait data and enables a simple integration of standardized tests into continuous long-term recordings. This will help to bridge the gap between supervised and unsupervised gait assessment.
Collapse
|
17
|
Kluge F, Del Din S, Cereatti A, Gaßner H, Hansen C, Helbostad JL, Klucken J, Küderle A, Müller A, Rochester L, Ullrich M, Eskofier BM, Mazzà C. Consensus based framework for digital mobility monitoring. PLoS One 2021; 16:e0256541. [PMID: 34415959 PMCID: PMC8378707 DOI: 10.1371/journal.pone.0256541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Digital mobility assessment using wearable sensor systems has the potential to capture walking performance in a patient's natural environment. It enables monitoring of health status and disease progression and evaluation of interventions in real-world situations. In contrast to laboratory settings, real-world walking occurs in non-conventional environments and under unconstrained and uncontrolled conditions. Despite the general understanding, there is a lack of agreed definitions about what constitutes real-world walking, impeding the comparison and interpretation of the acquired data across systems and studies. The goal of this study was to obtain expert-based consensus on specific aspects of real-world walking and to provide respective definitions in a common terminological framework. An adapted Delphi method was used to obtain agreed definitions related to real-world walking. In an online survey, 162 participants from a panel of academic, clinical and industrial experts with experience in the field of gait analysis were asked for agreement on previously specified definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all rounds (31.5% response rate). We obtained consensus on all definitions ("Walking" > 90%, "Purposeful" > 75%, "Real-world" > 90%, "Walking bout" > 80%, "Walking speed" > 75%, "Turning" > 90% agreement) after two rounds. The identification of a consented set of real-world walking definitions has important implications for the development of assessment and analysis protocols, as well as for the reporting and comparison of digital mobility outcomes across studies and systems. The definitions will serve as a common framework for implementing digital and mobile technologies for gait assessment and are an important link for the transition from supervised to unsupervised gait assessment.
Collapse
Affiliation(s)
- Felix Kluge
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Clint Hansen
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Jorunn L. Helbostad
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Arne Küderle
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Martin Ullrich
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bjoern M. Eskofier
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Mazzà
- Department of Mechanical Engineering & Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
18
|
Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions. Gait Posture 2021; 85:178-190. [PMID: 33601319 DOI: 10.1016/j.gaitpost.2020.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite advances in laboratory-based supervised fall risk assessment methods (FRAs), falls still remain a major public health problem. This can be due to the alteration of behavior in laboratory due to the awareness of being observed (i.e., Hawthorne effect), the multifactorial complex etiology of falls, and our limited understanding of human behaviour in natural environments, or in the' wild'. To address these imitations, a growing body of literature has focused on free-living wearable-sensor-based FRAs. The objective of this narrative literature review is to discuss papers investigating natural data collected by wearable sensors for a duration of at least 24 h to identify fall-prone older adults. METHODS Databases (Scopus, PubMed and Google Scholar) were searched for studies based on a rigorous search strategy. RESULTS Twenty-four journal papers were selected, in which inertial sensors were the only wearable system employed for FRA in the wild. Gait was the most-investigated activity; but sitting, standing, lying, transitions and gait events, such as turns and missteps, were also explored. A multitude of free-living fall predictors (FLFPs), e.g., the quantity of daily steps, were extracted from activity bouts and events. FLFPs were further categorized into discrete domains (e.g., pace, complexity) defined by conceptual or data-driven models. Heterogeneity was found within the reviewed studies, which includes variance in: terminology (e.g., quantity vs macro), hyperparameters to define/estimate FLFPs, models and domains, and data processing approaches (e.g., the cut-off thresholds to define an ambulatory bout). These inconsistencies led to different results for similar FLFPs, limiting the ability to interpret and compare the evidence. CONCLUSION Free-living FRA is a promising avenue for fall prevention. Achieving a harmonized model is necessary to systematically address the inconsistencies in the field and identify FLFPs with the highest predictive values for falls to eventually address intervention programs and fall prevention.
Collapse
|
19
|
Gawronska A, Pajor A, Zamyslowska-Szmytke E, Rosiak O, Jozefowicz-Korczynska M. Usefulness of Mobile Devices in the Diagnosis and Rehabilitation of Patients with Dizziness and Balance Disorders: A State of the Art Review. Clin Interv Aging 2020; 15:2397-2406. [PMID: 33376315 PMCID: PMC7764625 DOI: 10.2147/cia.s289861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The gold standard for objective body posture examination is posturography. Body movements are detected through the use of force platforms that assess static and dynamic balance (conventional posturography). In recent years, new technologies like wearable sensors (mobile posturography) have been applied during complex dynamic activities to diagnose and rehabilitate balance disorders. They are used in healthy people, especially in the aging population, for detecting falls in the older adults, in the rehabilitation of different neurological, osteoarticular, and muscular system diseases, and in vestibular disorders. Mobile devices are portable, lightweight, and less expensive than conventional posturography. The vibrotactile system can consist of an accelerometer (linear acceleration measurement), gyroscopes (angular acceleration measurement), and magnetometers (heading measurement, relative to the Earth’s magnetic field). The sensors may be mounted to the trunk (most often in the lumbar region of the spine, and the pelvis), wrists, arms, sternum, feet, or shins. Some static and dynamic clinical tests have been performed with the use of wearable sensors. Smartphones are widely used as a mobile computing platform and to evaluate the results or monitor the patient during the movement and rehabilitation. There are various mobile applications for smartphone-based balance systems. Future research should focus on validating the sensitivity and reliability of mobile device measurements compared to conventional posturography. Conclusion Smartphone based mobile devices are limited to one sensor lumbar level posturography and offer basic clinical evaluation. Single or multi sensor mobile posturography is available from different manufacturers and offers single to multi-level measurements, providing more data and in some instances even performing sophisticated clinical balance tests.
Collapse
Affiliation(s)
- Anna Gawronska
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Anna Pajor
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Ewa Zamyslowska-Szmytke
- Balance Disorders Unit, Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Oskar Rosiak
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Magdalena Jozefowicz-Korczynska
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| |
Collapse
|
20
|
Celik Y, Stuart S, Woo WL, Godfrey A. Gait analysis in neurological populations: Progression in the use of wearables. Med Eng Phys 2020; 87:9-29. [PMID: 33461679 DOI: 10.1016/j.medengphy.2020.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Gait assessment is an essential tool for clinical applications not only to diagnose different neurological conditions but also to monitor disease progression as it contributes to the understanding of underlying deficits. There are established methods and models for data collection and interpretation of gait assessment within different pathologies. This narrative review aims to depict the evolution of gait assessment from observation and rating scales to wearable sensors and laboratory technologies and provide limitations and possible future directions in the field of gait assessment. In this context, we first present an extensive review of current clinical outcomes and gait models. Then, we demonstrate commercially available wearable technologies with their technical capabilities along with their use in gait assessment studies for various neurological conditions. In the next sections, a descriptive knowledge for existing inertial and EMG based algorithms and a sign based guide that shows the outcomes of previous neurological gait assessment studies are presented. Finally, we state a discussion for the use of wearables in gait assessment and speculate the possible research directions by revealing the limitations and knowledge gaps in the literature.
