1
|
Park SH, Park H, Ahn J, Lee BC. A Novel Adaptive Propulsion Enhancement eXperience (APEX) System: Development and Preliminary Validation for Enhancing Gait Propulsion in Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1486-1496. [PMID: 40227904 DOI: 10.1109/tnsre.2025.3560324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study presents the development and preliminary validation of a novel system, called APEX (Adaptive Propulsion Enhancement eXperience), which aims to enhance gait propulsion in stroke survivors. The APEX system utilizes a dual-belt instrumented treadmill capable of measuring ground reaction forces and modulating belt speed in real time to provide visual biofeedback with dynamic propulsion promotion. We developed two propulsion promotion modes: the propulsion-facilitating mode, which extends ground contact time to elicit intrinsic propulsive effort and the propulsion-augmenting mode, which increases propulsive force by applying controlled external force. Ten chronic-stage stroke survivors (7 females and 3 males; age: $61.40~\pm ~6.96$ years) completed two experimental trials: one with the propulsion-facilitating mode, and the other with the propulsion-augmenting mode. Each trial included a baseline period without assistance (visual biofeedback and propulsion promotion) for 30 steps, a training period with assistance for 100 steps, and a post-training period without assistance for 30 steps. For each period, outcome measures (propulsive force, impulse, lower-limb kinematics, and muscle activity) were quantified. Statistical analysis revealed significant improvements in propulsive force, impulse, lower-limb kinematics, and muscle activity during both the training and post-training periods compared to the baseline period, with no significant differences between the training and post-training periods. These findings demonstrate the efficacy and reliability of the APEX system in delivering real-time, adaptive training to enhance gait propulsion. Integrating the APEX system into clinical practice has the potential to provide a scalable, patient-specific approach for post-stroke gait rehabilitation.
Collapse
|
2
|
Li J, Kwong PW, Lin W, Fong KN, Wu W, Sidarta A. Assessment of ambulation functions through kinematic analysis in individuals with stroke: a systematic review. Eur J Phys Rehabil Med 2025; 61:28-40. [PMID: 40008910 PMCID: PMC11920755 DOI: 10.23736/s1973-9087.25.08767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Although kinematic assessments for stroke-induced lower limb impairments offer a promising alternative to conventional scale evaluations, interpreting high-dimensional kinematic data remains challenging due to numerous metrics reported in past studies. This study aimed to provide an exhaustive overview of existing studies using kinematics data to assess the gait impairments in individuals with stroke, along with examining their clinimetric properties for future clinical applications. EVIDENCE ACQUISITION A systematic search was conducted across PubMed (08/2024), Scopus (08/2024), Web of Science (08/2024), CINAHL (08/2024), EMBASE (08/2024), and IEEE (08/2024). We included articles that recruited individuals over 18 years old with stroke and utilized motion capture technologies to evaluate lower limb kinematics. Similar metrics were consolidated in the analysis, and the COSMIN Risk of Bias Checklist was used to evaluate the methodological quality of studies investigating the clinimetric properties of kinematic metrics. Convergent validity of metrics was evaluated by examining their association with the Fugl-Meyer scale of lower limbs and walking speed. Moreover, the GRADE approach was used to rate the quality of evidence. EVIDENCE SYNTHESIS A total of 383 studies were classified into 10 categories. Seven studies on metric reliability were rated high for methodological quality. Metrics with satisfactory reliability included spatiotemporal, spatial metrics, and a data-driven score. Six studies with high methodological quality assessed convergent validity. The dynamic gait index, angular component of the coefficient of correspondence (ACC), change in cadence, stride length, and hip range of motion showed satisfactory validity. Among the 13 studies, 12 studies were rated as moderate quality of evidence using the GRADE approach. CONCLUSIONS There are significant variations in measurements across studies, and high-quality studies evaluating clinimetric properties are scarce. For a more standardized evidence-based approach to kinematic lower limb assessment, further high-quality research validating these assessments' clinimetric properties is essential.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick W Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China -
| | - Wang Lin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kenneth N Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wenping Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ananda Sidarta
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Winner TS, Rosenberg MC, Berman GJ, Kesar TM, Ting LH. Gait signature changes with walking speed are similar among able-bodied young adults despite persistent individual-specific differences. Sci Rep 2024; 14:19730. [PMID: 39183361 PMCID: PMC11345452 DOI: 10.1038/s41598-024-70787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding individuals' distinct movement patterns is crucial for health, rehabilitation, and sports. Recently, we developed a machine learning-based framework to show that "gait signatures" describing the neuromechanical dynamics governing able-bodied and post-stroke gait kinematics remain individual-specific across speeds. However, we only evaluated gait signatures within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint angles. Here we characterized changes in gait signatures across a wide range of speeds, from very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, joint moments, and powers) data would improve the discrimination of gait signatures. Our study showed that gait signatures remained individual-specific across walking speeds: Notably, 3D kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI) 99.1-100%) in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants exhibited consistent, predictable linear changes in their gait signatures across the entire speed range. These changes were associated with participants' preferred walking speeds, balance ability, cadence, and step length. These findings support gait signatures as a tool to characterize individual differences in gait and predict speed-induced changes in gait dynamics.
Collapse
Affiliation(s)
- Taniel S Winner
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| | - Michael C Rosenberg
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Trisha M Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Lena H Ting
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Winner TS, Rosenberg MC, Berman GJ, Kesar TM, Ting LH. Gait signature changes with walking speed are similar among able-bodied young adults despite persistent individual-specific differences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591976. [PMID: 38746237 PMCID: PMC11092667 DOI: 10.1101/2024.05.01.591976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding individuals' distinct movement patterns is crucial for health, rehabilitation, and sports. Recently, we developed a machine learning-based framework to show that "gait signatures" describing the neuromechanical dynamics governing able-bodied and post-stroke gait kinematics remain individual-specific across speeds. However, we only evaluated gait signatures within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint angles. Here we characterized changes in gait signatures across a wide range of speeds, from very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, joint moments, and powers) data would improve the discrimination of gait signatures. Our study showed that gait signatures remained individual-specific across walking speeds: Notably, 3D kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI): 99.1-100%) in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants exhibited consistent, predictable linear changes in their gait signatures across the entire speed range. These changes were associated with participants' preferred walking speeds, balance ability, cadence, and step length. These findings support gait signatures as a tool to characterize individual differences in gait and predict speed-induced changes in gait dynamics.
Collapse
Affiliation(s)
- Taniel S. Winner
- W.H. Coulter Dept. Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael C. Rosenberg
- W.H. Coulter Dept. Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Trisha M. Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Lena H. Ting
- W.H. Coulter Dept. Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Huang T, Ruan M, Huang S, Fan L, Wu X. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture. Front Bioeng Biotechnol 2024; 12:1280363. [PMID: 38532880 PMCID: PMC10963629 DOI: 10.3389/fbioe.2024.1280363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective: This study aimed at quantifying the difference in kinematic and joint moments calculation for lower limbs during gait utilizing a markerless motion system (TsingVA Technology, Beijing, China) in comparison to values estimated using a marker-based motion capture system (Nokov Motion Capture System, Beijing, China). Methods: Sixteen healthy participants were recruited for the study. The kinematic data of the lower limb during walking were acquired simultaneously based on the markerless motion capture system (120 Hz) and the marker-based motion capture system (120 Hz). The ground reaction force was recorded synchronously using a force platform (1,200 Hz). The kinematic and force data were input into Visual3D for inverse dynamics calculations. Results: The difference in the lower limb joint center position between the two systems was the least at the ankle joint in the posterior/anterior direction, with the mean absolute deviation (MAD) of 0.74 cm. The least difference in measuring lower limb angles between the two systems was found in flexion/extension movement, and the greatest difference was found in internal/external rotation movement. The coefficient of multiple correlations (CMC) of the lower limb three joint moments for both systems exceeded or equaled 0.75, except for the ad/abduction of the knee and ankle. All the Root Mean Squared Deviation (RMSD) of the lower limb joint moment are below 18 N·m. Conclusion: The markerless motion capture system and marker-based motion capture system showed a high similarity in kinematics and inverse dynamic calculation for lower limbs during gait in the sagittal plane. However, it should be noted that there is a notable deviation in ad/abduction moments at the knee and ankle.
Collapse
Affiliation(s)
- Tianchen Huang
- Sports Biomechanics Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Mianfang Ruan
- Sports Biomechanics Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Shangjun Huang
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
| | - Linlin Fan
- TsingVA (Beijing) Technology Co., Ltd., Beijing, China
| | - Xie Wu
- Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Khorasani A, Hulsizer J, Paul V, Gorski C, Dhaher YY, Slutzky MW. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co-activation after stroke: a pilot study. J Neuroeng Rehabil 2024; 21:11. [PMID: 38245730 PMCID: PMC10800046 DOI: 10.1186/s12984-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. METHODS Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received 6 h of MINT conditioning over six sessions, either in the laboratory or at home. RESULTS MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. CONCLUSION MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4 ).
