1
|
Zhu M, Wu N, Zhong J, Chen C, Liu W, Ren Y, Wang X, Jin H. N 6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector. Cell Rep 2024; 43:113821. [PMID: 38368611 DOI: 10.1016/j.celrep.2024.113821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The titer of viruses that persist and propagate in their insect vector must be high enough for transmission yet not harm the insect, but the mechanism of this dynamic balance is unclear. Here, expression of inosine monophosphate dehydrogenase (LsIMPDH), a rate-limiting enzyme for guanosine triphosphate (GTP) synthesis, is shown to be downregulated by increased levels of N6-methyladenosine (m6A) on LsIMPDH mRNA in rice stripe virus (RSV)-infected small brown planthoppers (SBPHs; Laodelphax striatellus), the RSV vector, which decreases GTP content, thus limiting viral proliferation. Moreover, planthopper methyltransferase-like protein 3 (LsMETTL3) and m6A reader protein LsYTHDF3 are found to catalyze and recognize the m6A on LsIMPDH mRNA, respectively, and cooperate in destabilizing LsIMPDH transcripts. Co-silencing assays show that negative regulation of viral proliferation by both LsMETTL3 and LsYTHDF3 is partially dependent on LsIMPDH. This distinct mechanism limits virus replication in an insect vector, providing a potential gene target to block viral transmission.
Collapse
Affiliation(s)
- Mengjie Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiayi Zhong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Liu X, Wang Y, Han L, Xia Y, Xie J. A virus induces alterations in root morphology while exerting minimal effects on the rhizosphere and endosphere microorganisms in rice. FEMS Microbiol Ecol 2023; 99:fiad113. [PMID: 37742208 DOI: 10.1093/femsec/fiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The highly destructive southern rice black-streaked dwarf virus (SRBSDV) causes significant losses in rice production. To understand its impact on rice root, we studied fibrous root development and root microbiota variation (rhizosphere and endosphere) after SRBSDV infection. SRBSDV infection reduced the number and length of fibrous roots in rice. Interestingly, the rhizosphere had higher bacterial diversity and abundance at the initial (0 days) and 30-day postinfection stages, while 30-day-old roots showed increased diversity and abundance. However, there were no significant differences in microbiota diversity between infected and noninfected rice plants. The major rhizosphere microbiota included Proteobacteria, Bacteroidota, Acidobacteriota, and Planctomycetota, comprising about 80% of the community. The endosphere was dominated by Proteobacteria and Cyanobacteria, constituting over 90%, with Bacteroidota as the next most prominent group. Further, we identified differentially expressed genes related to plant-pathogen interactions, plant hormone signal, and ABC transporters, potentially affecting root morphology. Notably, specific bacteria (e.g. Inquilinus and Actinoplanes) showed correlations with these pathways. In conclusion, SRBSDV primarily influences root growth through host metabolism, rather than exerting direct effects on the root microbiota. These insights into the interactions among the pathogen, rice plant, and associated microbiota could have implications for managing SRBSDV's detrimental effects on rice production.
Collapse
Affiliation(s)
- Xuewei Liu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yirong Wang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Lijuan Han
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| |
Collapse
|
3
|
Park JR, Kim EG, Jang YH, Nam SY, Kim KM. Investigation of the Relationship between Genetic and Breeding Characteristics of WBPH Behavior according to Resistant Materials in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2821. [PMID: 37570975 PMCID: PMC10421494 DOI: 10.3390/plants12152821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Rice accounts for most of the calories consumed by the world's population. However, the whitebacked planthopper (WBPH), Sogatella furcifera (Horvath), is an insect that can cause rice yield loss. WBPH sucks the stems of rice and negatively affects yield and grain quality. Therefore, numerous insecticides have been developed to control WBPH in rice fields. However, chemical pesticides cause serious problems such as environmental pollution and ecosystem disturbance. Here, we research the possibility of using previously reported rice extracts obtained using methanol, Chrysoeriol 7(C7) and Cochlioquinone-9 (cq-9), as potential insect repellents. WBPH was caged with C7 or cq-9 and monitored, and the WBPH behavior was recorded. The number of WBPHs approaching the periphery of the C7 and cq-9 was very low. In cages containing the C7 and cq-9, only 13 and 7 WBPHs out of 100, respectively, walked around the material. In addition, foliar spraying with C7 and cq-9 did not negatively affect the plant height. The expression level of genes related to resistance was maintained at a high level in the resistant lines when treated with WBPHs alone, but was at a similar level to those of the controls when treated with C7 or cq-9. Interfering with WBPH access did not adversely affect the plant phenotype. Recently, people's interest in the environment has increased, and the use of plant-derived materials is also increasing. There is a new trend towards using plant extracts as an environmentally friendly means of managing resistance to WBPH during the rice cultivation period, while also avoiding environmental pollution.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-G.K.); (Y.-H.J.)
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-G.K.); (Y.-H.J.)
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-G.K.); (Y.-H.J.)
| | - Sang Yong Nam
- Department of Environmental Horticulture, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea
- Natural Science Research Institute, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-G.K.); (Y.-H.J.)
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Liu W, Wu N, Wang H, Zhang Z, Liu Y, Wang X. Southern rice black-streaked dwarf virus induces incomplete autophagy for persistence in gut epithelial cells of its vector insect. PLoS Pathog 2023; 19:e1011134. [PMID: 36706154 PMCID: PMC9907856 DOI: 10.1371/journal.ppat.1011134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/08/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Autophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects. Here, we report a novel mechanism by which SRBSDV induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in viral accumulation in gut epithelial cells of its vector, white-backed planthopper (Sogatella furcifera). SRBSDV infection leads to stimulation of the c-Jun N-terminal kinase (JNK) signaling pathway, which further activates autophagy. Mature and assembling virions were found close to the edge7 of the outer membrane of autophagosomes. Inhibition autophagy leads to the decrease of autophagosomes, which resulting in impaired maturation of virions and the decrease of virus titer, whereas activation of autophagy facilitated virus titer. Further, SRBSDV inhibited fusion of autophagosomes and lysosomes by interacting with lysosomal-associated membrane protein 1 (LAMP1) using viral P10. Thus, SRBSDV not only avoids being degrading by lysosomes, but also further hijacks these non-fusing autophagosomes for its subsistence. Our findings reveal a novel mechanism of reovirus persistence, which can explain why SRBSDV can be acquired and transmitted rapidly by its insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WL); (XW)
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Key Laboratory of Agricultural Biotechnology, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WL); (XW)
| |
Collapse
|
5
|
Silencing the Autophagy-Related Genes ATG3 and ATG9 Promotes SRBSDV Propagation and Transmission in Sogatella furcifera. INSECTS 2022; 13:insects13040394. [PMID: 35447836 PMCID: PMC9029546 DOI: 10.3390/insects13040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Autophagy plays diverse roles in the interaction among pathogen, vector, and host. In the plant virus and insect vector system, autophagy can be an antiviral/pro-viral factor to suppress/promote virus propagation and transmission. Here, we report the antiviral role of autophagy-related genes ATG3 and ATG9 in the white-backed planthopper (Sogatella furcifera) during the process of transmitting the southern rice black-streaked dwarf virus (SRBSDV). In this study, we annotated two autophagy-related genes, SfATG3 and SfATG9, from the female S. furcifera transcriptome. The cDNA of SfATG3 and SfATG9 comprised an open reading frame (ORF) of 999 bp and 2295 bp that encodes a protein of 332 and 764 amino acid residues, respectively. SfATG3 has two conserved domains and SfATG9 has one conserved domain. In S. furcifera females exposed to SRBSDV, expression of autophagy-related genes was significantly activated and shared similar temporal patterns to those of SRBSDV S9-1 and S10, all peaking at 4 d post viral exposure. Silencing the expression of SfATG3 and SfATG9 promoted SRBSDV propagation and transmission. This study provides evidence for the first time that S. furcifera autophagy-related genes ATG3 and ATG9 play an antiviral role to suppress SRBSDV propagation and transmission.