Collapse
Affiliation(s)
- Y Celik
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - S Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - W L Woo
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - A Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
21
|
Handelzalts S, Alexander NB, Mastruserio N, Nyquist LV, Strasburg DM, Ojeda LV. Detection of Real-World Trips in At-Fall Risk Community Dwelling Older Adults Using Wearable Sensors. Front Med (Lausanne) 2020; 7:514. [PMID: 32984385 PMCID: PMC7492551 DOI: 10.3389/fmed.2020.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Near-falls such as a trip, slip, stumble, or misstep involve a loss of balance (LOB) that does not result in a fall, occur more frequently than actual falls, and are associated with an increased fall risk. To date, studies have largely involved detection of simulated laboratory LOBs using wearable devices in young adults. Data on the detection of and kinematics of naturally occurring LOBs in people at high risk of falling are lacking. This may provide a new way to identify older adults at high risk for falls. We aimed to explore key body kinematics underlying real-world trips in at-fall risk community dwelling older adults wearing inertial measurement units (IMU). Methods: Five community-dwelling older adults with a history of falls who reported trips during the study period participated. They wore a voice recorder and 4 IMUs mounted on feet, lower back and wrist for two consecutive weeks to provide a record of the context and timing of LOB events. Sensor data prior to time-stamped voice recording of a trip were processed in order to visually identify unusual foot trajectories and lower back and arm orientations. Then, data of feet, lower back and wrist position and orientation were combined to create a three-dimensional animation representing the estimated body motion during the noted time segments in order to corroborate the occurrence of a trip. Events reported as a trip by the participant and identified as a trip by a researcher, blinded to voice recordings description, were included in the final analysis. Results: A total of 18 trips obtained from five participants were analyzed. Twelve trips occurred at home, three outside and for three the location was not reported. Trips were identified in the sensor data by observing (1) additional peaks to the typical foot velocity signal during swing phase; (2) increased velocity of the contralateral foot and (3) sharp changes in lower back pitch angles. Conclusions: Our approach demonstrates the feasibility of identifying and studying the mechanisms and context underlying trip-related LOBs in at-fall risk older adults during real world activities.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Physical Therapy, Loewenstein Rehabilitation Hospital, Ra'anana, Israel
| | - Neil B Alexander
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,VA Ann Arbor Health Care System Geriatrics Research Education and Clinical Center, Ann Arbor, MI, United States
| | - Nicholas Mastruserio
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Linda V Nyquist
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Debra M Strasburg
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lauro V Ojeda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Cajamarca G, Herskovic V, Rossel PO. Enabling Older Adults' Health Self-Management through Self-Report and Visualization-A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4348. [PMID: 32759801 PMCID: PMC7436010 DOI: 10.3390/s20154348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Aging is associated with a progressive decline in health, resulting in increased medical care and costs. Mobile technology may facilitate health self-management, thus increasing the quality of care and reducing costs. Although the development of technology offers opportunities in monitoring the health of older adults, it is not clear whether these technologies allow older adults to manage their health data themselves. This paper presents a review of the literature on mobile health technologies for older adults, focusing on whether these technologies enable the visualization of monitored data and the self-reporting of additional information by the older adults. The systematic search considered studies published between 2009 and 2019 in five online databases. We screened 609 articles and identified 95 that met our inclusion and exclusion criteria. Smartphones and tablets are the most frequently reported technology for older adults to enter additional data to the one that is monitored automatically. The recorded information is displayed on the monitoring device and screens of external devices such as computers. Future designs of mobile health technology should allow older users to enter additional information and visualize data; this could enable them to understand their own data as well as improve their experience with technology.
Collapse
Affiliation(s)
- Gabriela Cajamarca
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Valeria Herskovic
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Pedro O. Rossel
- Department of Computer Science, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
23
|
Polhemus AM, Bergquist R, Bosch de Basea M, Brittain G, Buttery SC, Chynkiamis N, Dalla Costa G, Delgado Ortiz L, Demeyer H, Emmert K, Garcia Aymerich J, Gassner H, Hansen C, Hopkinson N, Klucken J, Kluge F, Koch S, Leocani L, Maetzler W, Micó-Amigo ME, Mikolaizak AS, Piraino P, Salis F, Schlenstedt C, Schwickert L, Scott K, Sharrack B, Taraldsen K, Troosters T, Vereijken B, Vogiatzis I, Yarnall A, Mazza C, Becker C, Rochester L, Puhan MA, Frei A. Walking-related digital mobility outcomes as clinical trial endpoint measures: protocol for a scoping review. BMJ Open 2020; 10:e038704. [PMID: 32690539 PMCID: PMC7371223 DOI: 10.1136/bmjopen-2020-038704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Advances in wearable sensor technology now enable frequent, objective monitoring of real-world walking. Walking-related digital mobility outcomes (DMOs), such as real-world walking speed, have the potential to be more sensitive to mobility changes than traditional clinical assessments. However, it is not yet clear which DMOs are most suitable for formal validation. In this review, we will explore the evidence on discriminant ability, construct validity, prognostic value and responsiveness of walking-related DMOs in four disease areas: Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease and proximal femoral fracture. METHODS AND ANALYSIS Arksey and O'Malley's methodological framework for scoping reviews will guide study conduct. We will search seven databases (Medline, CINAHL, Scopus, Web of Science, EMBASE, IEEE Digital Library and Cochrane Library) and grey literature for studies which (1) measure differences in DMOs between healthy and pathological walking, (2) assess relationships between DMOs and traditional clinical measures, (3) assess the prognostic value of DMOs and (4) use DMOs as endpoints in interventional clinical trials. Two reviewers will screen each abstract and full-text manuscript according to predefined eligibility criteria. We will then chart extracted data, map the literature, perform a narrative synthesis and identify gaps. ETHICS AND DISSEMINATION As this review is limited to publicly available materials, it does not require ethical approval. This work is part of Mobilise-D, an Innovative Medicines Initiative Joint Undertaking which aims to deliver, validate and obtain regulatory approval for DMOs. Results will be shared with the scientific community and general public in cooperation with the Mobilise-D communication team. REGISTRATION Study materials and updates will be made available through the Center for Open Science's OSFRegistry (https://osf.io/k7395).