Collapse
Affiliation(s)
- Abed Khorasani
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Joel Hulsizer
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Vivek Paul
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Cynthia Gorski
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA
| | - Yasin Y Dhaher
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, 320 East Superior Ave., Searle 11-473, 60611, Chicago, IL, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Andrade RL, Figueiredo J, Fonseca P, Vilas-Boas JP, Silva MT, Santos CP. Human-Robot Joint Misalignment, Physical Interaction, and Gait Kinematic Assessment in Ankle-Foot Orthoses. SENSORS (BASEL, SWITZERLAND) 2023; 24:246. [PMID: 38203110 PMCID: PMC10781370 DOI: 10.3390/s24010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Lower limb exoskeletons and orthoses have been increasingly used to assist the user during gait rehabilitation through torque transmission and motor stability. However, the physical human-robot interface (HRi) has not been properly addressed. Current orthoses lead to spurious forces at the HRi that cause adverse effects and high abandonment rates. This study aims to assess and compare, in a holistic approach, human-robot joint misalignment and gait kinematics in three fixation designs of ankle-foot orthoses (AFOs). These are AFOs with a frontal shin guard (F-AFO), lateral shin guard (L-AFO), and the ankle modulus of the H2 exoskeleton (H2-AFO). An experimental protocol was implemented to assess misalignment, fixation displacement, pressure interactions, user-perceived comfort, and gait kinematics during walking with the three AFOs. The F-AFO showed reduced vertical misalignment (peak of 1.37 ± 0.90 cm, p-value < 0.05), interactions (median pressures of 0.39-3.12 kPa), and higher user-perceived comfort (p-value < 0.05) when compared to H2-AFO (peak misalignment of 2.95 ± 0.64 and pressures ranging from 3.19 to 19.78 kPa). F-AFO also improves the L-AFO in pressure (median pressures ranging from 8.64 to 10.83 kPa) and comfort (p-value < 0.05). All AFOs significantly modified hip joint angle regarding control gait (p-value < 0.01), while the H2-AFO also affected knee joint angle (p-value < 0.01) and gait spatiotemporal parameters (p-value < 0.05). Overall, findings indicate that an AFO with a frontal shin guard and a sports shoe is effective at reducing misalignment and pressure at the HRI, increasing comfort with slight changes in gait kinematics.
Collapse
Affiliation(s)
- Ricardo Luís Andrade
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Joana Figueiredo
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/4800-058 Guimarães, Portugal
| | - Pedro Fonseca
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, 4200-450 Porto, Portugal; (P.F.); (J.P.V.-B.)
| | - João P. Vilas-Boas
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, 4200-450 Porto, Portugal; (P.F.); (J.P.V.-B.)
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Miguel T. Silva
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Cristina P. Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/4800-058 Guimarães, Portugal
| |
Collapse
|
8
|
Khorasani A, Hulsizer J, Paul V, Gorski C, Dhaher YY, Slutzky MW. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co-activation after stroke: a pilot study. RESEARCH SQUARE 2023:rs.3.rs-3398815. [PMID: 37886579 PMCID: PMC10602191 DOI: 10.21203/rs.3.rs-3398815/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The ability to walk is an important factor in quality of life after stroke. Co-activation of hip adductors and knee extensors has been shown to correlate with gait impairment. We have shown previously that training with a myoelectric interface for neurorehabilitation (MINT) can reduce abnormal muscle co-activation in the arms of stroke survivors. Methods Here, we extend MINT conditioning to stroke survivors with leg impairment. The aim of this pilot study was to assess the safety and feasibility of using MINT to reduce abnormal co-activation between hip adductors and knee extensors and assess any effects on gait. Nine stroke survivors with moderate to severe gait impairment received six hours of MINT conditioning over six sessions, either in the laboratory or at home. Results MINT participants completed a mean of 159 repetitions per session without any adverse events. Further, participants learned to isolate their muscles effectively, resulting in a mean reduction of co-activation of 70% compared to baseline. Moreover, gait speed increased by a mean of 0.15 m/s, more than the minimum clinically important difference. Knee flexion angle increased substantially, and hip circumduction decreased. Conclusion MINT conditioning is safe, feasible at home, and enables reduction of co-activation in the leg. Further investigation of MINT's potential to improve leg movement and function after stroke is warranted. Abnormal co-activation of hip adductors and knee extensors may contribute to impaired gait after stroke. Trial registration This study was registered at ClinicalTrials.gov (NCT03401762, Registered 15 January 2018, https://clinicaltrials.gov/study/NCT03401762?tab=history&a=4).
Collapse
|
9
|
Scherb D, Steck P, Wechsler I, Wartzack S, Miehling J. The Determination of Assistance-as-Needed Support by an Ankle-Foot Orthosis for Patients with Foot Drop. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6687. [PMID: 37681827 PMCID: PMC10487717 DOI: 10.3390/ijerph20176687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Patients who suffer from foot drop have impaired gait pattern functions and a higher risk of stumbling and falling. Therefore, they are usually treated with an assistive device, a so-called ankle-foot orthosis. The support of the orthosis should be in accordance with the motor requirements of the patient and should only be provided when needed, which is referred to as assistance-as-needed. Thus, in this publication, an approach is presented to determine the assistance-as-needed support using musculoskeletal human models. Based on motion capture recordings of multiple subjects performing gaits at different speeds, a parameter study varying the optimal force of a reserve actuator representing the ankle-foot orthosis added in the musculoskeletal simulation is conducted. The results show the dependency of the simulation results on the selected optimal force of the reserve actuator but with a possible identification of the assistance-as-needed support required from the ankle-foot orthosis. The required increase in support due to the increasing severity of foot drop is especially demonstrated with the approach. With this approach, information for the required support of individual subjects can be gathered, which can further be used to derive the design of an ankle-foot orthosis that optimally assists the subjects.
Collapse
Affiliation(s)
- David Scherb
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany (J.M.)
| | | | | | | | | |
Collapse
|
10
|
Shen KH, Borrelli J, Gray VL, Rogers MW, Hsiao HY. Lower Limb Vertical Stiffness and Frontal Plane Angular Impulse during Perturbation-Induced Single Limb Stance and Their Associations with Gait in Individuals Post-Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536288. [PMID: 37090545 PMCID: PMC10120673 DOI: 10.1101/2023.04.10.536288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Objective To investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain during SLS when controlling for weight-bearing using a perturbation-based assessment, and whether these measures are associated with gait performance. Methods We compared hip abduction torque, vertical stiffness, and frontal plane angular impulse between individuals post-stroke and healthy controls when SLS was induced by removing the support surface underneath one limb. We also tested for correlations between vertical stiffness and angular impulse during perturbation-induced SLS and gait parameters during overground walking. Results During the perturbation-induced SLS, lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse were observed at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. Vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. Conclusions Reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.
Collapse
Affiliation(s)
- Keng-Hung Shen
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, MD, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Vicki L. Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| |
Collapse
|
11
|
Purohit R, Wang S, Bhatt T. Effect of Aging and Cortical Stroke on Motor Adaptation to Overground Gait-Slips: Quantifying Differences in Adaptation Rate and Adaptation Plateau. BIOMECHANICS (BASEL, SWITZERLAND) 2023; 3:29-44. [PMID: 39802458 PMCID: PMC11722462 DOI: 10.3390/biomechanics3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We examined the effect of aging and cortical stroke on the rate of motor adaptation (adaptation rate) and amount of performance gains (adaptation plateau) in balance skills. Fourteen older (≥60 years) and fifteen younger (<60 years) adults with chronic stroke, and thirteen healthy older adults (≥60 years) participated. Participants experienced 8 consecutive gait-slips (≤45 cm) to their non-paretic/dominant limb. Slip outcome (backward/no balance loss) was compared using generalized estimating equations (GEE). Proactive (pre-slip stability) and reactive adjustments (post-slip stability, slip displacement and velocity, and compensatory step length) were compared using non-linear regression models. GEE showed the main effect of group, trial, and group × trial interaction for slip outcome (p < 0.05). There were no differences in the adaptation rate for proactive and reactive variables and plateau for proactive variables (p > 0.05). However, both stroke groups demonstrated a smaller adaptation plateau for the majority of reactive variables compared to healthy older adults (p < 0.05). The rate of adaptation to gait-slips does not slow with aging and cortical stroke; however, cortical stroke, age notwithstanding, may reduce performance gains in reactive balance skills, possibly hindering retention and transfer to real-life scenarios. People with stroke may need adjunctive therapies/supplemental agents to apply laboratory-acquired balance skills to daily life.
Collapse
Affiliation(s)
- Rudri Purohit
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
- PhD program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Shuaijie Wang
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Sekiguchi Y, Honda K, Izumi SI. Effect of Walking Adaptability on an Uneven Surface by a Stepping Pattern on Walking Activity After Stroke. Front Hum Neurosci 2022; 15:762223. [PMID: 35058764 PMCID: PMC8764227 DOI: 10.3389/fnhum.2021.762223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Real-world walking activity is important for poststroke patients because it leads to their participation in the community and physical activity. Walking activity may be related to adaptability to different surface conditions of the ground. The purpose of this study was to clarify whether walking adaptability on an uneven surface by step is related to daily walking activity in patients after stroke. We involved 14 patients who had hemiparesis after stroke (age: 59.4 ± 8.9 years; post-onset duration: 70.7 ± 53.5 months) and 12 healthy controls (age: 59.5 ± 14.2 years). The poststroke patients were categorized as least limited community ambulators or unlimited ambulators. For the uneven surface, the study used an artificial grass surface (7 m long, 2-cm leaf length). The subjects repeated even surface walking and the uneven surface walking trials at least two times at a comfortable speed. We collected spatiotemporal and kinematic gait parameters on both the even and uneven surfaces using a three-dimensional motion analysis system. After we measured gait, the subjects wore an accelerometer around the waist for at least 4 days. We measured the number of steps per day using the accelerometer to evaluate walking activity. Differences in gait parameters between the even and uneven surfaces were calculated to determine how the subjects adapted to an uneven surface while walking. We examined the association between the difference in parameter measurements between the two surface properties and walking activity (number of steps per day). Walking activity significantly and positively correlated with the difference in paretic step length under the conditions of different surface properties in the poststroke patients (r = 0.65, p = 0.012) and step width in the healthy controls (r = 0.68, p = 0.015). The strategy of increasing the paretic step length, but not step width, on an uneven surface may lead to a larger base of support, which maintains stability during gait on an uneven surface in poststroke patients, resulting in an increased walking activity. Therefore, in poststroke patients, an increase in paretic step length during gait on an uneven surface might be more essential for improving walking activity.