Collapse
|
6
|
Zhao Y, Cao X, Zhong W, Zhou S, Li Z, An H, Liu X, Wu R, Bohora S, Wu Y, Liang Z, Chen J, Yang X, Zhou G, Zhang T. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. MOLECULAR PLANT 2022; 15:689-705. [PMID: 35032687 DOI: 10.1016/j.molp.2022.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation; this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission.
Collapse
Affiliation(s)
- Yaling Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xue Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weihua Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shunkang Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiahua Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruifeng Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Surakshya Bohora
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyi Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Comparison of Transcriptome Responses between Sogatella furcifera Females That Acquired Southern Rice Black-Streaked Dwarf Virus and Not. INSECTS 2022; 13:insects13020182. [PMID: 35206753 PMCID: PMC8877124 DOI: 10.3390/insects13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by the planthopper, Sogatella furcifera. During feeding on virus-infected plants, S. furcifera may acquire or fail to acquire SRBSDV. In this study, the responses were compared among the S. furcifera successfully acquiring the virus, those failing to acquire the virus, and those not exposed to SRBSDV (the control). A total of 1043 and 2932 differentially expressed genes (DEGs) were obtained in S. furcifera females that acquired SRBSDV and that failed to, in comparison with the control, respectively. Functionally, these DEGs are primarily involved in diverse signaling pathways related to primary metabolism and innate immunity, such as apoptosis. Additional bioassays confirmed the activation of apoptosis in S. furcifera by SRBSDV exposure. Interestingly, we also found that six female-specific genes were also upregulated in S. furcifera females exposed to SRBSDV. Our results further the understanding of the interactions between the vector S. furcifera females and SRBSDV at the molecular level. Abstract The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by Sogatella furcifera in a persistent, propagative manner. Exposure of S. furcifera females to SRBSDV-infected rice plants may trigger transcriptomic changes in the insects, the transcriptomes of females that acquired SRBSDV and those that failed to, as well as females fed on healthy rice plants as control, were sequenced and compared. Nine transcriptomic libraries were constructed, from which a total of 53,084 genes were assembled. Among the genes, 1043 and 2932 were differentially expressed genes (DEGs) in S. furcifera females that acquired SRBSDV and that failed to, in comparison with the control, respectively. Functional enrichment analysis showed that DEGs identified in S. furcifera females exposed to SRBSDV are primarily involved in diverse signaling pathways related to primary metabolism and innate immunity. The DEGs in the S. furcifera females that failed to acquire the virus significantly outnumbered that in the insects that acquired the virus, and the virus exposure activated the humoral and cellular immune responses of the vectors, especially the apoptosis. The key gene in apoptosis encoding caspase 1 was upregulated by SRBSDV exposure, especially in S. furcifera females that failed to acquire the virus. Analysis of caspase 1 activity validated that SRBSDV exposure induced caspase 1 accumulation. Surprisingly, the expression of six female-specific genes was also upregulated by SRBSDV exposure, which was confirmed by RT-qPCR analysis. This study provides evidence to explain the differential virus acquisition at the transcriptome level.
Collapse
|
8
|
Zhang L, Liu W, Zhang X, Li L, Wang X. Southern rice black-streaked dwarf virus hijacks SNARE complex of its insect vector for its effective transmission to rice. MOLECULAR PLANT PATHOLOGY 2021; 22:1256-1270. [PMID: 34390118 PMCID: PMC8435234 DOI: 10.1111/mpp.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Vesicular trafficking is an important dynamic process that facilitates intracellular transport of biological macromolecules and their release into the extracellular environment. However, little is known about whether or how plant viruses utilize intracellular vesicles to their advantage. Here, we report that southern rice black-streaked dwarf virus (SRBSDV) enters intracellular vesicles in epithelial cells of its insect vector by engaging VAMP7 and Vti1a proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. The major outer capsid protein P10 of SRBSDV was shown to interact with VAMP7 and Vti1a of the white-backed planthopper and promote the fusion of vesicles into a large vesicle, which finally fused with the plasma membrane to release virions from midgut epithelial cells. Downregulation of the expression of either VAMP7 or Vti1a did not affect viral entry and accumulation in the gut, but significantly reduced viral accumulation in the haemolymph. It also did not affect virus acquisition, but significantly reduced the virus transmission efficiency to rice. Our data reveal a critical mechanism by which a plant reovirus hijacks the vesicle transport system to overcome the midgut escape barrier in vector insects and provide new insights into the role of the SNARE complex in viral transmission and the potential for developing novel strategies of viral disease control.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Li Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Horgan FG, Arida A, Ardestani G, Almazan MLP. Positive and negative interspecific interactions between coexisting rice planthoppers neutralise the effects of elevated temperatures. Funct Ecol 2021; 35:181-192. [PMID: 33612910 PMCID: PMC7883635 DOI: 10.1111/1365-2435.13683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
Global warming is often predicted to increase damage to plants through direct effects on insect herbivores. However, the indirect impacts of rising temperatures on herbivores, mediated through interactions with their biotic environment, could dampen these effects.Using a series of reciprocal density experiments with gravid females and developing nymphs, we examined interspecific competition between two coexisting phloem feeders Nilaparvata lugens (BPH) and Sogatella furcifera (WBPH), on rice at 25 and 30°C.WBPH performed better (i.e. adults survived longer, nymphs developed faster and grew larger) at 25°C and BPH (i.e. nymphs developed faster) at 30°C. However, contrary to predictions, WBPH had a greater effect in reducing oviposition and nymph performance in BPH at 30°C.A decoupling of resource use by WBPH and its antagonistic effects on BPH at the higher temperature suggests that WBPH feeding induces host defences that reduce BPH fitness (i.e. interference competition). Meanwhile, BPH facilitated WBPH oviposition at 30°C and facilitated WBPH nymph performance at 25 and 30°C. Greater facilitation of feeding in WBPH nymphs by BPH at high densities suggests that mechanical damage and host responses to damage increased the fitness of the heterospecific nymphs.Although BPH also facilitated egg-laying by WBPH, intra- and interspecific crowding countered this facilitation at both temperatures. Simulated life tables for planthoppers at 25 and 30°C depicted significantly lower offspring numbers on rice infested by WBPH alone and from mixed BPH-WBPH infestations than from infestations by BPH alone.Our results indicate how interference competition-mediated through host plant defences-can increase ecosystem resilience to the warmer temperatures predicted under global climate change. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration EcologyKildinanIreland
- Environment and Sustainable Resource ManagementUniversity College DublinBelfield, Dublin 4Ireland
| | - Arriza Arida
- International Rice Research InstituteMetro ManilaPhilippines
| | - Goli Ardestani
- International Rice Research InstituteMetro ManilaPhilippines
- Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstMAUSA
| | | |
Collapse
|
10
|
Horgan FG, Arida A, Ardestani G, Almazan MLP. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS One 2020; 15:e0235506. [PMID: 32603337 PMCID: PMC7326231 DOI: 10.1371/journal.pone.0235506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