Collapse
Affiliation(s)
- Ashley Marie Polhemus
- Epidemiology, Biostatistics, and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Ronny Bergquist
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gavin Brittain
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, UK
| | | | - Nikolaos Chynkiamis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Laura Delgado Ortiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Heleen Demeyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Kirsten Emmert
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Judith Garcia Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Heiko Gassner
- Department of Molecular Neurology, Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | | | - Jochen Klucken
- Department of Molecular Neurology, Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Felix Kluge
- Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Sarah Koch
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Letizia Leocani
- Department of Neurology, San Raffaele Hospital, Milan, Italy
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - M Encarna Micó-Amigo
- Translational and Clinical Research Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - A Stefanie Mikolaizak
- Department of Clinical Gerontology, Robert Bosch Hospital, Stuttgart, Baden-Württemberg, Germany
| | - Paolo Piraino
- Department of Research & Early Development Statistics, Bayer AG, Berlin, Germany
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Sardegna, Italy
| | - Christian Schlenstedt
- Department of Neurology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Lars Schwickert
- Department of Clinical Gerontology, Robert Bosch Hospital, Stuttgart, Baden-Württemberg, Germany
| | - Kirsty Scott
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, Sheffield, UK
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, UK
| | - Kristin Taraldsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Alison Yarnall
- Translational and Clinical Research Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Claudia Mazza
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, Sheffield, UK
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, Sheffield, UK
| | - Clemens Becker
- Department of Clinical Gerontology, Robert Bosch Hospital, Stuttgart, Baden-Württemberg, Germany
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Milo Alan Puhan
- Epidemiology, Biostatistics, and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Anja Frei
- Epidemiology, Biostatistics, and Prevention Institute, University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Monje MHG, Foffani G, Obeso J, Sánchez-Ferro Á. New Sensor and Wearable Technologies to Aid in the Diagnosis and Treatment Monitoring of Parkinson's Disease. Annu Rev Biomed Eng 2020; 21:111-143. [PMID: 31167102 DOI: 10.1146/annurev-bioeng-062117-121036] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a degenerative disorder of the brain characterized by the impairment of the nigrostriatal system. This impairment leads to specific motor manifestations (i.e., bradykinesia, tremor, and rigidity) that are assessed through clinical examination, scales, and patient-reported outcomes. New sensor-based and wearable technologies are progressively revolutionizing PD care by objectively measuring these manifestations and improving PD diagnosis and treatment monitoring. However, their use is still limited in clinical practice, perhaps because of the absence of external validation and standards for their continuous use at home. In the near future, these systems will progressively complement traditional tools and revolutionize the way we diagnose and monitor patients with PD.
Collapse
Affiliation(s)
- Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, 28938 Móstoles, Madrid, Spain; , , , .,Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, 28938 Móstoles, Madrid, Spain; , , , .,Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| | - José Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, 28938 Móstoles, Madrid, Spain; , , , .,Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 28031 Madrid, Spain
| | - Álvaro Sánchez-Ferro
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, 28938 Móstoles, Madrid, Spain; , , , .,Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, 28031 Madrid, Spain.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Ullrich M, Kuderle A, Hannink J, Din SD, Gasner H, Marxreiter F, Klucken J, Eskofier BM, Kluge F. Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies. IEEE J Biomed Health Inform 2020; 24:1869-1878. [PMID: 32086225 DOI: 10.1109/jbhi.2020.2975361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mobile gait analysis using wearable inertial measurement units (IMUs) provides valuable insights for the assessment of movement impairments in different neurological and musculoskeletal diseases, for example Parkinson's disease (PD). The increase in data volume due to arising long-term monitoring requires valid, robust and efficient analysis pipelines. In many studies an upstream detection of gait is therefore applied. However, current methods do not provide a robust way to successfully reject non-gait signals. Therefore, we developed a novel algorithm for the detection of gait from continuous inertial data of sensors worn at the feet. The algorithm is focused not only on a high sensitivity but also a high specificity for gait. Sliding windows of IMU signals recorded from the feet of PD patients were processed in the frequency domain. Gait was detected if the frequency spectrum contained specific patterns of harmonic frequencies. The approach was trained and evaluated on 150 clinical measurements containing standardized gait and cyclic movement tests. The detection reached a sensitivity of 0.98 and a specificity of 0.96 for the best sensor configuration (angular rate around the medio-lateral axis). On an independent validation data set including 203 unsupervised, semi-standardized gait tests, the algorithm achieved a sensitivity of 0.97. Our algorithm for the detection of gait from continuous IMU signals works reliably and showed promising results for the application in the context of free-living and non-standardized monitoring scenarios.
Collapse
|
26
|
Pang I, Okubo Y, Sturnieks D, Lord SR, Brodie MA. Detection of Near Falls Using Wearable Devices: A Systematic Review. J Geriatr Phys Ther 2020; 42:48-56. [PMID: 29384813 DOI: 10.1519/jpt.0000000000000181] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Falls among older people are a serious health issue. Remote detection of near falls may provide a new way to identify older people at high risk of falling. This could enable exercise and fall prevention programs to target the types of near falls experienced and the situations that cause near falls before fall-related injuries occur. The purpose of this systematic review was to summarize and critically examine the evidence regarding the detection of near falls (slips, trips, stumbles, missteps, incorrect weight transfer, or temporary loss of balance) using wearable devices. METHODS CINAHL, EMBASE, MEDLINE, Compendex, and Inspec were searched to obtain studies that used a wearable device to detect near falls in young and older people with or without a chronic disease and were published in English. RESULTS Nine studies met the final inclusion criteria. Wearable sensors used included accelerometers, gyroscopes, and insole force inducers. The waist was the most common location to place a single device. Both high sensitivity (≥85.7%) and specificity (≥90.0%) were reported for near-fall detection during various clinical simulations and improved when multiple devices were worn. Several methodological issues that increased the risk of bias were revealed. Most studies analyzed a single or few near-fall types by younger adults in controlled laboratory environments and did not attempt to distinguish naturally occurring near falls from actual falls or other activities of daily living in older people. CONCLUSIONS The use of a single lightweight sensor to distinguish between different types of near falls, actual falls, and activities of daily living is a promising low-cost technology and clinical tool for long-term continuous monitoring of older people and clinical populations at risk of falls. However, currently the evidence is limited because studies have largely involved simulated laboratory events in young adults. Future studies should focus on validating near-fall detection in larger cohorts and include data from (i) people at high risk of falling, (ii) activities of daily living, (iii) both near falls and actual falls, and (iv) naturally occurring near falls.