Collapse
Affiliation(s)
- Yusuke Sekiguchi
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
- *Correspondence: Yusuke Sekiguchi,
| | - Keita Honda
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Abstract
Abstract
Lower-body exoskeleton control that adapts to users and provides assistance-as-needed can increase user participation and motor learning and allow for more effective gait rehabilitation. Adaptive model-based control methods have previously been developed to consider a user’s interaction with an exoskeleton; however, the predefined dynamics models required are challenging to define accurately, due to the complex dynamics and nonlinearities of the human-exoskeleton interaction. Model-free deep reinforcement learning (DRL) approaches can provide accurate and robust control in robotics applications and have shown potential for lower-body exoskeletons. In this paper, we present a new model-free DRL method for end-to-end learning of desired gait patterns for over-ground gait rehabilitation with an exoskeleton. This control technique is the first to accurately track any gait pattern desired in physiotherapy without requiring a predefined dynamics model and is robust to varying post-stroke individuals’ baseline gait patterns and their interactions and perturbations. Simulated experiments of an exoskeleton paired to a musculoskeletal model show that the DRL method is robust to different post-stroke users and is able to accurately track desired gait pattern trajectories both seen and unseen in training.
Collapse
|
14
|
Lam SK, Vujaklija I. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study. SENSORS 2021; 21:s21196597. [PMID: 34640917 PMCID: PMC8512679 DOI: 10.3390/s21196597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Joint torques of lower extremity are important clinical indicators of gait capability. This parameter can be quantified via hybrid neuromusculoskeletal modelling that combines electromyography-driven modelling and static optimisation. The simulations rely on kinematics and external force measurements, for example, ground reaction forces (GRF) and the corresponding centres of pressure (COP), which are conventionally acquired using force plates. This bulky equipment, however, hinders gait analysis in real-world environments. While this portability issue could potentially be solved by estimating the parameters through machine learning, the effect of the estimation errors on joint torque prediction with biomechanical models remains to be investigated. This study first estimated GRF and COP through feedforward artificial neural networks, and then leveraged them to predict lower-limb sagittal joint torques via (i) inverse dynamics and (ii) hybrid modelling. The approach was evaluated on five healthy subjects, individually. The predicted torques were validated with the measured torques, showing that hip was the most sensitive whereas ankle was the most resistive to the GRF/COP estimates for both models, with average metrics values being 0.70 < R2 < 0.97 and 0.069 < RMSE < 0.15 (Nm/kg). This study demonstrated the feasibility of torque prediction based on personalised (neuro)musculoskeletal modelling using statistical ground reaction estimates, thus providing insights into potential real-world mobile joint torque quantification.
Collapse
|
15
|
PARK CHANHEE, HWANG JONGSEOK, YOU JOSHUASUNGH. COMPARATIVE EFFECTIVENESS OF ROBOT-INTERACTIVE GAIT TRAINING WITH AND WITHOUT ANKLE ROBOTIC CONTROL IN PATIENTS WITH BRAIN DAMAGE. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although ankle robotic control has emerged as a critical component of robot-interactive gait training (RIGT), no study has investigated the neurophysiological and biomechanical effects on ankle muscle activity and joint angle kinematics in healthy adults and participants with brain damage, including stroke and cerebral palsy (CP). This study compared the effects of RIGT, with and without ankle control actuator, on ankle muscle activity and joint angle kinematics in healthy adults and participants with brain damage. Ten patients ([Formula: see text], left hemiparetic [Formula: see text], [Formula: see text]) underwent standardized surface electromyography (EMG) neurophysiological and kinematics biomechanical tests under the RIGT with and without ankle control actuator conditions. Outcome measures included the EMG amplitudes of the tibialis anterior and gastrocnemius muscle activity, and ankle movement angles recorded with a two-axis digital inclinometer. Descriptive statistical analysis demonstrated that RIGT with ankle control actuator showed superior effects on EMG (30%) and kinematics angles (25%) than RIGT without ankle control actuator. Our results provided novel, promising clinical evidence that RIGT with ankle control actuator can more effectively improve the neurophysiological EMG data and ankle dorsiflexion and plantarflexion movements than RIGT without ankle control actuator in participants with stroke and CP.
Collapse
Affiliation(s)
- CHANHEE PARK
- Sports. Movement Artificial-Intelligence, Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea
| | - JONGSEOK HWANG
- Sports. Movement Artificial-Intelligence, Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea
| | - JOSHUA SUNG H. YOU
- Sports. Movement Artificial-Intelligence, Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
16
|
Koo KI, Hwang CH. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis. PLoS One 2020; 15:e0241117. [PMID: 33326434 PMCID: PMC7743990 DOI: 10.1371/journal.pone.0241117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Deafferentation and weight offloading can increase brain and spinal motor neuron excitability, respectively. End-effector gait robots (EEGRs) can blend these effects with stereotyped movement-induced neuroplasticity. The authors aimed to evaluate the usefulness of EEGRs as a postoperative neuro-muscular rehabilitation tool. This prospective randomized controlled trial included patients who had undergone unilateral total knee arthroplasty (TKA). Patients were randomly allocated into two groups: one using a 200-step rehabilitation program in an EEGR or the other using a walker on a floor (WF) three times a day for five weekdays. The two groups were compared by electrophysiological and biomechanical methods. Since there were no more enrollments due to funding issues, interim analysis was performed. Twelve patients were assigned to the EEGR group and eight patients were assigned to the WF group. Although the muscle volume of the quadriceps and hamstring did not differ between the two groups, the normalized peak torque of the operated knee flexors (11.28 ± 16.04 Nm/kg) was improved in the EEGR group compared to that of the operated knee flexors in the WF group (4.25 ± 14.26 Nm/kg) (p = 0.04). The normalized compound motor action potentials of the vastus medialis (VM) and biceps femoris (BF) were improved in the EEGR group (p < 0.05). However, the normalized real-time peak amplitude and total, mean area under the curve of VM were decreased during rehabilitation in the EEGR group (p < 0.05). No significant differences were found between operated and non-operated knees in the EEGR group. Five-day EEGR-assisted rehabilitation induced strengthening in the knee flexors and the muscular reactivation of the BF and VM after TKA, while reducing the real-time use of the VM. This observation may suggest the feasibility of this technique: EEGR modulated the neuronal system of the patients rather than training their muscles. However, because the study was underpowered, all of the findings should be interpreted with the utmost caution.
Collapse
Affiliation(s)
- Kyo-In Koo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
17
|
Hsiao HY, Gray VL, Borrelli J, Rogers MW. Biomechanical control of paretic lower limb during imposed weight transfer in individuals post-stroke. J Neuroeng Rehabil 2020; 17:140. [PMID: 33109225 PMCID: PMC7590464 DOI: 10.1186/s12984-020-00768-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
Background Stroke is a leading cause of disability with associated hemiparesis resulting in difficulty bearing and transferring weight on to the paretic limb. Difficulties in weight bearing and weight transfer may result in impaired mobility and balance, increased fall risk, and decreased community engagement. Despite considerable efforts aimed at improving weight transfer after stroke, impairments in its neuromotor and biomechanical control remain poorly understood. In the present study, a novel experimental paradigm was used to characterize differences in weight transfer biomechanics in individuals with chronic stroke versus able-bodied controls Methods Fifteen participants with stroke and fifteen age-matched able-bodied controls participated in the study. Participants stood with one foot on each of two custom built platforms. One of the platforms dropped 4.3 cm vertically to induce lateral weight transfer and weight bearing. Trials involving a drop of the platform beneath the paretic lower extremity (non-dominant limb for control) were included in the analyses. Paretic lower extremity joint kinematics, vertical ground reaction forces, and center of pressure velocity were measured. All participants completed the clinical Step Test and Four-Square Step Test. Results Reduced paretic ankle, knee, and hip joint angular displacement and velocity, delayed ankle and knee inter-joint timing, increased downward displacement of center of mass, and increased center of pressure (COP) velocity stabilization time were exhibited in the stroke group compared to the control group. In addition, paretic COP velocity stabilization time during induced weight transfer predicted Four-Square Step Test scores in individuals post-stroke. Conclusions The induced weight transfer approach identified stroke-related abnormalities in the control of weight transfer towards the paretic limb side compared to controls. Decreased joint flexion of the paretic ankle and knee, altered inter-joint timing, and increased COP stabilization times may reflect difficulties in neuromuscular control during weight transfer following stroke. Future work will investigate the potential of improving functional weight transfer through induced weight transfer training exercise.
Collapse
Affiliation(s)
- Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA. .,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Borrelli
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Klochkov AS, Zimin AA, Khizhnikova AE, Suponeva NA, Piradov MA. Effect of robot-assisted gait training on biomechanics of ankle joint in patients with post-stroke hemiparesis. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The key factor promoting post-stroke gait disturbances is motor impairment of the ankle joint (AJ) which results in pathological synergies. Robotic devices used for gait training are equipped with hip and knee joint actuators. However, there is no consensus in the literature on their effect on AJ movements. The aim of this study was to investigate the effect of robot-assisted gait training on AJ movements in patients with post-stroke paresis. The study recruited 22 hemispheric stroke survivors. They motor function was assessed using clinical scales and motion capture analysis. All patients received 11 robot-assisted gait training session. After rehabilitation, the total score on the Fugl-Meyer Assessment scale increased from 146.5 to 152 points (p < 0.05); for the lower limb, the score increased from 18 to 20.5 points (p < 0.05). The muscle tone of ankle extensors decreased from 2.5 to 2.0 points on the modified Ashworth scale (p < 0.05). The duration of the stance phase increased from 28.0 to 33.5% relative to the total gait cycle (GC). The main difference in the GC structure before and after rehabilitation is the presence of 3 GC parts instead of 5, suggesting consolidation of patients’ goniograms at 1-61% of GC. Comparison of joint angles before and after rehabilitation revealed that only the interquartile ranges (IR) were different (р < 0.05). The authors conclude that robot-assisted training with knee and hip joint actuators indirectly affects the kinematic parameters of AJ by promoting a shift towards the average gait kinematics.