The brown planthopper (Nilapavata lugens: BPH) and whitebacked planthopper (Sogatella furcifera: WBPH) co-occur as the principal pests of rice in Asia. A review of previous studies suggests that the two species have similar temperature tolerances and similar temperature thresholds for development. However, the distribution and seasonality of WBPH suggest that its temperature optima for performance (survival, oviposition and growth) may be lower than for BPH. We compared adult longevity, oviposition, nymph survival and development success, as well as nymph biomass in both species across a gradient of constant temperatures from 15°C-40°C, at 5°C intervals. The most suitable temperatures for oviposition, nymph biomass and development success were 5-10°C lower for WBPH than for BPH. Furthermore, compared to BPH, WBPH demonstrated clear differences in oviposition on different rice subspecies and on rice at different growth stages at 25°C and 30°C, but not at other temperatures. The results suggest that aspects of herbivore performance within tolerable temperature ranges, which are not often included in temperature models, may be more useful than thermal tolerances or development thresholds in predicting the effects of global warming on pest damage to crops.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, Co. Cork, Ireland
| | - Arriza Arida
- International Rice Research Institute, Metro Manila, Philippines
| | - Goli Ardestani
- International Rice Research Institute, Metro Manila, Philippines
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
| | | |
Collapse
|
11
|
Peng Y, Tang J, Xie J. Transcriptomic Analysis of the Brown Planthopper, Nilaparvata lugens, at Different Stages after Metarhizium anisopliae Challenge. INSECTS 2020; 11:insects11020139. [PMID: 32102435 PMCID: PMC7073985 DOI: 10.3390/insects11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Nilaparvata lugens is one of the major pests of rice and results in substantial yield loss every year. Our previous study found that the entomopathogenic fungus Metarhizium anisopliae showed effective potential for controlling this pest. However, the mechanisms underlying M. anisopliae infection of N. lugens are not well known. In the present study, we further examined the transcriptome of N. lugens at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection by Illumina deep sequencing. In total, 174.17 Gb of data was collected after sequencing, from which 23,398 unigenes were annotated by various databases, including 3694 newly annotated genes. The results showed that there were 246 vs 75, 275 vs 586, 378 vs 1055, and 638 vs 182 up- and downregulated differentially expressed genes (DEGs) at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection, respectively. The biological functions and associated metabolic processes of these genes were determined with the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The DEGs data were verified using RT-qPCR. These results indicated that the DEGs during the initial fungal infection appropriately reflected the time course of the response to the fungal infection. Taken together, the results of this study provide new insights into the molecular mechanisms underlying the insect host response to fungal infection, especially during the initial stage of infection, and may improve the potential control strategies for N. lugens.
Collapse
Affiliation(s)
- Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jifeng Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|
12
|
Chen Q, Wei T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:18-25. [PMID: 31729283 DOI: 10.1094/mpmi-07-19-0184-cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus-insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
13
|
Moeini P, Afsharifar A, Izadpanah K, Sadeghi SE, Eigenbrode SD. Maize Iranian mosaic virus (family Rhabdoviridae) improves biological traits of its vector Laodelphax striatellus. Arch Virol 2019; 165:169-178. [PMID: 31773326 DOI: 10.1007/s00705-019-04450-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Plant viruses can alter the behavior or performance of their arthropod vectors, either indirectly (through effects of virus infection on the host plant) or directly (from virus acquisition by the vector). Given the diversity of plant viruses and their arthropod vectors, the effects for any specific system are not possible to predict. Here, we present experimental evidence that acquisition of maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) modifies the biological traits of its insect vector, the small brown planthopper (SBPH) Laodelphax striatellus. MIMV is an economically important virus of maize and several other grass species. It is transmitted by SBPHs in a persistent-propagative manner. We evaluated the effects of MIMV acquisition by SBPH on its life history when reared on healthy barley plants (Hordeum vulgare). We conclude that 1) MIMV acquisition by SBPHs increases female fecundity, duration of the nymph stage, adult longevity, and survival of SBPHs, (2) the mortality rate and female-to-male sex ratio are reduced in MIMV-infected planthoppers, and (3) MIMV infection increases the concentration of some biochemical components of the infected plants, including carbohydrates, some amino acids, and total protein, which might influence the life traits of its insect vector. The results indicate the potential of MIMV to improve the ecological fitness of its vector, SBPH, through direct or indirect effects, with the potential to increase the spread of the virus.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | | | - Seyed Ebrahim Sadeghi
- Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, 31587-77871, Iran
| | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, USA
| |
Collapse
|
14
|
Chesnais Q, Couty A, Uzest M, Brault V, Ameline A. Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior. INSECT SCIENCE 2019; 26:86-96. [PMID: 28731285 DOI: 10.1111/1744-7917.12508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector.
Collapse
Affiliation(s)
- Quentin Chesnais
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Aude Couty
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Maryline Uzest
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA A54/KCampus International de Baillarguet, 34394, Montpellier Cedex 5, France
| | - Véronique Brault
- UMR 1131 SVQV, INRA-UDS, 28, rue de Herrlisheim, 68021, Colmar Cedex, France
| | - Arnaud Ameline
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| |
Collapse
|
15
|
Li H, Liu X, Liu X, Michaud JP, Zhi H, Li K, Li X, Li Z. Host Plant Infection by Soybean Mosaic Virus Reduces the Fitness of Its Vector, Aphis glycines (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2017-2023. [PMID: 29945216 DOI: 10.1093/jee/toy165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Coevolutionary interactions between pathogens and their insect vectors can dramatically impact the fitness of herbivorous insects and patterns of plant disease transmission. Soybean mosaic virus (SMV) is a common disease in soybean production worldwide. Infected seed is the primary source of inoculum in fields and the virus is secondarily spread among plants by the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in a nonpersistent manner. In this study, we compared the biological fitness of A. glycines colonizing both SMV-infected and uninfected soybean plants. Aphids feeding on SMV-infected soybean seedlings were significantly smaller and lighter than those feeding on uninfected plants across life stages. SMV infection caused delayed development of aphid nymphs on soybean seedlings, but this was more than compensated by a reduction in the pre-reproductive period of apterous adults. The fecundity of A. glycines was reduced when feeding on SMV-infected seedlings, resulting in a lower reproductive rate, a longer generation time, and a slower population doubling time. A smaller proportion of aphid offspring developed into alatae when feeding on SMV-infected soybean seedling, and these took longer to mature than their counterparts on uninfected plants. We infer that SMV infection has significantly negative effects on the biological performance of A. glycines, which may be consistent with the long-term coevolution of SMV, soybean, and A. glycines in the transmission cycle of SMV.