Collapse
Affiliation(s)
- Ivan Pang
- Graduate School of Biomedical Engineering, University of New South Wales, Randwick, Sydney, Australia
| | - Yoshiro Okubo
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia
| | - Daina Sturnieks
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Randwick, Sydney, Australia
| | - Stephen R Lord
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Randwick, Sydney, Australia
| | - Matthew A Brodie
- Graduate School of Biomedical Engineering, University of New South Wales, Randwick, Sydney, Australia.,Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia
| |
Collapse
|
27
|
Morgan C, Rolinski M, McNaney R, Jones B, Rochester L, Maetzler W, Craddock I, Whone AL. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson's Disease in the Home or a Home-like Environment. JOURNAL OF PARKINSON'S DISEASE 2020; 10:429-454. [PMID: 32250314 PMCID: PMC7242826 DOI: 10.3233/jpd-191781] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The emergence of new technologies measuring outcomes in Parkinson's disease (PD) to complement the existing clinical rating scales has introduced the possibility of measurement occurring in patients' own homes whilst they freely live and carry out normal day-to-day activities. OBJECTIVE This systematic review seeks to provide an overview of what technology is being used to test which outcomes in PD from free-living participant activity in the setting of the home environment. Additionally, this review seeks to form an impression of the nature of validation and clinimetric testing carried out on the technological device(s) being used. METHODS Five databases (Medline, Embase, PsycInfo, Cochrane and Web of Science) were systematically searched for papers dating from 2000. Study eligibility criteria included: adults with a PD diagnosis; the use of technology; the setting of a home or home-like environment; outcomes measuring any motor and non-motor aspect relevant to PD, as well as activities of daily living; unrestricted/unscripted activities undertaken by participants. RESULTS 65 studies were selected for data extraction. There were wide varieties of participant sample sizes (<10 up to hundreds) and study durations (<2 weeks up to a year). The metrics evaluated by technology, largely using inertial measurement units in wearable devices, included gait, tremor, physical activity, bradykinesia, dyskinesia and motor fluctuations, posture, falls, typing, sleep and activities of daily living. CONCLUSIONS Home-based free-living testing in PD is being conducted by multiple groups with diverse approaches, focussing mainly on motor symptoms and sleep.
Collapse
Affiliation(s)
- Catherine Morgan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Michal Rolinski
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Roisin McNaney
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Bennet Jones
- Library and Knowledge Service, Learning and Research, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
- Newcastle Upon Tyne Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, UK
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Ian Craddock
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Alan L. Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| |
Collapse
|
28
|
Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis. NPJ Digit Med 2019; 2:123. [PMID: 31840094 PMCID: PMC6906296 DOI: 10.1038/s41746-019-0197-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023] Open
Abstract
Technological advances in passive digital phenotyping present the opportunity to quantify neurological diseases using new approaches that may complement clinical assessments. Here, we studied multiple sclerosis (MS) as a model neurological disease for investigating physiometric and environmental signals. The objective of this study was to assess the feasibility and correlation of wearable biosensors with traditional clinical measures of disability both in clinic and in free-living in MS patients. This is a single site observational cohort study conducted at an academic neurological center specializing in MS. A cohort of 25 MS patients with varying disability scores were recruited. Patients were monitored in clinic while wearing biosensors at nine body locations at three separate visits. Biosensor-derived features including aspects of gait (stance time, turn angle, mean turn velocity) and balance were collected, along with standardized disability scores assessed by a neurologist. Participants also wore up to three sensors on the wrist, ankle, and sternum for 8 weeks as they went about their daily lives. The primary outcomes were feasibility, adherence, as well as correlation of biosensor-derived metrics with traditional neurologist-assessed clinical measures of disability. We used machine-learning algorithms to extract multiple features of motion and dexterity and correlated these measures with more traditional measures of neurological disability, including the expanded disability status scale (EDSS) and the MS functional composite-4 (MSFC-4). In free-living, sleep measures were additionally collected. Twenty-three subjects completed the first two of three in-clinic study visits and the 8-week free-living biosensor period. Several biosensor-derived features significantly correlated with EDSS and MSFC-4 scores derived at visit two, including mobility stance time with MSFC-4 z-score (Spearman correlation −0.546; p = 0.0070), several aspects of turning including turn angle (0.437; p = 0.0372), and maximum angular velocity (0.653; p = 0.0007). Similar correlations were observed at subsequent clinic visits, and in the free-living setting. We also found other passively collected signals, including measures of sleep, that correlated with disease severity. These findings demonstrate the feasibility of applying passive biosensor measurement techniques to monitor disability in MS patients both in clinic and in the free-living setting.
Collapse
|
29
|
Nouredanesh M, Tung J. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105003. [PMID: 31465977 DOI: 10.1016/j.cmpb.2019.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/22/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Falls are the leading cause of fatal and non-fatal injuries among seniors worldwide. While laboratory evidence supports the view that impaired ability to execute compensatory balance responses (CBRs) is linked to an increased risk of falling, existing unsupervised fall risk assessment methods are mainly focused on detecting changes in spatio-temporal gait parameters over time rather than naturally-occurring CBR events. To address the gap in available methods, this paper compares the capability of machine learning-based models trained on the kinematic data from inertial measurement units (IMU) and surface electromyography (sEMG) features to detect lateral CBRs, to ultimately address detection of CBRs in free-living conditions. Moreover, we propose a novel "Hybrid" feature set, which considers cross-correlation and temporal similarities between the normalized kinematic and sEMG signals. METHODS Focusing on frontal plane perturbations, a classifier to automatically: 1) detect lateral CBRs during normal gait, and 2) identify type (i.e., crossover, sidestep) using data from three wearable IMUs and 4 sEMG signals from the thigh (i.e., biceps femoris, rectus femoris) and lower leg muscles (i.e., gastrocnemious, tibialis anterior) was developed. In total, 600 trials (including 358 lateral CBRs) from 7 young, healthy adults were analyzed. The effects of feature type (IMU, sEMG, Hybrid) and sensor placement on the random forest-based classifier performance were investigated. RESULTS CBR detection (i.e., CBR vs normal gait) accuracies (leave-one-subject-out cross validation) were 83.95% and 99.21% using sEMG-based and IMU-based features, respectively, which dropped to 72.17% and 84.83% for the multiclass identification (i.e., side-step vs cross-over vs normal gait) problem. Findings yielded shank as the best overall location for the multiclass problem, and chest as the most accurate for CBR detection. In general, adding sEMG and Hybrid features to IMUs yielded incremental improvements in CBR detection and type identification (87.03% leave-one-subject-out cross-validation for type identification). CONCLUSION The findings of this study demonstrate that IMU-based features are favourable over sEMG and Hybrid features for the task of CBR detection, with incremental value for type identification. Evidence presented suggests that Hybrid features may increase performance for other wearable sensor applications (e.g. activity recognition systems).