Collapse
Affiliation(s)
- AS Klochkov
- Research Center of Neurology, Moscow, Russia
| | - AA Zimin
- Research Center of Neurology, Moscow, Russia
| | | | - NA Suponeva
- Research Center of Neurology, Moscow, Russia
| | - MA Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
19
|
De Luca A, Squeri V, Barone LM, Vernetti Mansin H, Ricci S, Pisu I, Cassiano C, Capra C, Lentino C, De Michieli L, Sanfilippo CA, Saglia JA, Checchia GA. Dynamic Stability and Trunk Control Improvements Following Robotic Balance and Core Stability Training in Chronic Stroke Survivors: A Pilot Study. Front Neurol 2020; 11:494. [PMID: 32625162 PMCID: PMC7311757 DOI: 10.3389/fneur.2020.00494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/05/2020] [Indexed: 01/25/2023] Open
Abstract
Stroke survivors show greater postural oscillations and altered muscular activation compared to healthy controls. This results in difficulties in walking and standing, and in an increased risk of falls. A proper control of the trunk is related to a stable walk and to a lower falling risk; to this extent, rehabilitative protocols are currently working on core stability. The main objective of this work was to evaluate the effectiveness of trunk and balance training performed with a new robotic device designed for evaluation and training of balance and core stability, in improving the recovery of chronic stroke patients compared with a traditional physical therapy program. Thirty chronic stroke patients, randomly divided in two groups, either underwent a traditional rehabilitative protocol, or a robot-based program. Each patient was assessed before and after the rehabilitation and at 3-months follow-up with clinical and robot-based evaluation exercises focused on static and dynamic balance and trunk control. Results from clinical scores showed an improvement in both groups in balance and trunk control. Robot-based indices analysis indicated that the experimental group showed greater improvements in proprioceptive control, reactive balance and postural control in unstable conditions, compared to the control group, showing an improved trunk control with reduced compensatory strategies at the end of the training. Moreover, the experimental group had an increased retention of the benefits obtained with training at 3 months follow up. These results support the idea that such robotic device is a promising tool for stroke rehabilitation.
Collapse
Affiliation(s)
| | | | - Laura M Barone
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | - Honorè Vernetti Mansin
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | - Serena Ricci
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | - Ivano Pisu
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | - Cinzia Cassiano
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | - Cristina Capra
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | - Carmelo Lentino
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy
| | | | | | | | - Giovanni A Checchia
- Recovery and Functional Reeducation Unit, Santa Corona Hospital, ASL2 Savonese, Pietra Ligure, Italy.,Department of Rehabilitation, Local Health Agency EUGANEA, Padua, Italy
| |
Collapse
|
20
|
Wright ZA, Majeed YA, Patton JL, Huang FC. Key components of mechanical work predict outcomes in robotic stroke therapy. J Neuroeng Rehabil 2020; 17:53. [PMID: 32316977 PMCID: PMC7175566 DOI: 10.1186/s12984-020-00672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Background Clinical practice typically emphasizes active involvement during therapy. However, traditional approaches can offer only general guidance on the form of involvement that would be most helpful to recovery. Beyond assisting movement, robots allow comprehensive methods for measuring practice behaviors, including the energetic input of the learner. Using data from our previous study of robot-assisted therapy, we examined how separate components of mechanical work contribute to predicting training outcomes. Methods Stroke survivors (n = 11) completed six sessions in two-weeks of upper extremity motor exploration (self-directed movement practice) training with customized forces, while a control group (n = 11) trained without assistance. We employed multiple regression analysis to predict patient outcomes with computed mechanical work as independent variables, including separate features for elbow versus shoulder joints, positive (concentric) and negative (eccentric), flexion and extension. Results Our analysis showed that increases in total mechanical work during therapy were positively correlated with our final outcome metric, velocity range. Further analysis revealed that greater amounts of negative work at the shoulder and positive work at the elbow as the most important predictors of recovery (using cross-validated regression, R2 = 52%). However, the work features were likely mutually correlated, suggesting a prediction model that first removed shared variance (using PCA, R2 = 65–85%). Conclusions These results support robotic training for stroke survivors that increases energetic activity in eccentric shoulder and concentric elbow actions. Trial registration ClinicalTrials.gov, Identifier: NCT02570256. Registered 7 October 2015 – Retrospectively registered,
Collapse
Affiliation(s)
- Zachary A Wright
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.,Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Yazan A Majeed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.,Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - James L Patton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.,Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Felix C Huang
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
21
|
Park EJ, Akbas T, Eckert-Erdheim A, Sloot LH, Nuckols RW, Orzel D, Schumm L, Ellis TD, Awad LN, Walsh CJ. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking. ACTA ACUST UNITED AC 2020; 2:165-175. [PMID: 33748694 DOI: 10.1109/tmrb.2020.2989321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In individuals with motor impairments such as those post-stroke or with cerebral palsy, the function of the knee extensors may be affected during walking, resulting in decreased mobility. We have designed a lightweight, hinge-free wearable robot combining soft textile exosuit components with integrated rigid components, which assists knee extension when needed but is otherwise highly transparent to the wearer. The exosuit can apply a wide range of assistance profiles using a flexible multi-point reference trajectory generator. Additionally, we implemented a controller safety limit to address the risk of hyperextension stemming from the hinge-free design. The exosuit was evaluated on six healthy participants walking uphill and downhill on a treadmill at a 10° slope with a set of joint power-inspired assistance profiles. A comparison of sagittal plane joint angles between no exosuit and exosuit unpowered conditions validated the device transparency. With positive power assistance, we observed reduction in average positive knee biological power during uphill walking (left: 17.5 ± 3.21%, p = 0.005; right: 23.2 ± 3.54%, p = 0.008). These initial findings show promise for the assistive capability of the device and its potential to improve the quality of gait and increase mobility in clinical populations.
Collapse
Affiliation(s)
- Evelyn J Park
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Tunc Akbas
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Asa Eckert-Erdheim
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Lizeth H Sloot
- Institute for Computer Engineering (ZITI) at Heidelberg University, Heidelberg, Germany
| | - Richard W Nuckols
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Dorothy Orzel
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Lexine Schumm
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| | - Terry D Ellis
- Department of Physical Therapy & Athletic Training, Sargent College, Boston University, Boston, MA 02215 USA
| | - Louis N Awad
- Department of Physical Therapy & Athletic Training, Sargent College, Boston University, Boston, MA 02215 USA
| | - Conor J Walsh
- School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
22
|
Lin J, Hu G, Ran J, Chen L, Zhang X, Zhang Y. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study. J Neuroeng Rehabil 2020; 17:5. [PMID: 31931825 PMCID: PMC6958616 DOI: 10.1186/s12984-020-0641-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Locomat is a robotic exoskeleton providing guidance force and bodyweight support to facilitate intensive walking training for people with stroke. Although the Locomat has been reported to be effective in improving walking performance, the effects of training parameters on the neuromuscular control remain unclear. This study aimed to compare the muscle activities between Locomat walking and treadmill walking at a normal speed, as well as to investigate the effects of varying bodyweight support and guidance force on muscle activation patterns during Locomat walking in people with stroke. METHODS A cross-sectional study design was employed. Participants first performed an unrestrained walking on a treadmill and then walked in the Locomat with different levels of bodyweight support (30% or 50%) and guidance force (40% or 70%) at the same speed (1.2 m/s). Surface electromyography (sEMG) of seven muscles of the affected leg was recorded. The sEMG envelope was time-normalised and averaged over gait cycles. Mean sEMG amplitude was then calculated by normalising the sEMG amplitude with respect to the peak amplitude during treadmill walking for statistical analysis. A series of Non-parametric test and post hoc analysis were performed with a significance level of 0.05. RESULTS Fourteen participants with stroke were recruited at the Yangzhi Affiliated Rehabilitation Hospital of Tongji University (female n = 1; mean age 46.1 ± 11.1 years). Only the mean sEMG amplitude of vastus medialis oblique during Locomat walking (50% bodyweight support and 70% guidance force) was significantly lower than that during treadmill walking. Reducing both bodyweight and guidance increased muscle activity of gluteus medius and tibialis anterior. Activity of vastus medialis oblique muscle increased as bodyweight support reduced, while that of rectus femoris increased as guidance force decreased. CONCLUSIONS The effects of Locomat on reducing muscle activity in people with stroke were minimized when walking at a normal speed. Reducing bodyweight support and guidance force increased the activity of specific muscles during Locomat walking. Effects of bodyweight support, guidance force and speed should be taken into account when developing individualized Locomat training protocols for clients with stroke.
Collapse
Affiliation(s)
- Jianhua Lin
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China.