Collapse
Affiliation(s)
- Hui Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Zhang T, Feng W, Ye J, Li Z, Zhou G. Metabolomic Changes in Sogatella furcifera under Southern rice black-streaked dwarf virus Infection and Temperature Stress. Viruses 2018; 10:v10070344. [PMID: 29949918 PMCID: PMC6071123 DOI: 10.3390/v10070344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is a devastating newly emerged rice reovirus in Eastern and Southeastern Asia transmitted by a long-distance migratory pest, the white-backed planthopper (WBPH). We previously showed that SRBSDV infection decreased the cold tolerance but improved the heat tolerance of its vector, WBPH. Comparative metabolomic analysis was used to explore the potential mechanisms underlying these changes in temperature stress response. Fourth-generation WBPH nymphs were treated with SRBSDV and/or extreme temperature stress and were analyzed using gas chromatography-time of flight-mass spectrometry. A total of 605 distinguishable peaks were identified and 165, 207, and 202 differentially accumulated metabolites were identified in WBPH after virus infection, cold, or heat stress, respectively. The nucleic acids and fatty acids were the major categories of metabolites regulated by SRBSDV infection, whereas temperature stress regulated tricarboxylic acid cycle compounds, sugars, and polyols. For the WBPH samples infected with SRBSDV and subjected to temperature stress, amino acids, sugars, and polyols were the most significant regulated metabolites. The metabolomics study suggests that SRBSDV may influence the extreme temperature tolerance of WBPH by regulating the accumulation of amino acids, sugars, and polyols in the insect body.
Collapse
Affiliation(s)
- Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wendi Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiajie Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Li P, Liu H, Li F, Liao X, Ali S, Hou M. A virus plays a role in partially suppressing plant defenses induced by the viruliferous vectors. Sci Rep 2018; 8:9027. [PMID: 29899498 PMCID: PMC5997988 DOI: 10.1038/s41598-018-27354-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022] Open
Abstract
Herbivorous attack induces plant defenses. There is evidence that some pests suppress these defenses by interfering with signaling pathways. We here report that infestation by the white-backed planthopper, Sogatella furcifera, induces defense responses in rice and infection of the southern rice black-streaked dwarf virus in the planthoppers partially suppresses the planthopper-induced plant defenses. Salicylic acid (SA) levels generally showed a temporal increase pattern while jasmonic acid (JA) levels generally exhibited a decrease pattern in the planthopper-infested plants, irrespective of virus infection status in the insects. The increase in SA was less while the decrease in JA was more in the viruliferous insect-infested plants than in the nonviruliferous insect-infested plants at both 48 and 72 h post infestation. The phytohormone levels corresponded to the patterns of relative expression levels of SA-marker genes (ICS1 and NPR1) and JA-marker gene (AOS2) in the plant treatments. Planthoppers performed better on the uninfested plants than on the previously infested plants and were of not significant increase in performance on the plants previously attacked by viruliferous planthoppers in comparison with the plants previously attacked by nonviruliferous insects. Our results indicate that the virus plays a role in partially suppressing the plant defenses induced by the planthopper. These findings provide a new perspective on plant-virus-vector interactions.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
18
|
Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018; 101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lori R Shapiro
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Lan H, Hong X, Huang R, Lin X, Li Q, Li K, Zhou T. RNA interference-mediated knockdown and virus-induced suppression of Troponin C gene adversely affect the behavior or fitness of the green rice leafhopper, Nephotettix cincticeps. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21438. [PMID: 29193300 DOI: 10.1002/arch.21438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The green rice leafhopper, Nephotettix cincticeps, is a major rice pest in Southeast Asia and Southern China. Novel control strategies must be explored to control the rice pest. Behavior or fitness regulation of insect by modulating the Troponin C (TnC) may be a novel strategy in the comprehensive management of the insect pest. However, characterizations and functions of TnC, especially regarding effect of its RNA interference-mediated gene knockdown on the behavior or fitness of N. cincticeps remain unknown. Here, we successfully cloned and characterized TnC gene from N. cincticeps (Nc-TnC). We demonstrated that Nc-TnC ubiquitously transcribed at all development stages and special tissues in adult insects, with relative higher levels at the adult stage and in the intestinal canal. Microinjection- or oral membrane feeding-based transient knockdown of Nc-TnC adversely affected the performance or fitness, such as the decreased survival, feeding capacity, weight, and fecundity of N. cincticeps. Furthermore, we revealed that the expression of Nc-TnC was suppressed by its interaction with rice dwarf virus-encoded nonstructural protein 10, which ultimately affected detrimentally the corresponding parameters of the performance or fitness of N. cincticeps. In conclusion, our data deepen understanding of Nc-TnC functions during the development of and viral infection in N. cincticeps. It imply Nc-TnC may serve as a potential target for N. cincticeps control in future.
Collapse
Affiliation(s)
- Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Xiaojing Hong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Ranran Huang
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Xin Lin
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Qinghuang Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Kaihui Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| | - Tao Zhou
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, PR China
| |
Collapse
|
20
|
Liu Y, Mao Q, Lan H, Wang H, Wei T, Chen Q. Investigation of alimentary canal ultrastructure following knockdown of the Dicer-2 gene in planthoppers reveals the potential pathogenicity of southern rice black streaked dwarf virus to its insect vector. Virus Res 2018; 244:117-127. [PMID: 29141205 DOI: 10.1016/j.virusres.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022]
Abstract
An increasing number of studies are suggesting that plant viruses, including southern rice black-streaked dwarf virus (SRBSDV), can adversely affect biological characteristics of insect vectors by unknown mechanisms. To study the adverse effect of SRBSDV at cellular level on the insect vector, we promoted viral infection by the disruption of the small interfering RNA (siRNA) pathway. The transmission electron microscopy was utilized to describe the ultrastructural changes that occurred in insects when the core component of the siRNA pathway, Dicer-2, was knocked down. The increasing accumulation of SRBSDV in virus-infected vector, the white-backed planthoppers, caused severe cytopathology in the alimentary canal. Similar cytopathology changes in the midgut ultrastructure were characterized in the virus-infected incompetent vector, the small brown planthopper. These results not only add support to the existing evidence suggesting that the siRNA pathway has an antiviral effect, but also reveal the universal and potential ability of SRBSDV to cause damage to the insect tissues of both the vector and non-vector.