Collapse
Affiliation(s)
- Mina Nouredanesh
- Neural and Rehabilitation Engineering Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | - James Tung
- Neural and Rehabilitation Engineering Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
| |
Collapse
|
30
|
Nouredanesh M, Gordt K, Schwenk M, Tung J. Automated Detection of Multidirectional Compensatory Balance Reactions: A Step Towards Tracking Naturally Occurring Near Falls. IEEE Trans Neural Syst Rehabil Eng 2019; 28:478-487. [PMID: 31794400 DOI: 10.1109/tnsre.2019.2956487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Falls are the leading cause of fatal and non-fatal injuries among seniors with serious and costly consequences. Laboratory evidence supports the view that impaired ability to execute compensatory balance reactions (CBRs) or near-falls is linked to an increased risk of falling. Therefore, as an alternative to the commonly used fall risk assessment methods examining spatial-temporal parameters of gait, this study focuses on the development of machine learning-based models to detect multidirectional CBRs using wearable inertial measurement units (IMUs). Random forest models were developed based upon the data captured by five wearable IMUs to 1) detect CBRs during normal gait, and 2) identify the type of CBR (eight different classes). A perturbation treadmill (PT) was employed to systematically elicit CBRs (i.e. PT-CBRs) during walking in different directions (e.g slip-like, trip-like, and medio-lateral) and amplitudes (e.g., low-, high-amplitude). We hypothesized that these PT-CBRs could simulate naturally-occurring CBRs (N-CBRs). Proof-of-concept testing in 9 young, healthy adults demonstrated accuracies of 96.60% and 80.64% for the PT-CBR detection and type identification models, respectively. Performance of the detection model was tested against a published dataset (IMUFD) simulating N-CBRs, including the most common types observed in older adults in long-term care facilities, which achieved sensitivity of 100%, but poor specificity. Adding normal gait data from IMUFD for training improved specificity, indicating treadmill walking alone is insufficient exemplar data. Perturbation treadmill combined with overground walking data is a suitable paradigm to collect training datasets of involuntary CBR events. These findings suggest that accurate detection of naturally-occurring CBRs is feasible, and supports further investigation of implementing a wearable sensor system to track naturally-occurring CBRs as a novel means of fall risk assessment.
Collapse
|
31
|
Silva de Lima AL, Smits T, Darweesh SKL, Valenti G, Milosevic M, Pijl M, Baldus H, de Vries NM, Meinders MJ, Bloem BR. Home-based monitoring of falls using wearable sensors in Parkinson's disease. Mov Disord 2019; 35:109-115. [PMID: 31449705 PMCID: PMC7003816 DOI: 10.1002/mds.27830] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Falling is among the most serious clinical problems in Parkinson's disease (PD). We used body-worn sensors (falls detector worn as a necklace) to quantify the hazard ratio of falls in PD patients in real life. METHODS We matched all 2063 elderly individuals with self-reported PD to 2063 elderly individuals without PD based on age, gender, comorbidity, and living conditions. We analyzed fall events collected at home via a wearable sensor. Fall events were collected either automatically using the wearable falls detector or were registered by a button push on the same device. We extracted fall events from a 2.5-year window, with an average follow-up of 1.1 years. All falls included were confirmed immediately by a subsequent telephone call. The outcomes evaluated were (1) incidence rate of any fall, (2) incidence rate of a new fall after enrollment (ie, hazard ratio), and (3) 1-year cumulative incidence of falling. RESULTS The incidence rate of any fall was higher among self-reported PD patients than controls (2.1 vs. 0.7 falls/person, respectively; P < .0001). The incidence rate of a new fall after enrollment (ie, hazard ratio) was 1.8 times higher for self-reported PD patients than controls (95% confidence interval, 1.6-2.0). CONCLUSION Having PD nearly doubles the incidence of falling in real life. These findings highlight PD as a prime "falling disease." The results also point to the feasibility of using body-worn sensors to monitor falls in daily life. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Lígia Silva de Lima
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Tine Smits
- Philips Research, Department Personal Health, Eindhoven, the Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Giulio Valenti
- Philips Research, Department Personal Health, Eindhoven, the Netherlands
| | - Mladen Milosevic
- Philips Research North America, Acute Care Solutions Department, Cambridge, Massachusetts, USA
| | - Marten Pijl
- Philips Research, Department Personal Health, Eindhoven, the Netherlands
| | - Heribert Baldus
- Philips Research, Department Personal Health, Eindhoven, the Netherlands
| | - Nienke M de Vries
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.,Radboud University Medical Center, Radboud Institute for Health Sciences, Scientific Center for Quality of Healthcare, Nijmegen, the Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Hillel I, Gazit E, Nieuwboer A, Avanzino L, Rochester L, Cereatti A, Croce UD, Rikkert MO, Bloem BR, Pelosin E, Del Din S, Ginis P, Giladi N, Mirelman A, Hausdorff JM. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur Rev Aging Phys Act 2019; 16:6. [PMID: 31073340 PMCID: PMC6498572 DOI: 10.1186/s11556-019-0214-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
Background The traditional evaluation of gait in the laboratory during structured testing has provided important insights, but is limited by its “snapshot” character and observation in an unnatural environment. Wearables enable monitoring of gait in real-world environments over a week. Initial findings show that in-lab and real-world measures differ. As a step towards better understanding these gaps, we directly compared in-lab usual-walking (UW) and dual-task walking (DTW) to daily-living measures of gait. Methods In-lab gait features (e.g., gait speed, step regularity, and stride regularity) derived from UW and DTW were compared to the same gait features during daily-living in 150 elderly fallers (age: 76.5 ± 6.3 years, 37.6% men). In both settings, features were extracted from a lower-back accelerometer. In the real-world setting, subjects were asked to wear the device for 1 week and pre-processing detected 30-s daily-living walking bouts. A histogram of all walking bouts was determined for each walking feature for each subject and then each subject’s typical (percentile 50, median), worst (percentile 10) and the best (percentile 90) values over the week were determined for each feature. Statistics of reliability were assessed using Intra-Class correlations and Bland-Altman plots. Results As expected, in-lab gait speed, step regularity, and stride regularity were worse during DTW, compared to UW. In-lab gait speed, step regularity, and stride regularity during UW were significantly higher (i.e., better) than the typical daily-living values (p < 0.001) and different (p < 0.001) from the worst and best values. DTW values tended to be similar to typical daily-living values (p = 0.205, p = 0.053, p = 0.013 respectively). ICC assessment and Bland-Altman plots indicated that in-lab values do not reliably reflect the daily-walking values. Conclusions Gait values measured during relatively long (30-s) daily-living walking bouts are more similar to the corresponding values obtained in the lab during dual-task walking, as compared to usual walking. Still, gait performance during most daily-living walking bouts is worse than that measured during usual and dual-tasking in the lab. The values measured in the lab do not reliably reflect daily-living measures. That is, an older adult’s typical daily-living gait cannot be estimated by simply measuring walking in a structured, laboratory setting.