- Faculty of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Guojiong Hu
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Jun Ran
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Linyu Chen
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Xian Zhang
- Department of Rehabilitation Therapy, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, No. 2209, Guangxing Road, Songjiang District, Shanghai, 201619, People's Republic of China
| | - Yanxin Zhang
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019; 16:161. [PMID: 31882008 PMCID: PMC6935063 DOI: 10.1186/s12984-019-0636-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain activity. Thus, this study aimed to investigate the effects of robotic assistance (RA) during treadmill walking (TW) on cortical activity and the relationship between RA-related changes of cortical activity and biomechanical gait characteristics. METHODS Twelve healthy, right-handed volunteers (9 females; M = 25 ± 4 years) performed unassisted walking (UAW) and robot-assisted walking (RAW) trials on a treadmill, at 2.8 km/h, in a randomized, within-subject design. Ground reaction forces (GRFs) provided information regarding the individual gait patterns, while brain activity was examined by measuring cerebral hemodynamic changes in brain regions associated with the cortical locomotor network, including the sensorimotor cortex (SMC), premotor cortex (PMC) and supplementary motor area (SMA), using functional near-infrared spectroscopy (fNIRS). RESULTS A statistically significant increase in brain activity was observed in the SMC compared with the PMC and SMA (p < 0.05), and a classical double bump in the vertical GRF was observed during both UAW and RAW throughout the stance phase. However, intraindividual gait variability increased significantly with RA and was correlated with increased brain activity in the SMC (p = 0.05; r = 0.57). CONCLUSIONS On the one hand, robotic guidance could generate sensory feedback that promotes active participation, leading to increased gait variability and somatosensory brain activity. On the other hand, changes in brain activity and biomechanical gait characteristics may also be due to the sensory feedback of the robot, which disrupts the cortical network of automated walking in healthy individuals. More comprehensive neurophysiological studies both in laboratory and in clinical settings are necessary to investigate the entire brain network associated with RAW.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- School of Kinesiology, Louisiana State University, Baton Rouge, USA
| | - Fabian Thomas
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | | | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
24
|
Luo G, Zhu Y, Wang R, Tong Y, Lu W, Wang H. Random forest-based classsification and analysis of hemiplegia gait using low-cost depth cameras. Med Biol Eng Comput 2019; 58:373-382. [PMID: 31853775 DOI: 10.1007/s11517-019-02079-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Hemiplegia is a form of paralysis that typically has the symptom of dysbasia. In current clinical rehabilitations, to measure the level of hemiplegia gaits, clinicians often conduct subject evaluations through observations, which is unreliable and inaccurate. The Microsoft Kinect sensor (MS Kinect) is a widely used, low-cost depth sensor that can be used to detect human behaviors in real time. The purpose of this study is to investigate the usage of the Kinect data for the classification and analysis of hemiplegia gait. We first acquire the gait data by using a MS Kinect and extract a set of gait features including the stride length, gait speed, left/right moving distances, and up/down moving distances. With the gait data of 60 subjects including 20 hemiplegia patients and 40 healthy subjects, we employ a random forest-based classification approach to analyze the importances of different gait features for hemiplegia classification. Thanks to the over-fitting avoidance nature of the random forest approach, we do not need to have a careful control over the percentage of patients in the training data. In our experiments, our approach obtained the averaged classification accuracy of 90.65% among all the combinations of the gait features, which substantially outperformed state-of-the-art methods. The best classification accuracy of our approach is 95.45%, which is superior than all existing methods. Additionally, our approach also correctly reveals the importance of different gait features for hemiplegia classification. Our random forest-based approach outperforms support vector machine-based method and the Bayesian-based method, and can effectively extract gait features of subjects with hemiplegia for the classification and analysis of hemiplegia. Graphical Abstract Random Forest based Classsification and Analysis of Hemiplegia Gait using Low-cost Depth Cameras. Left: Motion capture with MS Kinect; Top-right: Random Forest Classsification based on the extracted gait features; Bottom-right: Sensitivity and specificity evaluation of the proposed classification approach.
Collapse
Affiliation(s)
| | - Yean Zhu
- East China Jiaotong University, Nanchang, China
| | - Rui Wang
- East China Jiaotong University, Nanchang, China
| | - Yang Tong
- East China Jiaotong University, Nanchang, China
| | - Wei Lu
- Jiangxi Provincial People's Hospital, Nanchang, China
| | - Haolun Wang
- East China Jiaotong University, Nanchang, China.
| |
Collapse
|
25
|
Olawale OA, Usman JS, Oke KI, Osundiya OC. Evaluation of Predictive Factors Influencing Community Reintegration in Adult Patients with Stroke. J Neurosci Rural Pract 2019; 9:6-10. [PMID: 29456337 PMCID: PMC5812161 DOI: 10.4103/jnrp.jnrp_386_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objectives Patients with stroke are faced with gait, balance, and fall difficulties which could impact on their community reintegration. In Nigeria, community reintegration after stroke has been understudied. The objective of this study was to evaluate the predictors of community reintegration in adult patients with stroke. Materials and Methods Participants were 91 adult patients with stroke. Gait variables, balance self-efficacy, community balance/mobility, and fall self-efficacy were assessed using Rivermead Mobility Index, Activities-specific Balance Confidence Scale, Community Balance and Mobility Scale, and Falls Efficacy Scale-International respectively. Reintegration to Normal Living Index was used to assess satisfaction with community reintegration. Pearson Product-Moment Correlation Coefficient was used to determine the relationship between community reintegration and gait spatiotemporal variables, balance performance, and risk of fall. Multiple regression analysis was used to determine predictors of community reintegration (P ≤ 0.05). Results There was significant positive relationship between community reintegration and cadence (r = 0.250, P = 0.017), functional mobility (r = 0.503, P = 0.001), balance self-efficacy (r = 0.608, P = 0.001), community balance/mobility (r = 0.586, P = 0.001), and duration of stroke (r = 0.220, P = 0.036). Stride time (r = -0.282, P = 0.073) and fall self-efficacy (r = 0.566, P = 0.001) were negatively correlated with community reintegration. Duration of stroke, balance self-efficacy, community balance/mobility, and fall self-efficacy (52.7% of the variance) were the significant predictors of community reintegration. Conclusion Community reintegration is influenced by cadence, functional mobility, balance self-efficacy, community balance/mobility, and duration of stroke. Hence, improving balance and mobility during rehabilitation is important in enhancing community reintegration in patients with stroke.
Collapse
Affiliation(s)
| | - Jibrin Sammani Usman
- Department of Physiotherapy, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Kayode Israel Oke
- Department of Physiotherapy, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | | |
Collapse
|
26
|
Boehm WL, Gruben KG. Development of KIINCE: A kinetic feedback-based robotic environment for study of neuromuscular coordination and rehabilitation of human standing and walking. J Rehabil Assist Technol Eng 2019; 5:2055668318793585. [PMID: 31191950 PMCID: PMC6453043 DOI: 10.1177/2055668318793585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction The objective of this article is to introduce the robotic platform KIINCE and
its emphasis on the potential of kinetic objectives for studying and
training human walking and standing. The device is motivated by the need to
characterize and train lower limb muscle coordination to address balance
deficits in impaired walking and standing. Methods The device measures the forces between the user and his or her environment,
particularly the force of the ground on the feet (F) that
reflects lower limb joint torque coordination. In an environment that allows
for exploration of the user’s capabilities, various forms of real-time
feedback guide neural training to produce F appropriate for
remaining upright. Control of the foot plate motion is configurable and may
be user driven or prescribed. Design choices are motivated from theory of
motor control and learning as well as empirical observations of
F during walking and standing. Results Preliminary studies of impaired individuals demonstrate the feasibility and
potential utility of patient interaction with kinetic immersive interface
for neuromuscular coordination enhancement. Conclusion Applications include study and rehabilitation of standing and walking after
injury, amputation, and neurological insult, with an initial focus on stroke
discussed here.
Collapse
Affiliation(s)
- Wendy L Boehm
- Department of Biomedical Engineering, Northwestern University, Chicago, USA
| | - Kreg G Gruben
- Department of Kinesiology, University of Wisconsin, Madison, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| |
Collapse
|
27
|
El-Nashar H, ElWishy A, Helmy H, El-Rwainy R. Do core stability exercises improve upper limb function in chronic stroke patients? THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0087-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Akbas T, Neptune RR, Sulzer J. Neuromusculoskeletal Simulation Reveals Abnormal Rectus Femoris-Gluteus Medius Coupling in Post-stroke Gait. Front Neurol 2019; 10:301. [PMID: 31001189 PMCID: PMC6454148 DOI: 10.3389/fneur.2019.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Post-stroke gait is often accompanied by muscle impairments that result in adaptations such as hip circumduction to compensate for lack of knee flexion. Our previous work robotically enhanced knee flexion in individuals post-stroke with Stiff-Knee Gait (SKG), however, this resulted in greater circumduction, suggesting the existence of abnormal coordination in SKG. The purpose of this work is to investigate two possible mechanisms of the abnormal coordination: (1) a reflex coupling between stretched quadriceps and abductors, and (2) a coupling between volitionally activated knee flexors and abductors. We used previously collected kinematic, kinetic and EMG measures from nine participants with chronic stroke and five healthy controls during walking with and without the applied knee flexion torque perturbations in the pre-swing phase of gait in the neuromusculoskeletal simulation. The measured muscle activity was supplemented by simulated muscle activations to estimate the muscle states of the quadriceps, hamstrings and hip abductors. We used linear mixed models to investigate two hypotheses: (H1) association between quadriceps and abductor activation during an involuntary period (reflex latency) following the perturbation and (H2) association between hamstrings and abductor activation after the perturbation was removed. We observed significantly higher rectus femoris (RF) activation in stroke participants compared to healthy controls within the involuntary response period following the perturbation based on both measured (H1, p < 0.001) and simulated (H1, p = 0.022) activity. Simulated RF and gluteus medius (GMed) activations were correlated only in those with SKG, which was significantly higher compared to healthy controls (H1, p = 0.030). There was no evidence of synergistic coupling between any combination of hamstrings and hip abductors (H2, p > 0.05) when the perturbation was removed. The RF-GMed coupling suggests an underlying abnormal coordination pattern in post-stroke SKG, likely reflexive in origin. These results challenge earlier assumptions that hip circumduction in stroke is simply a kinematic adaptation due to reduced toe clearance. Instead, abnormal coordination may underlie circumduction, illustrating the deleterious role of abnormal coordination in post-stroke gait.
Collapse
Affiliation(s)
| | | | - James Sulzer
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
29
|
Akbas T, Prajapati S, Ziemnicki D, Tamma P, Gross S, Sulzer J. Hip circumduction is not a compensation for reduced knee flexion angle during gait. J Biomech 2019; 87:150-156. [PMID: 30876735 DOI: 10.1016/j.jbiomech.2019.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 11/29/2022]
Abstract
It has long been held that hip abduction compensates for reduced swing-phase knee flexion angle, especially in those after stroke. However, there are other compensatory motions such as pelvic obliquity (hip hiking) that could also be used to facilitate foot clearance with greater energy efficiency. Our previous work suggested that hip abduction may not be a compensation for reduced knee flexion after stroke. Previous study applied robotic knee flexion assistance in people with post-stroke Stiff-Knee Gait (SKG) during pre-swing, finding increased abduction despite improved knee flexion and toe clearance. Thus, our hypothesis was that hip abduction is not a compensation for reduced knee flexion. We simulated the kinematics of post-stroke SKG on unimpaired individuals with three factors: a knee orthosis to reduce knee flexion, an ankle-foot orthosis commonly worn by those post-stroke, and matching gait speeds. We compared spatiotemporal measures and kinematics between experimental factors within healthy controls and with a previously recorded cohort of people with post-stroke SKG. We focused on frontal plane motions of hip and pelvis as possible compensatory mechanisms. We observed that regardless of gait speed, knee flexion restriction increased pelvic obliquity (2.8°, p < 0.01) compared to unrestricted walking (1.5°, p < 0.01), but similar to post-stroke SKG (3.4°). However, those with post-stroke SKG had greater hip abduction (8.2°) compared to unimpaired individuals with restricted knee flexion (4.2°, p < 0.05). These results show that pelvic obliquity, not hip abduction, compensates for reduced knee flexion angle. Thus, other factors, possibly neural, facilitate exaggerated hip abduction observed in post-stroke SKG.