Collapse
Affiliation(s)
- Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
21
|
Wang Q, Han N, Dang C, Lu Z, Wang F, Yao H, Peng Y, Stanley D, Ye G. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). PLoS One 2017; 12:e0181258. [PMID: 28753622 PMCID: PMC5533439 DOI: 10.1371/journal.pone.0181258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/28/2017] [Indexed: 12/30/2022] Open
Abstract
The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.
Collapse
Affiliation(s)
- Qianjin Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Naishun Han
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zengbin Lu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia MO, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Effects of Transgenic Rice Infected with SRBSDV on Bt expression and the Ecological Fitness of Non-vector Brown Planthopper Nilaparvata lugens. Sci Rep 2017; 7:6328. [PMID: 28740253 PMCID: PMC5524900 DOI: 10.1038/s41598-017-02218-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/07/2017] [Indexed: 12/02/2022] Open
Abstract
The susceptibility of rice lines, T1C-19, T2A-1, and MH63 to SRBSDV infection are similar and the contents of cry protein in T2A-1 and T1C-19 do not change significantly. The survival rates of BPH nymphs feeding on SRBSDV-infected T1C-19, Bt T2A-1, or MH63 rice plants were not significantly different. The developmental stages of female BPH fed on T1C-19 plants infected with SRBSDV were significantly shorter than those fed on uninfected rice, while the males showed no significant difference. The duration of BPH feeding on SRBSDV-infected T2A-1 and MH63 also showed no significant difference in comparison with the respective control groups. Longevities of BPH adults feeding on SRBSDV-infected T1C-19, T2A-1 or MH63 were also not significant. However, the longevity of male adult BPH feeding on un-infected MH63 was significantly reduced in comparison with that of adult males feeding on un-infected T1C-19 and T2A-1 rice. In addition, the different rice lines and the rice plants infected and uninfected with SRBSDV did not significantly affect the sex ratio, female body weight, longevity, fecundity, or egg hatchability of BPH. In general, transgenic Bt rice infected with SRBSDV had little effect on the ecological adaptability of BPH.
Collapse
|
23
|
de Haro LA, Dumón AD, Mattio MF, Argüello Caro EB, Llauger G, Zavallo D, Blanc H, Mongelli VC, Truol G, Saleh MC, Asurmendi S, del Vas M. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector. FRONTIERS IN PLANT SCIENCE 2017; 8:766. [PMID: 28539933 PMCID: PMC5423983 DOI: 10.3389/fpls.2017.00766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/24/2017] [Indexed: 05/03/2023]
Abstract
Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.
Collapse
Affiliation(s)
- Luis A. de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Analía D. Dumón
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María F. Mattio
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | | | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Vanesa C. Mongelli
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Graciela Truol
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Sebastián Asurmendi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Mariana del Vas
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
24
|
Jin JX, Jin DC, Li WH, Cheng Y, Li FL, Ye ZC. Monitoring Trends in Insecticide Resistance of Field Populations of Sogatella furcifera (Hemiptera: Delphacidae) in Guizhou Province, China, 2012-2015. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:641-650. [PMID: 28334150 PMCID: PMC5387993 DOI: 10.1093/jee/tox027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 05/31/2023]
Abstract
Sogatella furcifera (Horváth) is a migratory insect that is one of the most important pest species on rice in many Asian countries. Control of S. furcifera (Hemiptera: Delphacidae) primarily depends on the use of chemical insecticides, and with this extensive reliance on pesticides, determining the degree of resistance of S. furcifera populations to the chemicals used for its control is essential. In this study, the resistance level to six conventional insecticides in five populations of S. furcifera from Guizhou Province was monitored yearly using the rice-stem dipping method in 2012-2015 to precisely understand current resistance levels and to estimate trends in the development of insecticide resistance in S. furcifera in Guizhou. Overall, S. furcifera from five regions in Guizhou showed a trend toward decreased susceptibility to isoprocarb (resistance ratio [RR] 0.82-3.59), susceptibility to low resistance against thiamethoxam (RR 0.27-9.69), susceptibility to moderate resistance to imidacloprid (RR 0.71-26.06), and decreased susceptibility to moderate resistance to chlorpyrifos (RR 4.63-19.58). The resistance to pymetrozine (RR 10.48-84.65) was moderate to high, and that to buprofezin (RR 6.36-412.43) was low to very high. In conclusion, the use of buprofezin and pymetrozine to control S. furcifera should be reduced in Guizhou Province, whereas prudent use at a reasonable frequency of chlorpyrifos and imidacloprid can continue. Isoprocarb and thiamethoxam are the best choices for effective management of S. furcifera. Rotations using alternative insecticides with different modes of action are recommended for regions in which resistance is at a moderate level.
Collapse
Affiliation(s)
- Jian-Xue Jin
- The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, P.R. China ( ; )
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, P.R. China ( ; ; ; )
| | - Dao-Chao Jin
- The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, P.R. China (; )
| | - Wen-Hong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, P.R. China (; ; ; )
| | - Ying Cheng
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, P.R. China (; ; ; )
| | - Feng-Liang Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, P.R. China (; ; ; )
| | - Zhao-Chun Ye
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, P.R. China (; ; ; )
| |
Collapse
|
25
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Lu G, Zhang T, He Y, Zhou G. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Sci Rep 2016; 6:38581. [PMID: 27924841 PMCID: PMC5141440 DOI: 10.1038/srep38581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022] Open
Abstract
Viruses may induce changes in plant hosts and vectors to enhance their transmission. The white-backed planthopper (WBPH) and brown planthopper (BPH) are vectors of Southern rice black-streaked dwarf virus (SRBSDV) and Rice ragged stunt virus (RRSV), respectively, which cause serious rice diseases. We herein describe the effects of SRBSDV and RRSV infections on host-selection behaviour of vector and non-vector planthoppers at different disease stages. The Y-tube olfactometer choice and free-choice tests indicated that SRBSDV and RRSV infections altered the attractiveness of rice plants to vector and non-vector planthoppers. The attractiveness was mainly mediated by rice volatiles, and varied with disease progression. The attractiveness of the SRBSDV- or RRSV-infected rice plants to the virus-free WBPHs or BPHs initially decreased, then increased, and finally decreased again. For the viruliferous WBPHs and BPHs, SRBSDV or RRSV infection increased the attractiveness of plants more for the non-vector than for the vector planthoppers. Furthermore, we observed that the attractiveness of infected plants to planthoppers was positively correlated with the virus titres. The titre effects were greater for virus-free than for viruliferous planthoppers. Down-regulated defence genes OsAOS1, OsICS, and OsACS2 and up-regulated volatile-biosynthesis genes OsLIS, OsCAS, and OsHPL3 expression in infected plants may influence their attractiveness.