Collapse
Affiliation(s)
- Inbar Hillel
- 1Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Gazit
- 1Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, KU Belgium
| | - Laura Avanzino
- 3IRCCS San Martino Teaching Hospital, Genoa, Italy.,4Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy
| | - Lynn Rochester
- 5Institute of Neuroscience, Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.,6The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrea Cereatti
- 7Department of Biomedical Sciences, Bioengineering unit, University of Sassari, Sassari, Italy.,Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy
| | - Ugo Della Croce
- 7Department of Biomedical Sciences, Bioengineering unit, University of Sassari, Sassari, Italy.,Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy
| | - Marcel Olde Rikkert
- 9Department of Geriatric Medicine, Donders Centre for Medical Neuroscience, Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- 10Department of Neurology, Donders Centre for Medical Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Elisa Pelosin
- 3IRCCS San Martino Teaching Hospital, Genoa, Italy.,4Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy
| | - Silvia Del Din
- 5Institute of Neuroscience, Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Pieter Ginis
- Department of Rehabilitation Sciences, Neuromotor Rehabilitation Research Group, Leuven, KU Belgium
| | - Nir Giladi
- 1Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,11Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,12Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- 1Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,11Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,12Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- 1Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,11Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,13Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, USA.,14Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Chasing Feet in the Wild: A Proposed Egocentric Motion-Aware Gait Assessment Tool. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-11024-6_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Ojeda LV, Adamczyk PG, Rebula JR, Nyquist LV, Strasburg DM, Alexander NB. Reconstruction of body motion during self-reported losses of balance in community-dwelling older adults. Med Eng Phys 2018; 64:86-92. [PMID: 30581048 DOI: 10.1016/j.medengphy.2018.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
Older adults experience slips, trips, stumbles, and other losses of balance (LOBs). LOBs are more common than falls and are closely linked to falls and fall-injuries. Data about real-world LOBs is limited, particularly information quantifying the prevalence, frequency, and intrinsic and extrinsic circumstances in which they occur. This paper describes a new method to identify and analyze LOBs through long-term recording of community-dwelling older adults. The approach uses wearable inertial measurement units (IMUs) on the feet, trunk and one wrist, together with a voice recorder for immediate, time-stamped self-reporting of the type, context and description of LOBs. Following identification of an LOB in the voice recording, concurrent IMU data is used to estimate foot paths and body motions, and to create body animations to analyze the event. In this pilot study, three older adults performed a long-term monitoring study, with four weeks recording LOBs by voice and two concurrent weeks wearing IMUs. This report presents a series of LOB cases to illustrate the proposed method, and how it can contribute to interpretation of the causes and contexts of the LOBs. The context and timing information from the voice records was critical to the process of finding and analyzing LOB events within the voluminous sensor data record, and included much greater detail, specificity, and nuance than past diary or smartphone reporting.
Collapse
Affiliation(s)
- Lauro V Ojeda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Peter G Adamczyk
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Intelligent Prosthetic Systems, LLC, Madison, WI, United States
| | - John R Rebula
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Linda V Nyquist
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Debra M Strasburg
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Neil B Alexander
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; VA Ann Arbor Health Care System Geriatrics Research Education and Clinical Center, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Stack E, Agarwal V, King R, Burnett M, Tahavori F, Janko B, Harwin W, Ashburn A, Kunkel D. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors. Gait Posture 2018; 62:321-326. [PMID: 29614464 DOI: 10.1016/j.gaitpost.2018.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Falls and near falls are common among people with Parkinson's (PwP). To date, most wearable sensor research focussed on fall detection, few studies explored if wearable sensors can detect instability. RESEARCH QUESTION Can instability (caution or near-falls) be detected using wearable sensors in comparison to video analysis? METHODS Twenty-four people (aged 60-86) with and without Parkinson's were recruited from community groups. Movements (e.g. walking, turning, transfers and reaching) were observed in the gait laboratory and/or at home; recorded using clinical measures, video and five wearable sensors (attached on the waist, ankles and wrists). After defining 'caution' and 'instability', two researchers evaluated video data and a third the raw wearable sensor data; blinded to each other's evaluations. Agreement between video and sensor data was calculated on stability, timing, step count and strategy. RESULTS Data was available for 117 performances: 82 (70%) appeared stable on video. Ratings agreed in 86/117 cases (74%). Highest agreement was noted for chair transfer, timed up and go test and 3 m walks. Video analysts noted caution (slow, contained movements, safety-enhancing postures and concentration) and/or instability (saving reactions, stopping after stumbling or veering) in 40/134 performances (30%): raw wearable sensor data identified 16/35 performances rated cautious or unstable (sensitivity 46%) and 70/82 rated stable (specificity 85%). There was a 54% chance that a performance identified from wearable sensors as cautious/unstable was so; rising to 80% for stable movements. SIGNIFICANCE Agreement between wearable sensor and video data suggested that wearable sensors can detect subtle instability and near-falls. Caution and instability were observed in nearly a third of performances, suggesting that simple, mildly challenging actions, with clearly defined start- and end-points, may be most amenable to monitoring during free-living at home. Using the genuine near-falls recorded, work continues to automatically detect subtle instability using algorithms.
Collapse
Affiliation(s)
- Emma Stack
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Veena Agarwal
- Faculty of Health Sciences, University of Southampton, Southampton, UK; Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, UK
| | - Rachel King
- School of Systems Engineering, University of Reading, Reading, UK
| | - Malcolm Burnett
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Fatemeh Tahavori
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Balazs Janko
- School of Systems Engineering, University of Reading, Reading, UK
| | - William Harwin
- School of Systems Engineering, University of Reading, Reading, UK
| | - Ann Ashburn
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Dorit Kunkel
- Faculty of Health Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
36
|
Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson's disease, and stroke: a mixed-methods systematic review. J Neurol 2018; 265:1740-1752. [PMID: 29427026 PMCID: PMC6060770 DOI: 10.1007/s00415-018-8786-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Wearable technology is increasingly used to monitor neurological disorders. The purpose of this systematic review was to synthesize knowledge from quantitative and qualitative clinical researches using wearable sensors in epilepsy, Parkinson's disease (PD), and stroke. METHODS A systematic literature search was conducted in PubMed and Scopus spanning from 1995 to January 2017. A synthesis of the main findings, reported adherence to wearables and missing data from quantitative studies, is provided. Clinimetric properties of measures derived from wearables in laboratory, free activities in hospital, and free-living environment were also evaluated. Qualitative thematic synthesis was conducted to explore user experiences and acceptance of wearables. RESULTS In total, 56 studies (50 reporting quantitative and 6 reporting qualitative data) were included for data extraction and synthesis. Among studies reporting quantitative data, 5 were in epilepsy, 21 PD, and 24 studies in stroke. In epilepsy, wearables are used to detect and differentiate seizures in hospital settings. In PD, the focus is on quantification of cardinal motor symptoms and medication-evoked adverse symptoms in both laboratory and free-living environment. In stroke upper extremity activity, walking and physical activity have been studied in laboratory and during free activities. Three analytic themes emerged from thematic synthesis of studies reporting qualitative data: acceptable integration in daily life, lack of confidence in technology, and the need to consider individualization. CONCLUSIONS Wearables may provide information of clinical features of interest in epilepsy, PD and stroke, but knowledge regarding the clinical utility for supporting clinical decision making remains to be established.