Collapse
Affiliation(s)
- Tunc Akbas
- Department of Mechanical Engineering, University of Texas at Austin, United States.
| | - Sunil Prajapati
- Department of Mechanical Engineering, University of Texas at Austin, United States
| | - David Ziemnicki
- Department of Mechanical Engineering, University of Texas at Austin, United States
| | - Poornima Tamma
- Department of Mechanical Engineering, University of Texas at Austin, United States
| | - Sarah Gross
- Department of Mechanical Engineering, University of Texas at Austin, United States
| | - James Sulzer
- Department of Mechanical Engineering, University of Texas at Austin, United States
| |
Collapse
|
30
|
Morishita M, Yamaguchi H, Yamagami S, Kobayashi M. Effects of gait training with non-paretic knee immobilization on patients with hemiplegia: Three single-case studies. Physiother Theory Pract 2018; 35:268-277. [PMID: 29469599 DOI: 10.1080/09593985.2018.1442535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patients' with a hemiplegic gait and difficulties with activities of daily living may improve through intensive training of their paretic lower limbs. This study examined the possibility of improving their gait by immobilizing the non-paretic knee joint in extension and promoting weight shift toward the paretic side. Single-case ABABA studies were conducted, involving three patients with hemiplegia. The patients walked with their non-paretic knee joints immobilized in extension using a dial-lock knee orthosis during the intervention (B1 and B2) periods. Measurement items included (1) temporal and distance factors and (2) hip, knee, and ankle joint angles during gait. In all subjects, the stance phase was significantly prolonged on the paretic side during all intervention periods following the first baseline (A1) period. In Subject 1, hip extension in the stance phase improved during all intervention periods following the A1 period, and, in Subjects 2 and 3, the knee hyperextension in the stance phase, which was observed during the A1 period, was resolved during the second (A2) and third (A3) baseline periods. Gait training with non-paretic knee immobilization may promote weight shift toward the paretic side to overcome a swing limitation on the immobilized side, consequently providing an opportunity for training in weight bearing for the paretic limb and an improved, more symmetrical gait pattern.
Collapse
Affiliation(s)
- Motoyoshi Morishita
- Department of Physical Therapy, Kibi International University, Okayama, Japan
| | - Hidetaka Yamaguchi
- Department of Sports Social Management, Kibi International University, Okayama, Japan
| | - Shota Yamagami
- Rehabilitation center, Watanabe Hospital, Shiseikai Medical Corporation, Okayama, Japan
| | - Mariko Kobayashi
- Rehabilitation center, Watanabe Hospital, Shiseikai Medical Corporation, Okayama, Japan
| |
Collapse
|
31
|
Łyp M, Stanisławska I, Witek B, Olszewska-Żaczek E, Czarny-Działak M, Kaczor R. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1070:111-115. [PMID: 29435956 DOI: 10.1007/5584_2018_158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study deals with the use of a robot-assisted body-weight-supported treadmill training in multiple sclerosis (MS) patients with gait dysfunction. Twenty MS patients (10 men and 10 women) of the mean of 46.3 ± 8.5 years were assigned to a six-week-long training period with the use of robot-assisted treadmill training of increasing intensity of the Lokomat type. The outcome measure consisted of the difference in motion-dependent torque of lower extremity joint muscles after training compared with baseline before training. We found that the training uniformly and significantly augmented the torque of both extensors and flexors of the hip and knee joints. The muscle power in the lower limbs of SM patients was improved, leading to corrective changes of disordered walking movements, which enabled the patients to walk with less effort and less assistance of care givers. The torque augmentation could have its role in affecting the function of the lower extremity muscle groups during walking. The results of this pilot study suggest that the robot-assisted body-weight-supported treadmill training may be a potential adjunct measure in the rehabilitation paradigm of 'gait reeducation' in peripheral neuropathies.
Collapse
Affiliation(s)
- Marek Łyp
- Department of Physiotherapy, College of Rehabilitation, Warsaw, Poland
| | | | - Bożena Witek
- Department of Animal Physiology, Institute of Biology, The Jan Kochanowski University in Kielce, Kielce, Poland
| | | | | | - Ryszard Kaczor
- Department of Physiotherapy, College of Rehabilitation, Warsaw, Poland
| |
Collapse
|
32
|
Mizuno S, Sonoda S, Takeda K, Maeshima S. Effect of muscle tone on ankle kinetics during gait with ankle-foot orthoses in persons with stroke. Top Stroke Rehabil 2017; 24:567-572. [PMID: 28945975 DOI: 10.1080/10749357.2017.1373930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background Individuals exhibiting hemiplegia and increased ankle plantar flexors muscle tone following stroke are frequently prescribed an ankle-foot orthosis (AFO) to regain functional ambulation. The effect of muscle tone on ankle kinetics when walking with an AFO remains unknown. Objectives To investigate the effect of plantar flexion (PF) muscle tone on ankle plantar flexion torque during walking with an ankle-foot orthosis Methods The study included 80 participants with first-ever stroke whose manual muscle testing (MMT) of ankle DF 0-4, and 10 healthy subjects. Participants were instructed to walk on a treadmill, at a comfortable speed, wearing an instrumented AFO. Minimum PF torque during the last half of swing was extracted as an outcome measure. Resistive PF torques during passive slow and fast stretches were measured with a custom-built device, with torques at 10° DF (T10°-slow and T10°-fast) extracted as defining parameters for stiffness and muscle tone, respectively. Results Correlations between both T10°-slow and T10°-fast variables with minimum PF torque were fair among ankle DF MMT 0-3 groups (r = 0.71 -0.74, p < 0.01), with no correlation observed among the MMT 4 group and healthy subjects. Conclusions Effects of muscle tone on ankle kinetics during swing phase, with an AFO, were observed in persons with severe ankle DF paresis. Quantitative evaluation of ankle kinetics during gait with an AFO in addition to evaluation of muscle tone at rest is contributory to objective assessment of a muscle tone, not subjective rating scale at rest, or visual inspection of walking.
Collapse
Affiliation(s)
- Shiho Mizuno
- a Department of Rehabilitation Medicine , Matsusaka Central General Hospital , Matsusaka , Japan
| | - Shigeru Sonoda
- b Department of Rehabilitation Medicine II, School of Medicine , Fujita Health University , Toyoake , Japan
| | - Kotaro Takeda
- c Faculty of Rehabilitation, School of Health Sciences , Fujita Health University , Toyoake , Japan
| | - Shinichiro Maeshima
- b Department of Rehabilitation Medicine II, School of Medicine , Fujita Health University , Toyoake , Japan
| |
Collapse
|
33
|
Hussain S, Jamwal PK, Ghayesh MH. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Comput Methods Biomech Biomed Engin 2017; 20:626-635. [PMID: 28349768 DOI: 10.1080/10255842.2017.1282471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVES While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. METHODS Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. RESULTS The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. CONCLUSIONS Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.
Collapse
Affiliation(s)
- Shahid Hussain
- a School of Mechanical, Materials and Mechatronics Engineering , University of Wollongong , Wollongong , Australia
| | - Prashant K Jamwal
- b Department of Electrical and Electronics Engineering , Nazarbayev University , Astana , Kazakhstan
| | - Mergen H Ghayesh
- c School of Mechanical Engineering , University of Adelaide , Adelaide , Australia
| |
Collapse
|
34
|
Roper JA, Terza MJ, Hass CJ. Perception of symmetry and asymmetry in individuals with anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2016; 40:52-57. [PMID: 27821274 DOI: 10.1016/j.clinbiomech.2016.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Changes in the quantity, quality and integration of sensory information are thought to persist long after anterior cruciate ligament reconstruction and completion of physical therapy. Our purpose was to investigate the ability of individuals with anterior cruciate ligament reconstruction to perceive imposed asymmetry and symmetry while walking. METHODS Twenty participants with anterior cruciate ligament reconstruction and 20 controls walked on a split-belt treadmill while we assessed the ability to detect symmetry and asymmetry at fast and slow speeds. Detection scores and spatiotemporal data during asymmetric and symmetric tasks in which the belts were coupled or decoupled over time were recorded. FINDINGS The ability to detect symmetry and asymmetry was not altered in individuals with anterior cruciate ligament reconstruction compared to healthy young adults. The belt-speed ratio at detection also correlated to asymmetry for step length, stride length, double support time, and stance time. However, the anterior cruciate ligament reconstruction group appeared to utilize unique information to determine detection. When asked to detect symmetry at a fast speed, no asymmetry scores significantly correlated with belt-speed ratio in the anterior cruciate ligament reconstruction group. Conversely, asymmetry in stride length, step length, and stance time all significantly correlated with belt-speed ratio at detection in the control group. INTERPRETATION Specific sensory cues arising from the speed of the leg may also augment perception of symmetry. This strategy may be necessary in order to successfully execute the motor task, and could develop due to altered sensory information from the reconstructed knee at faster walking speeds.