Collapse
Affiliation(s)
- Guanghua Lu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yuange He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
28
|
Li P, Li F, Han Y, Yang L, Liao X, Hou M. Asymmetric Spread of SRBSDV between Rice and Corn Plants by the Vector Sogatella furcifera (Hemiptera: Delphacidae). PLoS One 2016; 11:e0165014. [PMID: 27760223 PMCID: PMC5070867 DOI: 10.1371/journal.pone.0165014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Plant viruses are mostly transmitted by sucking insects via their piercing behaviors, which may differ due to host plant species and their developmental stages. We characterized the transmission of a fijivirus, southern rice black-streaked dwarf virus (SRBSDV), by the planthopper vector Sogatella furcifera Horváth (Hemiptera: Delphacidae), between rice and corn plants of varying developmental stages. SRBSDV was transmitted from infected rice to uninfected corn plants as efficiently as its transmission between rice plants, while was acquired by S. furcifera nymphs at a much lower rate from infected corn plants than from infected rice plants. We also recorded a high mortality of S. furcifera nymphs on corn plants. It is evident that young stages of both the virus donor and recipient plants added to the transmission efficiency of SRBSDV from rice to corn plants. Feeding behaviors of the vector recorded by electrical penetration graph showed that phloem sap ingestion, the behavioral event that is linked with plant virus acquisition, was impaired on corn plants, which accounts for the high mortality of and low virus acquisition by S. furcifera nymphs on corn plants. Our results reveal an asymmetric spread of SRBSDV between its two host plants and the underlying behavioral mechanism, which is of significance for assessing SRBSDV transmission risks and field epidemiology, and for developing integrated management approaches for SRBSDV disease.
Collapse
Affiliation(s)
- Pei Li
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Yongqiang Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| |
Collapse
|
29
|
Than W, Qin F, Liu W, Wang X. Analysis of Sogatella furcifera proteome that interact with P10 protein of Southern rice black-streaked dwarf virus. Sci Rep 2016; 6:32445. [PMID: 27653366 PMCID: PMC5032029 DOI: 10.1038/srep32445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/04/2016] [Indexed: 02/03/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is transmitted efficiently only by white-backed planthopper (WBPH, Sogatella furcifera) in a persistent propagative manner. Here we used a yeast two-hybrid system to investigate the interactions between the SRBSDV- P10 and the cDNA library of WBPH. Of 130 proteins identified as putative interactors, 28 were further tested in a retransformation analysis and β-galactosidase assay to confirm the interaction. The full-length gene sequences of 5 candidate proteins: vesicle-associated membrane protein 7 (VAMP7), vesicle transport V-SNARE protein (Vti1A), growth hormone-inducible transmembrane protein (Ghitm), nascent polypeptide-associated complex subunit alpha, and ATP synthase lipid-binding protein) were amplified by 5' rapid amplification of cDNA ends (RACE) and used in a GST fusion protein pull-down assay. Three of these proteins interacted with SRBSDV-P10 in vitro experiment GST pull-down assay. In a gene expression analysis of 3 different growth stages and 6 different tissue organs of S. furcifera, the mRNA level of VAMP7 was high in adult males and gut. Vti1A was abundant in adult female, and malpighian tubule, gut and ovary. Ghitm was predominantly found in adult male and the malpighian tubule. These research findings are greatly helpful to understand the interaction between SRBSDV and insect vector.
Collapse
Affiliation(s)
- Win Than
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Faliang Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
30
|
Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus. Sci Rep 2016; 6:31521. [PMID: 27531640 PMCID: PMC4987581 DOI: 10.1038/srep31521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/21/2016] [Indexed: 01/03/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector’s death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress.
Collapse
|
31
|
Lei W, Li P, Han Y, Gong S, Yang L, Hou M. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success. Sci Rep 2016; 6:30240. [PMID: 27492995 PMCID: PMC4974502 DOI: 10.1038/srep30240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/01/2016] [Indexed: 12/01/2022] Open
Abstract
Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors' feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector's feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition.
Collapse
Affiliation(s)
- Wenbin Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Yongqiang Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Shaolong Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| |
Collapse
|
32
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
33
|
Chang ZX, Tang N, Wang L, Zhang LQ, Akinyemi IA, Wu QF. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera. INSECT SCIENCE 2016; 23:452-68. [PMID: 27060479 DOI: 10.1111/1744-7917.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are a novel class of small, non-coding endogenous RNAs that play critical regulatory roles in many metabolic activities in eukaryotes. Reports of the identification of miRNAs in Sogatella furcifera (white-backed planthopper), the insect that acts as the only confirmed vector of the southern rice black-streaked dwarf virus (SRBSDV), are limited. In this study, a total of 382 miRNAs were identified in S. furcifera, including 106 conserved and 276 novel miRNAs, using high-throughput sequencing based on two small RNA libraries from viruliferous and non-viruliferous S. furcifera, and these miRNAs belonged to 52 conserved miRNA families and 58 S. furcifera-specific families, respectively. Comparison with miRNAs from 26 insect species and five other species in miRBase showed that more than half of the conserved miRNA families are highly conserved in Hexapoda, while other miRNAs are only conserved in non-dipterans. Furthermore, 4 117 target genes predicted for the 382 identified miRNAs could be categorized into 45 functional groups annotated by Gene Ontology. Compared with non-viruliferous cells, eight up-regulated miRNAs and four down-regulated miRNAs were identified in cells inoculated with SRBSDV, among which miR-14 and miR-n98a may be involved in the immune response to SRBSDV infection. Analyses of the identified miRNAs will provide insights into the roles of these miRNAs in the regulation and expression of genes involved in the metabolism, development and viral infection of S. furcifera.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nan Tang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lin Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Qing Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ibukun A Akinyemi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Chen Y, Lu C, Li M, Wu W, Zhou G, Wei T. Adverse Effects of Rice gall dwarf virus upon its Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). PLANT DISEASE 2016; 100:784-790. [PMID: 30688603 DOI: 10.1094/pdis-06-15-0713-re] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice gall dwarf virus (RGDV), a plant reovirus that threatens rice production in Southeast Asia and Southern China, is transmitted by the leafhopper vector Recilia dorsalis in a persistent-propagative manner. To assess the direct effects of RGDV on R. dorsalis, we established an infected leafhopper population from eggs laid by viruliferous females using the water-soaked filter paper culture method. Life history parameters indicated that the virus was harmful to its vector in terms of all biotic indices, including reduced survival rate, emergence rate, fecundity, and longevity of adults, compared with a nonviruliferous control population. Those findings were supported by systematic monitoring of viruliferous rates of R. dorsalis in different overwintering generations. To better elucidate the adverse effects of RGDV on its vector, we measured fecundity at the molecular level using quantitative reverse-transcription polymerase chain reaction and Western blot assays, which revealed differential expression of vitellogenin (Vg) in viruliferous versus nonviruliferous adult females. We infer that RGDV reduced levels of Vg transcript and protein product, resulting in the lower fecundity of its vector. Overall, this study demonstrates how RGDV exerts an adverse effect on R. dorsalis, which hinders the expansion of viruliferous populations of the insect.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Chengcong Lu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guohui Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University
| |
Collapse
|
35
|
Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci Rep 2016; 6:20699. [PMID: 26864546 PMCID: PMC4750021 DOI: 10.1038/srep20699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus-insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 10(14) copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses.