Collapse
Affiliation(s)
- Dongni Johansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristina Malmgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margit Alt Murphy
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Gazibara T, Kisic Tepavcevic D, Svetel M, Tomic A, Stankovic I, Kostic VS, Pekmezovic T. Near-falls in people with Parkinson's disease: Circumstances, contributing factors and association with falling. Clin Neurol Neurosurg 2017; 161:51-55. [PMID: 28858631 DOI: 10.1016/j.clineuro.2017.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To describe circumstances of near-falls among persons with Parkinson's disease (PD), assess factors associated with near-falling and assess whether near-falls in the first 6 months are associated with falling in the latter 6 months over one year of follow-up. MATERIALS AND METHODS In the period August 2011-December 2012, 120 consecutive persons with PD, who denied having fallen in the past 6 months, were recruited at Clinical center of Serbia in Belgrade. Occurrence of falling and near-falls was followed for one year. RESULTS A total of 31 persons with PD (25.8%) experienced near-falls, but did not fall. Of 42 fallers, 32 (76.2%) experienced near-falls. Tripping was the most common cause of near-falls among fallers, whereas postural instability was the most common in non-fallers. Regardless of falling experience, the most common manner to avoid fall was holding onto furniture or wall. After adjustment for multiple motor and non-motor PD features, more severe freezing of gait was associated with occurrence of near-falls over one year of follow-up (odds ratio [OR]=1.08, 95% confidence interval [CI] 1.01-1.16; p=0.043). Adjusted regression analysis did not show associations between near-falling in the first 6 months and falling in the latter 6 months of follow-up. CONCLUSION Near-falls commonly occur in persons with PD. More severe freezing of gait appears to predispose near-falling. Fall prevention programs focusing on balance maintenance when experiencing freezing of gait could potentially be useful in reduction of near-falls.
Collapse
Affiliation(s)
- Tatjana Gazibara
- Institute of Epidemiology, Visegradska 26a, Faculty of Medicine, University of Belgrade, Serbia
| | - Darija Kisic Tepavcevic
- Institute of Epidemiology, Visegradska 26a, Faculty of Medicine, University of Belgrade, Serbia
| | - Marina Svetel
- Clinic of Neurology, Dr. Subotica 6, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Serbia
| | - Aleksandra Tomic
- Clinic of Neurology, Dr. Subotica 6, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, Dr. Subotica 6, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Dr. Subotica 6, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Serbia
| | - Tatjana Pekmezovic
- Institute of Epidemiology, Visegradska 26a, Faculty of Medicine, University of Belgrade, Serbia.
| |
Collapse
|
38
|
Bradshaw MJ, Farrow S, Motl RW, Chitnis T. Wearable biosensors to monitor disability in multiple sclerosis. Neurol Clin Pract 2017; 7:354-362. [PMID: 29185551 DOI: 10.1212/cpj.0000000000000382] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Abstract
Purpose of review Biosensors capable of measuring physiologic and kinetic parameters associated with disability are being applied to the study of people with multiple sclerosis (MS). We review the use of biosensors in people with MS with an emphasis on measuring/monitoring disability and understanding knowledge gaps between biosensor data and clinical care. Recent findings Accelerometers are available to the public and may be able to help the clinician understand a patient's degree of disability. Further studies with wearable biosensors capable of measuring other physiologic features, such as vital signs, are needed and are likely to contribute to our understanding of MS. Summary Wearable biosensors can improve our understanding of disability, response to treatment, and natural history of MS.
Collapse
Affiliation(s)
- Michael J Bradshaw
- Department of Neurology (MJB), Vanderbilt University Medical Center, Nashville, TN; Wentworth Biotechnology (SF), NC; Department of Physical Therapy (RWM), University of Alabama at Birmingham; and Partners Multiple Sclerosis Center (TC, MJB, SF, TC), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Samantha Farrow
- Department of Neurology (MJB), Vanderbilt University Medical Center, Nashville, TN; Wentworth Biotechnology (SF), NC; Department of Physical Therapy (RWM), University of Alabama at Birmingham; and Partners Multiple Sclerosis Center (TC, MJB, SF, TC), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Robert W Motl
- Department of Neurology (MJB), Vanderbilt University Medical Center, Nashville, TN; Wentworth Biotechnology (SF), NC; Department of Physical Therapy (RWM), University of Alabama at Birmingham; and Partners Multiple Sclerosis Center (TC, MJB, SF, TC), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tanuja Chitnis
- Department of Neurology (MJB), Vanderbilt University Medical Center, Nashville, TN; Wentworth Biotechnology (SF), NC; Department of Physical Therapy (RWM), University of Alabama at Birmingham; and Partners Multiple Sclerosis Center (TC, MJB, SF, TC), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Silva de Lima AL, Evers LJW, Hahn T, Bataille L, Hamilton JL, Little MA, Okuma Y, Bloem BR, Faber MJ. Freezing of gait and fall detection in Parkinson's disease using wearable sensors: a systematic review. J Neurol 2017; 264:1642-1654. [PMID: 28251357 PMCID: PMC5533840 DOI: 10.1007/s00415-017-8424-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson's disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73-100% for sensitivity and 67-100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets.
Collapse
Affiliation(s)
- Ana Lígia Silva de Lima
- Radboud university medical center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands. .,Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands. .,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.
| | - Luc J W Evers
- Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Tim Hahn
- Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Lauren Bataille
- Michael J Fox Foundation for Parkinson's Research, New York, USA
| | - Jamie L Hamilton
- Michael J Fox Foundation for Parkinson's Research, New York, USA
| | - Max A Little
- Aston University, Birmingham, UK.,Media Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Yasuyuki Okuma
- Department of Neurology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Bastiaan R Bloem
- Radboud university medical center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.,Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjan J Faber
- Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands.,Radboud university medical center, Radboud Institute for Health Sciences, Scientific Center for Quality of Healthcare, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Bhidayasiri R, Martinez-Martin P. Clinical Assessments in Parkinson's Disease: Scales and Monitoring. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:129-182. [PMID: 28554406 DOI: 10.1016/bs.irn.2017.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Measurement of disease state is essential in both clinical practice and research in order to assess the severity and progression of a patient's disease status, effect of treatment, and alterations in other relevant factors. Parkinson's disease (PD) is a complex disorder expressed through many motor and nonmotor manifestations, which cause disabilities that can vary both gradually over time or come on suddenly. In addition, there is a wide interpatient variability making the appraisal of the many facets of this disease difficult. Two kinds of measure are used for the evaluation of PD. The first is subjective, inferential, based on rater-based interview and examination or patient self-assessment, and consist of rating scales and questionnaires. These evaluations provide estimations of conceptual, nonobservable factors (e.g., symptoms), usually scored on an ordinal scale. The second type of measure is objective, factual, based on technology-based devices capturing physical characteristics of the pathological phenomena (e.g., sensors to measure the frequency and amplitude of tremor). These instrumental evaluations furnish appraisals with real numbers on an interval scale for which a unit exists. In both categories of measures, a broad variety of tools exist. This chapter aims to present an up-to-date summary of the most relevant characteristics of the most widely used scales, questionnaires, and technological resources currently applied to the assessment of PD. The review concludes that, in our opinion: (1) no assessment methods can substitute the clinical judgment and (2) subjective and objective measures in PD complement each other, each method having strengths and weaknesses.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Juntendo University, Tokyo, Japan.
| | - Pablo Martinez-Martin
- National Center of Epidemiology and CIBERNED, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
41
|
Block VAJ, Pitsch E, Tahir P, Cree BAC, Allen DD, Gelfand JM. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review. PLoS One 2016; 11:e0154335. [PMID: 27124611 PMCID: PMC4849800 DOI: 10.1371/journal.pone.0154335] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. METHODS Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. RESULTS 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. CONCLUSIONS These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.