Collapse
Affiliation(s)
- Jaimie A Roper
- University of Florida, College of Health and Human Performance, Department of Applied Physiology and Kinesiology, USA.
| | - Matthew J Terza
- University of Florida, College of Health and Human Performance, Department of Applied Physiology and Kinesiology, USA
| | - Chris J Hass
- University of Florida, College of Health and Human Performance, Department of Applied Physiology and Kinesiology, USA
| |
Collapse
|
35
|
Maggioni S, Melendez-Calderon A, van Asseldonk E, Klamroth-Marganska V, Lünenburger L, Riener R, van der Kooij H. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehabil 2016; 13:72. [PMID: 27485106 PMCID: PMC4969661 DOI: 10.1186/s12984-016-0180-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The assessment of sensorimotor functions is extremely important to understand the health status of a patient and its change over time. Assessments are necessary to plan and adjust the therapy in order to maximize the chances of individual recovery. Nowadays, however, assessments are seldom used in clinical practice due to administrative constraints or to inadequate validity, reliability and responsiveness. In clinical trials, more sensitive and reliable measurement scales could unmask changes in physiological variables that would not be visible with existing clinical scores.In the last decades robotic devices have become available for neurorehabilitation training in clinical centers. Besides training, robotic devices can overcome some of the limitations in traditional clinical assessments by providing more objective, sensitive, reliable and time-efficient measurements. However, it is necessary to understand the clinical needs to be able to develop novel robot-aided assessment methods that can be integrated in clinical practice.This paper aims at providing researchers and developers in the field of robotic neurorehabilitation with a comprehensive review of assessment methods for the lower extremities. Among the ICF domains, we included those related to lower extremities sensorimotor functions and walking; for each chapter we present and discuss existing assessments used in routine clinical practice and contrast those to state-of-the-art instrumented and robot-aided technologies. Based on the shortcomings of current assessments, on the identified clinical needs and on the opportunities offered by robotic devices, we propose future directions for research in rehabilitation robotics. The review and recommendations provided in this paper aim to guide the design of the next generation of robot-aided functional assessments, their validation and their translation to clinical practice.
Collapse
Affiliation(s)
- Serena Maggioni
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland.
- Hocoma AG, Volketswil, Switzerland.
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland.
| | - Alejandro Melendez-Calderon
- Hocoma AG, Volketswil, Switzerland
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Edwin van Asseldonk
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland
| | | | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zürich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University Zürich, Zürich, Switzerland
| | - Herman van der Kooij
- Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
36
|
Examination of Inertial Sensor-Based Estimation Methods of Lower Limb Joint Moments and Ground Reaction Force: Results for Squat and Sit-to-Stand Movements in the Sagittal Plane. SENSORS 2016; 16:s16081209. [PMID: 27490544 PMCID: PMC5017375 DOI: 10.3390/s16081209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
Joint moment estimation by a camera-based motion measurement system and a force plate has a limitation of measurement environment and is costly. The purpose of this paper is to evaluate quantitatively inertial sensor-based joint moment estimation methods with five-link, four-link and three-link rigid body models using different trunk segmented models. Joint moments, ground reaction forces (GRF) and center of pressure (CoP) were estimated for squat and sit-to-stand movements in the sagittal plane measured with six healthy subjects. The five-link model and the four-link model that the trunk was divided at the highest point of the iliac crest (four-link-IC model) were appropriate for joint moment estimation with inertial sensors, which showed average RMS values of about 0.1 Nm/kg for all lower limb joints and average correlation coefficients of about 0.98 for hip and knee joints and about 0.80 for ankle joint. Average root mean square (RMS) errors of horizontal and vertical GRFs and CoP were about 10 N, 15 N and 2 cm, respectively. Inertial sensor-based method was suggested to be an option for estimating joint moments of the trunk segments. Inertial sensors were also shown to be useful for the bottom-up estimation method using measured GRFs, in which average RMS values and average correlation coefficients were about 0.06 Nm/kg and larger than about 0.98 for all joints.
Collapse
|
37
|
Arya KN, Pandian S, Kumar D. Does an association exist between the hierarchical motor components of upper and lower limbs in stroke? J Bodyw Mov Ther 2016; 20:504-11. [DOI: 10.1016/j.jbmt.2015.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 11/24/2022]
|
38
|
Roper JA, Terza MJ, Tillman MD, Hass CJ. Adaptation Strategies of Individuals With Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2016; 4:2325967115627611. [PMID: 26894200 PMCID: PMC4748157 DOI: 10.1177/2325967115627611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Despite the strong implications for rehabilitation design, the capability of individuals with anterior cruciate ligament reconstruction (ACLR) to adapt and store novel gait patterns have not been well studied. Purpose: To investigate how reconstructive surgery may affect the ability to adapt and store novel gait patterns in persons with ACLR while walking on a split-belt treadmill. Study Design: Controlled laboratory study. Methods: Gait adaptation was compared between 20 participants with ACLR and 20 healthy controls during split-belt treadmill walking. Gait adaptation was assessed in slow- and fast-adapting parameters by (1) the magnitude of symmetry during late adaptation and (2) the amount of the asymmetry during de-adaptation. Results: Healthy individuals adapted a new walking pattern and stored the new walking pattern equally in both the dominant and nondominant limbs. Conversely, individuals with ACLR displayed impairments in both slow-adapting and fast-adapting derived gait adaptation and significant differences in behavior between the reconstructed and uninjured limb. Conclusion: While surgical reconstruction and physical therapy are aimed at improving mechanical stability to the knee, the study data suggest that fundamental features of motor control remain altered. After ACLR, participants display an altered ability to learn and store functional gait patterns.
Collapse
Affiliation(s)
- Jaimie A Roper
- Applied Physiology and Kinesiology Department, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Matthew J Terza
- Applied Physiology and Kinesiology Department, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Mark D Tillman
- Department of Kinesiology and Health Promotion, College of Health and Human Services, Troy University, Troy, Alabama, USA
| | - Chris J Hass
- Applied Physiology and Kinesiology Department, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Haarman JAM, Reenalda J, Buurke JH, van der Kooij H, Rietman JS. The effect of 'device-in-charge' versus 'patient-in-charge' support during robotic gait training on walking ability and balance in chronic stroke survivors: A systematic review. J Rehabil Assist Technol Eng 2016; 3:2055668316676785. [PMID: 31186917 PMCID: PMC6453083 DOI: 10.1177/2055668316676785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
This review describes the effects of two control strategies - used in robotic gait-training devices for chronic stroke survivors - on gait speed, endurance and balance. Control strategies are classified as 'patient-in-charge support', where the device 'empowers' the patient, and 'device-in-charge support', where the device imposes a pre-defined movement trajectory on the patient. Studies were collected up to 24 June 2015 and were included if they presented robotic gait training in chronic stroke survivors and used outcome measures that were indexed by the International Classification of Functioning, Disability and Health. In total, 11 articles were included. Methodological quality was assessed using the PEDro scale. Outcome measures were walking speed, endurance and balance. Pooled mean differences between pre and post measurements were calculated. No differences were found between studies that used device-in-charge support and patient-in-charge support. Training effects were small for both groups of control strategies, and none were considered to be clinically relevant as defined by the Minimal Clinically Important Difference. However, an important confounder is the short training duration among all included studies. As control strategies in robotic gait training are rapidly evolving, future research should take the recommendations that are made in this review into account.
Collapse
Affiliation(s)
- Juliet AM Haarman
- Roessingh Research and Development,
Roessinghsbleekweg 33b, 7522 AH Enschede, the Netherlands
- Department of Biomechanical Engineering,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Jasper Reenalda
- Roessingh Research and Development,
Roessinghsbleekweg 33b, 7522 AH Enschede, the Netherlands
- Department of Biomechanical Engineering,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Jaap H Buurke
- Roessingh Research and Development,
Roessinghsbleekweg 33b, 7522 AH Enschede, the Netherlands
- Department of Biomechanical Engineering,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Johan S Rietman
- Roessingh Research and Development,
Roessinghsbleekweg 33b, 7522 AH Enschede, the Netherlands
- Department of Biomechanical Engineering,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| |
Collapse
|
40
|
Boehm WL, Gruben KG. Post-Stroke Walking Behaviors Consistent with Altered Ground Reaction Force Direction Control Advise New Approaches to Research and Therapy. Transl Stroke Res 2015; 7:3-11. [PMID: 26639659 DOI: 10.1007/s12975-015-0435-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 11/26/2022]
Abstract
Recovery of walking after stroke requires an understanding of how motor control deficits lead to gait impairment. Traditional therapy focuses on removing specific observable gait behaviors that deviate from unimpaired walking; however, those behaviors may be effective compensations for underlying problematic motor control deficits rather than direct effects of the stroke. Neurological deficits caused by stroke are not well understood, and thus, efficient interventions for gait rehabilitation likely remain unrealized. Our laboratory has previously characterized a post-stroke control deficit that yields a specific difference in direction of the ground reaction force (F, limb endpoint force) exerted with the hemiplegic limb of study participants pushing on both stationary and moving pedals while seated. That task was not dependent on F to retain upright posture, and thus, the task did not constrain F direction. Rather, the F direction was the product of neural preference. It is not known if this specific muscle coordination deficit causes the observed walking deviations, but if present during walking, the deficit would prevent upright posture unless counteracted by compensatory behaviors. Compensations are presented that mechanically counteract the F misdirection to allow upright posture. Those compensations are similar to behaviors observed in stroke patients. Based on that alignment between predictions of this theory and clinical observations, we theorize that post-stroke gait results from the attempt to compensate for the underlying F misdirection deficit. Limb endpoint force direction has been shown to be trainable in the paretic upper limb, making it a feasible goal in the lower limb. If this F misdirection theory is valid, these ideas have tremendous promise for advancing the field of post-stroke gait rehabilitation.