Collapse
|
36
|
Lan H, Chen H, Liu Y, Jiang C, Mao Q, Jia D, Chen Q, Wei T. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus. J Virol 2016; 90:917-29. [PMID: 26537672 PMCID: PMC4702677 DOI: 10.1128/jvi.01835-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector.
Collapse
Affiliation(s)
- Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Chaoyang Jiang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
37
|
Jiang CX, Chen XL, Bi JC, Li JJ, Xiao XH, Li Q, Wang HJ, Yang QF. Source Areas for the Early Immigration of Sogatella furcifera (Homoptera: Delphacidae) at Xiushan in the Middle Reach of Yangtze River of China. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2789-99. [PMID: 26470376 DOI: 10.1093/jee/tov230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 07/11/2015] [Indexed: 05/18/2023]
Abstract
The spatiotemporal distribution of source areas for the early immigration of the white-backed planthopper, Sogatella furcifera (Horvάth), at Xiushan in the middle reach of Yangtze River of China, was analyzed with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and ArcGIS 10.0. The analysis was based on light trap data collected during April-July in 2000-2012. The synoptic meteorology backgrounds during the immigration periods were analyzed by GrADS (Grid Analysis and Display System). The light trap catches of S. furcifera varied monthly and annually. S. furcifera started immigration in Xiushan in early April to early May, whereas the main immigration period was in July. The distribution of the source areas varied monthly, and the core was moved from the south to the north gradually. The main source areas of S. furcifera in May were in southwestern Guangxi and northern Vietnam. The source areas of S. furcifera in June were located in southwestern Guangxi and western Hunan. Additionally, some of the pests were from southeastern Yunnan. The source areas in July were in northwestern Guangxi, southwestern Guizhou, eastern Yunnan, and the transitional parts of Guangxi, Guizhou, and Yunnan. The sum frequencies of southwest and south winds on the 850 hPa isobaric surface of Xiushan of May-July in heavy occurrence years were more than the light occurrence years. The key meteorological factors were suggested to be vertical perturbation, precipitation, and wind shear during S. furcifera immigration periods.
Collapse
Affiliation(s)
- C X Jiang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| | - X L Chen
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| | - J C Bi
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| | - J J Li
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| | - X H Xiao
- Xiushan Plant Protection Station, Xiushan 409900, Chongqing, P.R. China
| | - Q Li
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China.
| | - H J Wang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| | - Q F Yang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu 611130, Sichuan, P.R.China
| |
Collapse
|
38
|
Cassone BJ, Redinbaugh MG, Dorrance AE, Michel AP. Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean. INSECT MOLECULAR BIOLOGY 2015; 24:422-31. [PMID: 25845267 DOI: 10.1111/imb.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.
Collapse
Affiliation(s)
- Bryan J Cassone
- Center for Applied Plant Sciences, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Margaret G Redinbaugh
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Andrew P Michel
- Department of Entomology, the Ohio State University, OARDC, Wooster, OH, 44691, USA
| |
Collapse
|
39
|
An XK, Hou ML, Liu YD. Relation Between the Viral Load Accumulation of Southern Rice Black-Streaked Dwarf Virus and the Different Developmental Stages of Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:917-924. [PMID: 26470211 DOI: 10.1093/jee/tov065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/02/2015] [Indexed: 06/05/2023]
Abstract
The white-backed planthopper, Sogatella furcifera (Horvath), is currently the only confirmed vector of Southern rice black-streaked dwarf virus (SRBSDV), which causes severe rice production losses in China. In this study, an absolute quantification qPCR method was used to detect viral gene mRNA expression levels at different developmental stages of white-backed planthoppers fed SRBSDV-infected rice plants. A comparison of viral copy numbers of the SRBSDV S10 gene at the same developmental stage indicated that the white-backed planthopper had higher viral copy numbers when the virus was acquired at the earlier developmental stages. The adult-stage white-backed planthoppers that had acquired the virus at the first-second nymphal stage displayed significantly higher viral titers than white-backed planthoppers that acquired the virus at the third-fourth nymphal stage, at the fifth nymphal stage, and at the adult stage. The fifth nymphal stage white-backed planthoppers that acquired the virus at the first-second nymphal stage displayed higher viral copy numbers than fifth nymphal stage white-backed planthoppers that acquired the virus at the third-fourth nymphal stage and at the fifth nymphal stage. The highest viral load value appeared in the middle adult stage. The annual immigration characteristics of white-backed planthoppers would be beneficial for the dispersal of SRBSDV because this virus could be transmitted far away following the migration of vigorous planthoppers. Therefore, investigating the change in the viral load at different life stages of SRBSDV-positive individuals is required to develop more effective control of the spread of SRBSDV in the field.
Collapse
Affiliation(s)
- Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, China.
| |
Collapse
|
40
|
Li S, Wang S, Wang X, Li X, Zi J, Ge S, Cheng Z, Zhou T, Ji Y, Deng J, Wong SM, Zhou Y. Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos. Sci Rep 2015; 5:7883. [PMID: 25601039 PMCID: PMC4298728 DOI: 10.1038/srep07883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022] Open
Abstract
Plant viruses may affect the viability and development process of their herbivore vectors. Small brown planthopper (SBPH) is main vector of Rice stripe virus (RSV), which causes serious rice stripe disease. Here, we reported the effects of RSV on SBPH offspring by crossing experiments between viruliferous and non-viruliferous strains. The life parameters of offspring from different cross combinations were compared. The hatchability of F1 progeny from viruliferous parents decreased significantly, and viruliferous rate was completely controlled by viruliferous maternal parent. To better elucidate the underlying biological mechanisms, the morphology of eggs, viral propagation and distribution in the eggs and expression profile of embryonic development genes were investigated. The results indicated that RSV replicated and accumulated in SBPH eggs resulting in developmental stunt or delay of partial eggs; in addition, RSV was only able to infect ovum but not sperm. According to the expression profile, expression of 13 developmental genes was regulated in the eggs from viruliferous parents, in which two important regulatory genes (Ls-Dorsal and Ls-CPO) were most significantly down-regulated. In general, RSV exerts an adverse effect on SBPH, which is unfavourable for the expansion of viruliferous populations. The viewpoint is also supported by systematic monitoring of SBPH viruliferous rate.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Shijuan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Xi Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Xiaoli Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Jinyan Zi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Shangshu Ge
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Zhaobang Cheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Jinhua Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| | - Sek-Man Wong
- National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China
| |
Collapse
|
41
|
He X, Xu H, Gao G, Zhou X, Zheng X, Sun Y, Yang Y, Tian J, Lu Z. Virus-mediated chemical changes in rice plants impact the relationship between non-vector planthopper Nilaparvata lugens Stål and its egg parasitoid Anagrus nilaparvatae Pang et Wang. PLoS One 2014; 9:e105373. [PMID: 25141278 PMCID: PMC4139343 DOI: 10.1371/journal.pone.0105373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/20/2014] [Indexed: 12/02/2022] Open
Abstract
In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae.