Collapse
Affiliation(s)
- Valerie A. J. Block
- Graduate Program in Physical Therapy, University of California San Francisco/ San Francisco State University, San Francisco, California, United States of America
| | - Erica Pitsch
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California, United States of America
| | - Peggy Tahir
- University of California San Francisco Library, San Francisco, California, United States of America
| | - Bruce A. C. Cree
- Multiple Sclerosis and Neuroinflammation Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Diane D. Allen
- Graduate Program in Physical Therapy, University of California San Francisco/ San Francisco State University, San Francisco, California, United States of America
| | - Jeffrey M. Gelfand
- Multiple Sclerosis and Neuroinflammation Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
42
|
Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Gonçalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad A, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson's disease. J Neuroeng Rehabil 2016; 13:24. [PMID: 26969628 PMCID: PMC4788909 DOI: 10.1186/s12984-016-0136-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/09/2016] [Indexed: 11/21/2022] Open
Abstract
Background There is growing interest in having objective assessment of health-related outcomes using technology-based devices that provide unbiased measurements which can be used in clinical practice and scientific research. Many studies have investigated the clinical manifestations of Parkinson’s disease using such devices. However, clinimetric properties and clinical validation vary among the different devices. Methods Given such heterogeneity, we sought to perform a systematic review in order to (i) list, (ii) compare and (iii) classify technological-based devices used to measure motor function in individuals with Parkinson's disease into three groups, namely wearable, non-wearable and hybrid devices. A systematic literature search of the PubMed database resulted in the inclusion of 168 studies. These studies were grouped based on the type of device used. For each device we reviewed availability, use, reliability, validity, and sensitivity to change. The devices were then classified as (i) ‘recommended’, (ii) ‘suggested’ or (iii) ‘listed’ based on the following criteria: (1) used in the assessment of Parkinson’s disease (yes/no), (2) used in published studies by people other than the developers (yes/no), and (3) successful clinimetric testing (yes/no). Results Seventy-three devices were identified, 22 were wearable, 38 were non-wearable, and 13 were hybrid devices. In accordance with our classification method, 9 devices were ‘recommended’, 34 devices were ‘suggested’, and 30 devices were classified as ‘listed’. Within the wearable devices group, the Mobility Lab sensors from Ambulatory Parkinson’s Disease Monitoring (APDM), Physilog®, StepWatch 3, TriTrac RT3 Triaxial accelerometer, McRoberts DynaPort, and Axivity (AX3) were classified as ‘recommended’. Within the non-wearable devices group, the Nintendo Wii Balance Board and GAITRite® gait analysis system were classified as ‘recommended’. Within the hybrid devices group only the Kinesia® system was classified as ‘recommended’. Electronic supplementary material The online version of this article (doi:10.1186/s12984-016-0136-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catarina Godinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Center for Interdisciplinary Research Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Josefa Domingos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Guilherme Cunha
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana T Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ricardo M Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Daisy Abreu
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nilza Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | | | | | | | | | - Frank Larsen
- Norwegian Centre for Telemedicine, Tromso, Norway
| | | | | | | | | | - Holm Graessner
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Walter Maetzler
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal. .,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal. .,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal.
| |
Collapse
|
43
|
Gaglani S, Moore J, Haynes MR, Hoffberger JB, Rigamonti D. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring. Cureus 2015; 7:e382. [PMID: 26719825 PMCID: PMC4689565 DOI: 10.7759/cureus.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.
Collapse
Affiliation(s)
- Shiv Gaglani
- Department of Neurosurgery, The Johns Hopkins University School of Medicine
| | - Jessica Moore
- Department of Neurosurgery, The Johns Hopkins University School of Medicine
| | - M Ryan Haynes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine
| | - Jamie B Hoffberger
- Department of Neurosurgery, The Johns Hopkins University School of Medicine
| | - Daniele Rigamonti
- Department of Neurosurgery, The Johns Hopkins University School of Medicine ; Department of Radiation Oncology, The Johns Hopkins University School of Medicine
| |
Collapse
|
44
|
Trojaniello D, Ravaschio A, Hausdorff JM, Cereatti A. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects. Gait Posture 2015; 42:310-6. [PMID: 26163348 DOI: 10.1016/j.gaitpost.2015.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/02/2023]
Abstract
The estimation of gait temporal parameters with inertial measurement units (IMU) is a research topic of interest in clinical gait analysis. Several methods, based on the use of a single IMU mounted at waist level, have been proposed for the estimate of these parameters showing satisfactory performance when applied to the gait of healthy subjects. However, the above mentioned methods were developed and validated on healthy subjects and their applicability in pathological gait conditions was not systematically explored. We tested the three best performing methods found in a previous comparative study on data acquired from 10 older adults, 10 hemiparetic, 10 Parkinson's disease and 10 Huntington's disease subjects. An instrumented gait mat was used as gold standard. When pathological populations were analyzed, missed or extra events were found for all methods and a global decrease of their performance was observed to different extents depending on the specific group analyzed. The results revealed that none of the tested methods outperformed the others in terms of accuracy of the gait parameters determination for all the populations except the Parkinson's disease subjects group for which one of the methods performed better than others. The hemiparetic subjects group was the most critical group to analyze (stride duration errors between 4-5 % and step duration errors between 8-13 % of the actual values across methods). Only one method provides estimates of the stance and swing durations which however should be interpreted with caution in pathological populations (stance duration errors between 6-14 %, swing duration errors between 10-32 % of the actual values across populations).
Collapse
Affiliation(s)
- Diana Trojaniello
- Information Engineering Unit, POLCOMING Department, University of Sassari, Sassari, Italy; Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy.
| | - Andrea Ravaschio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jeffrey M Hausdorff
- Center for the study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel; Department of Physical Therapy, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Andrea Cereatti
- Information Engineering Unit, POLCOMING Department, University of Sassari, Sassari, Italy; Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy
| |
Collapse
|