Collapse
Affiliation(s)
- Wendy L Boehm
- Department of Kinesiology and Biomedical Engineering, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI, 53706, USA.
| | - Kreg G Gruben
- Department of Kinesiology and Biomedical Engineering, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI, 53706, USA
| |
Collapse
|
41
|
Chu VW, Hornby TG, Schmit BD. Perception of lower extremity loads in stroke survivors. Clin Neurophysiol 2015; 126:372-81. [DOI: 10.1016/j.clinph.2014.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
42
|
Cao J, Xie SQ, Das R, Zhu GL. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med Eng Phys 2014; 36:1555-66. [DOI: 10.1016/j.medengphy.2014.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022]
|
43
|
Sakuma K, Ohata K, Izumi K, Shiotsuka Y, Yasui T, Ibuki S, Ichihashi N. Relation between abnormal synergy and gait in patients after stroke. J Neuroeng Rehabil 2014; 11:141. [PMID: 25257123 PMCID: PMC4189205 DOI: 10.1186/1743-0003-11-141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
Background The abnormal synergy seen in patients after stroke is considered to limit the ability of these patients. However, in the lower extremity, antigravity torque generation rather than precise movement is needed for functions such as sit-to-stand movement and gait. Therefore, the ability to generate torque may be important either as a primary movement or as an abnormal synergy. We attempted to quantify the torque generation in the lower limb, selectively and as an abnormal synergy, and its relation with gait. Methods Selectively generated plantar flexion torque in the ankle and plantar flexion torque secondarily generated accompanying maximal hip extension (i.e., torque generated with abnormal synergy) were measured in subjects after stroke and control subjects. In subjects after stroke, secondary torque generation while controlling hip extension torque as 25%, 50%, and 75% of the maximal hip extension was also measured. The relation of torque generation with the gait speed and timed-up-and go test (TUG) was also analyzed. Results In subjects after stroke, there was no difference between the amount of plantar flexion torque generated secondarily and the selectively generated torque, whereas the selective torque was significantly greater in control subjects. Pearson product–moment correlation coefficient analysis revealed that TUG speed is related to secondarily generated torque accompanying maximal hip extension but not with selectively generated torque. Conclusion Secondarily generated torque was found to be a factor that affects TUG speed, and the ability to generate torque even through abnormal synergy may help for gait ability in subjects after stroke. Electronic supplementary material The online version of this article (doi:10.1186/1743-0003-11-141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaoru Sakuma
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mazuquin BF, Batista JP, Pereira LM, Dias JM, Silva MF, Carregaro RL, Lucareli PRG, Moura FA, Cardoso JR. Kinematic gait analysis using inertial sensors with subjects after stroke in two different arteries. J Phys Ther Sci 2014; 26:1307-11. [PMID: 25202203 PMCID: PMC4155242 DOI: 10.1589/jpts.26.1307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
[Purpose] The aim of the present study was described the kinematic characteristics of
gait in stroke patients with two different arteries involved. [Subjects and Methods] Two
patients who had suffered a basilar (A) or middle (B) cerebral artery ischemic stroke were
compared with a control (C). Seventeen inertial sensors were used with acquisition rate of
120 Hz. The participants walked 3 times on a 10 meter walkway. From the raw data, the
three gait cycles from the middle of each trial were chosen and analyzed. [Results] During
the stance phase, patients A and B had a lower hip angle at initial contact and maximum
flexion angle during load response than the control. Patient A and the control subject had
similar knee angle values at initial contact, and patient B presented a flexed position in
the initial phase of the gait cycle. The maximum flexion angles during loading response
were also higher for patient B. The sagittal plane excursion for the ankle joint was lower
for patient B in comparison with the other subjects. [Conclusion] Differences during
walking between patients who had stroke in different arteries may be related to an
alternative compensatory strategy. Patient A and the control subject had similar gait
cycle curves at all joints, while patient B showed a rigid synergic pattern.
Collapse
Affiliation(s)
- Bruno Fles Mazuquin
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil
| | - João Pedro Batista
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil ; Instituto Federal do Paraná, Campus Londrina, Brazil
| | - Ligia Maxwell Pereira
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil
| | - Josilainne Marcelino Dias
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil
| | - Mariana Felipe Silva
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil
| | | | | | - Felipe Arruda Moura
- Sports Science Department, Universidade Estadual de Londrina, Londrina, Brazil
| | - Jefferson Rosa Cardoso
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Brazil
| |
Collapse
|
45
|
Hyngstrom AS, Kuhnen HR, Kirking KM, Hunter SK. Functional implications of impaired control of submaximal hip flexion following stroke. Muscle Nerve 2014; 49:225-32. [PMID: 23625534 DOI: 10.1002/mus.23886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We quantified submaximal torque regulation during low to moderate intensity isometric hip flexion contractions in individuals with stroke and the associations with leg function. METHODS Ten participants with chronic stroke and 10 controls performed isometric hip flexion contractions at 5%, 10%, 15%, 20%, and 40% of maximal voluntary contraction (MVC) in paretic, nonparetic, and control legs. RESULTS Participants with stroke had larger torque fluctuations (coefficient of variation, CV), for both the paretic and nonparetic legs, than controls (P < 0.05) with the largest CV at 5% MVC in the paretic leg (P < 0.05). The paretic CV correlated with walking speed (r2 = 0.54) and Berg Balance Score (r2 = 0.40). At 5% MVC, there were larger torque fluctuations in the contralateral leg during paretic contractions compared with the control leg. CONCLUSIONS Impaired low-force regulation of paretic leg hip flexion can be functionally relevant and related to control versus strength deficits poststroke.
Collapse
|
46
|
Yang JK, Ahn NE, Kim DH, Kim DY. Plantar Pressure Distribution During Robotic-Assisted Gait in Post-stroke Hemiplegic Patients. Ann Rehabil Med 2014; 38:145-52. [PMID: 24855607 PMCID: PMC4026599 DOI: 10.5535/arm.2014.38.2.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022] Open
Abstract
Objective To assess the plantar pressure distribution during the robotic-assisted walking, guided through normal symmetrical hip and knee physiological kinematic trajectories, with unassisted walking in post-stroke hemiplegic patients. Methods Fifteen hemiplegic stroke patients, who were able to walk a minimum of ten meters independently but with asymmetric gait patterns, were enrolled in this study. All the patients performed both the robotic-assisted walking (Lokomat) and the unassisted walking on the treadmill with the same body support in random order. The contact area, contact pressure, trajectory length of center of pressure (COP), temporal data on both limbs and asymmetric index of both limbs were obtained during both walking conditions, using the F-Scan in-shoe pressure measurement system. Results The contact area of midfoot and total foot on the affected side were significantly increased in robotic-assisted walking as compared to unassisted walking (p<0.01). The contact pressure of midfoot and total foot on affected limbs were also significantly increased in robotic-assisted walking (p<0.05). The anteroposterior and mediolateral trajectory length of COP were not significantly different between the two walking conditions, but their trajectory variability of COP was significantly improved (p<0.05). The asymmetric index of area, stance time, and swing time during robotic-assisted walking were statistically improved as compared with unassisted walking (p<0.05). Conclusion The robotic-assisted walking may be helpful in improving the gait stability and symmetry, but not the physiologic ankle rocker function.
Collapse
Affiliation(s)
- Jin Kyu Yang
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea. ; Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Na El Ahn
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea. ; Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Deog Young Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea. ; Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Swinnen E, Baeyens JP, Knaepen K, Michielsen M, Hens G, Clijsen R, Goossens M, Buyl R, Meeusen R, Kerckhofs E. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics. Disabil Rehabil Assist Technol 2014; 10:252-7. [PMID: 24512196 DOI: 10.3109/17483107.2014.888487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The goal was to assess in healthy participants the three-dimensional kinematics of the pelvis and the trunk during robot-assisted treadmill walking (RATW) at 0%, 30% and 50% body weight support (BWS), compared with treadmill walking (TW). METHODS 18 healthy participants walked (2 kmph) on a treadmill with and without robot assistance (Lokomat; 60% guidance force; 0%, 30% and 50% BWS). After an acclimatisation period (four minutes), trunk and pelvis kinematics were registered in each condition (Polhemus Liberty [240 Hz]). The results were analysed using a repeated measures analysis of variance with Bonferroni correction, with the level of suspension as within-subject factor. RESULTS During RATW with BWS, there were significantly (1) smaller antero-posterior and lateral translations of the trunk and the pelvis; (2) smaller antero-posterior flexion and axial rotation of the trunk; (3) larger lateral flexion of the trunk; and (4) larger antero-posterior tilting of the pelvis compared with TW. CONCLUSIONS There are significant differences in trunk and pelvis kinematics in healthy persons during TW with and without robot assistance. These data are relevant in gait rehabilitation, relating to normal balance regulation. Additional research is recommended to further assess the influence of robot assistance on human gait. IMPLICATIONS FOR REHABILITATION The trunk and pelvis moves in a different way during walking with robot assistance. The data suggest that the change in movement is due to the robot device and the harness of the suspension system more than due to the level of suspension itself.
Collapse
Affiliation(s)
- Eva Swinnen
- Faculty of Physical Education and Physiotherapy, Rehabilitation Research (RERE), Vrije Universiteit Brussel , Brussels , Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Walker ER, Hyngstrom AS, Schmit BD. Sensory electrical stimulation improves foot placement during targeted stepping post-stroke. Exp Brain Res 2014; 232:1137-43. [PMID: 24449007 DOI: 10.1007/s00221-014-3823-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
Abstract
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial-lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement.
Collapse
Affiliation(s)
- Eric R Walker
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | | | | |
Collapse
|
49
|
Dedov VN, Dedova IV. A bilateral rehabilitation system for the lower limbs. Disabil Rehabil Assist Technol 2013; 10:75-80. [DOI: 10.3109/17483107.2013.836688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Chung EJ, Kim JH, Lee BH. The effects of core stabilization exercise on dynamic balance and gait function in stroke patients. J Phys Ther Sci 2013; 25:803-6. [PMID: 24259857 PMCID: PMC3820398 DOI: 10.1589/jpts.25.803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 12/05/2022] Open
Abstract
[Purpose] The purpose of this study was to determine the effects of core stabilization
exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects
were 16 stroke patients, who were randomly divided into two groups: a core stabilization
exercise group of eight subjects and control group of eight subjects. [Methods] Subjects
in both groups received general training five times per week. Subjects in the core
stabilization exercise group practiced an additional core stabilization exercise program,
which was performed for 30 minutes, three times per week, during a period of four weeks.
All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait
parameters (velocity, cadence, step length, and stride length). [Results] Following
intervention, the core exercise group showed a significant change in TUG, velocity, and
cadence. The only significant difference observed between the core group and control group
was in velocity. [Conclusion] The results of this study suggest the feasibility and
suitability of core stabilization exercise for stroke patients.
Collapse
Affiliation(s)
- Eun-Jung Chung
- Department of Physical Therapy, Graduate School of Physical Therapy, Sahmyook University
| | | | | |
Collapse
|