Collapse
Affiliation(s)
- Xiaochan He
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Jinhua Research Academy of Agricultural Sciences, Jinhua, China
| | - Hongxing Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Guanchun Gao
- School of Medicine Science, Jiaxing University, Jiaxing, China
| | - Xiaojun Zhou
- Jinhua Research Academy of Agricultural Sciences, Jinhua, China
| | - Xusong Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yujian Sun
- Jinhua Research Academy of Agricultural Sciences, Jinhua, China
| | - Yajun Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Junce Tian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Zhongxian Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
42
|
Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission. J Proteomics 2014; 102:83-97. [DOI: 10.1016/j.jprot.2014.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 01/06/2023]
|
43
|
Cassone BJ, Michel AP, Stewart LR, Bansal R, Mian MR, Redinbaugh MG. Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect. Genome Biol Evol 2014; 6:873-85. [PMID: 24682151 PMCID: PMC4007533 DOI: 10.1093/gbe/evu057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogens and their vectors have coevolutionary histories that are intricately intertwined with their ecologies, environments, and genetic interactions. The soybean aphid, Aphis glycines, is native to East Asia but has quickly become one of the most important aphid pests in soybean-growing regions of North America. In this study, we used bioassays to examine the effects of feeding on soybean infected with a virus it vectors (Soybean mosaic virus [SMV]) and a virus it does not vector (Bean pod mottle virus [BPMV]) have on A. glycines survival and fecundity. The genetic underpinnings of the observed changes in fitness phenotype were explored using RNA-Seq. Aphids fed on SMV-infected soybean had transcriptome and fitness profiles that were similar to that of aphids fed on healthy control plants. Strikingly, a significant reduction in fecundity was seen in aphids fed on BPMV-infected soybean, concurrent with a large and persistent downregulation of A. glycines transcripts involved in regular cellular activities. Although molecular signatures suggested a small regulatory RNA pathway defense response was repressed in aphids feeding on infected plants, BPMV did not appear to be replicating in the vector. These results suggest that incompatibilities with BPMV or the effects of BPMV infection on soybean caused A. glycines to allot available energy resources to survival rather than reproduction and other core cellular processes. Ultimately, the detrimental impacts to A. glycines may reflect the short tritrophic evolutionary histories between the insect, plant, and virus.
Collapse
Affiliation(s)
- Bryan J. Cassone
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Present address: Center for Applied Plant Sciences, Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH
| | - Andrew P. Michel
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Lucy R. Stewart
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| | - Raman Bansal
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - M.A. Rouf Mian
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Margaret G. Redinbaugh
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| |
Collapse
|
44
|
Xu H, He X, Zheng X, Yang Y, Tian J, Lu Z. Southern rice black-streaked dwarf virus (SRBSDV) directly affects the feeding and reproduction behavior of its vector, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Virol J 2014; 11:55. [PMID: 24661747 PMCID: PMC3987804 DOI: 10.1186/1743-422x-11-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Southern rice black-streaked dwarf virus (SRBSDV) is a recently discovered member of the genus Fijivirus and it is transmitted by the rice whitebacked planthopper (WBPH), Sogatella furcifera (Horváth). It was found that SRBSDV infected vectors might contribute negatively to the WBPH population, although the longer nymphal period might benefit viral acquisition, transmission and increase infection rate. The interaction between SRBSDV and its vector need to be further explored to gain better understanding of the dispersal of WBPH and the spread of virus disease, in particular the feeding and reproduction behavior of viruliferous WBPH. METHODS Newly hatched nymphs of WBPH were fed on healthy rice plant after feeding on SRBSDV-infected rice plants for 2 h, and newly emerged adults were numbered and tested. Feeding behaviors of WBPH adults were monitored electronically within a Faraday cage using a Giga-4 DC EPG amplifier. The newly emerged adults were paired, and the fecundity and egg hatchability were investigated. WBPH was molecularly identified for SRBSDV when they dead. According to the identification results, data on viruliferous and non-viruliferous WBPH were collected and analyzed. RESULTS Feeding behavior of viruliferous WBPH was different from those of non-viruliferous WBPH. Frequency of phloem sap ingestion of viruliferous WBPH increased significantly, however the total feeding duration did not increase markedly. When both WBPH parents were infected with SRBSDV, their fecundity and hatchability of the eggs produced were significant lower than those of normal WBPH parents. However, if only one of the parents was viruliferous, fecundity and egg hatchability were only slightly affected. CONCLUSIONS Viruliferous WBPH fed on the phloem more frequently than non-viruliferous WBPH and can thus contribute to virus transmission. When both vector parents are viruliferous fecundity and hatchability of the eggs were significantly reduced. However when only one of the parents WBPH was viruliferous, there were no significant effects.
Collapse
Affiliation(s)
- Hongxing Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Add. No 198 Shiqiao Rd, Hangzhou 310021, P R China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, P R China
| | - Xusong Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Add. No 198 Shiqiao Rd, Hangzhou 310021, P R China
| | - Yajun Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Add. No 198 Shiqiao Rd, Hangzhou 310021, P R China
| | - Junce Tian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Add. No 198 Shiqiao Rd, Hangzhou 310021, P R China
| | - Zhongxian Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Add. No 198 Shiqiao Rd, Hangzhou 310021, P R China
| |
Collapse
|
45
|
Wang H, Xu D, Pu L, Zhou G. Southern rice black-streaked dwarf virus alters insect vectors' host orientation preferences to enhance spread and increase rice ragged stunt virus co-infection. PHYTOPATHOLOGY 2014; 104:196-201. [PMID: 24047253 DOI: 10.1094/phyto-08-13-0227-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In recent years, Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus (family Reoviridae), has spread rapidly and caused serious rice losses in eastern and southeastern Asia. With this virus spread, Rice ragged stunt virus (RRSV, genus Oryzavirus, family Reoviridae) became more common in southern China, usually in co-infection with the former. SRBSDV and RRSV are transmitted by two different species of planthoppers, white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), respectively, in a persistent, circulative, propagative manner. In this study, using a Y-shape olfactometer-based device, we tested the host preference of three types of macropterous WBPH adults for healthy or SRBSDV-infected rice plants. The results showed that virus-free WBPHs significantly preferred infected rice plants to healthy plants, whereas both the viruliferous and nonviruliferous WBPHs preferred healthy plants to infected plants. In additional tests, we found that the BPHs significantly preferred healthy plants when they were virus free, whereas RRSV-carrying BPHs preferred SRBSDV-infected rice plants. From these findings, we propose that plant viruses may alter host selection preference of vectors to enhance their spread and that of insects vectoring another virus to result in co-infection with more than one virus.
Collapse
|
46
|
Zhou G, Xu D, Xu D, Zhang M. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia. Front Microbiol 2013; 4:270. [PMID: 24058362 PMCID: PMC3766826 DOI: 10.3389/fmicb.2013.00270] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/20/2013] [Indexed: 11/13/2022] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice-virus-insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.
Collapse
Affiliation(s)
- Guohui Zhou
- College of Natural Resources and Environment, South China Agricultural UniversityGuangzhou, China
| | | | | | | |
Collapse
|