1
|
Zang Y, Feng B, Huang Z, Zhao D, Qi W, Qiu Y, Qiu M, Li C, Lin H, Zheng W, Zhu J, Chen N. Epidemiologic and Genomic Characterizations of Porcine Kobuviruses in Diarrheic and Healthy Pigs. Animals (Basel) 2023; 13:3129. [PMID: 37835735 PMCID: PMC10571770 DOI: 10.3390/ani13193129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Porcine kobuvirus (PKV) is an enteric virus commonly detected in both diarrheic and healthy pigs. Little is known about the role of PKV in enteric diseases. In this study, an epidemiological investigation based on 324 intestinal samples collected from six provinces of China during the period of 2018 to 2022 was performed, and showed that PKV has an overall 65.43% (212/324) positive rate. Noticeably, 89.47% (17/19) of PKV and porcine epidemic diarrhea virus (PEDV) double-positive pigs were clinically diseased, while 91.71% (177/193) of PKV-positive but PEDV-negative pigs were clinically healthy, suggesting that PKV infection in itself is unlikely to cause enteric diseases. In addition, three PKV genomes were obtained from both diseased and healthy pigs. Phylogenetic analysis showed that Chinese PKV strains could be divided into three groups (SH-W-CHN-like, S-1-HUN-like and JXAT2015-like strains). All three obtained PKV genomes belong to SH-W-CHN-like strains and JSYZ1806-158 was detected as a recombinant virus. Furthermore, multiple comparisons showed that nucleotide similarities are clearly lower than amino acid similarities for PKV polyproteins. Selective pressure analysis indicated that Chinese PKV polyproteins are predominantly under negative selection. Overall, this study provided new insights into the prevalence and evolution of PKV in both diarrheic and healthy pigs in China.
Collapse
Affiliation(s)
- Yu Zang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Zitao Huang
- Animal Health Supervision Institute of Fengxi District, Chaozhou 521031, China;
| | - Dashi Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (B.F.); (D.Z.); (W.Q.); (Y.Q.); (M.Q.); (C.L.); (H.L.); (W.Z.); (J.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou 350002, China
- Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan 364012, China
| |
Collapse
|
2
|
Eriksen EØ. A Systematic Review: Is Porcine Kobuvirus Causing Gastrointestinal Disease in Young Pigs? Vet Sci 2023; 10:286. [PMID: 37104441 PMCID: PMC10144032 DOI: 10.3390/vetsci10040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Since porcine kobuvirus (PKV) was first described in 2008, researchers have speculated whether the virus is of clinical importance. This systematic literature review answers the question: Is porcine kobuvirus a cause of gastrointestinal disease in young pigs? A case-control study showed that PKV was not associated with neonatal diarrhea. A cohort study suffered from a very small sample size (n = 5), and in an experimental trial, the effect of PKV inoculation could not be separated from the effect of being inoculated with porcine epidemic diarrhea virus. In 13 poorly defined observational studies, more than 4000 young pigs had been assigned a diarrhea status and their feces analyzed for PKV. Unfortunately, the studies lacked well-characterized unbiased samples, and thus the strongest possible inference from these studies was that a very strong association between PKV and diarrhea is unlikely. PKV was commonly detected in non-diarrheic pigs, and this could indicate that PKV is not a sufficient cause in itself or that reinfection of individuals with some immunological protection due to previous infections is common. Conclusively, there is a lack of good evidence of PKV being a cause of gastrointestinal disease, but the sparse available evidence suggests that PKV is of limited clinical importance.
Collapse
Affiliation(s)
- Esben Østergaard Eriksen
- Section for Production, Nutrition and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Davidson I, Polizopοulou ZS, Papa A, Kritas SK. Epidemiology of Astrovirus, Norovirus and Sapovirus in Greek pig farms indicates high prevalence of Mamastrovirus suggesting the potential need for systematic surveillance. Porcine Health Manag 2022; 8:5. [PMID: 35000615 PMCID: PMC8744241 DOI: 10.1186/s40813-021-00245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Backround Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece in pools of five. Results PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools (95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conventional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the presence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to bat Astrovirus, while no Norovirus sequence was detected. Conclusions The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our knowledge, this is the first epidemiological study of these viruses in pig farms in Greece. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00245-8.
Collapse
Affiliation(s)
- Efthymia Stamelou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos V Papageorgiou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irit Davidson
- Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Zoe S Polizopοulou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Spyridon K Kritas
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
4
|
Zhang M, You F, Wu F, He H, Li Q, Chen Q. Epidemiology and genetic characteristics of murine kobuvirus from faecal samples of Rattus losea, Rattus tanezumi and Rattus norvegicus in southern China. J Gen Virol 2021; 102. [PMID: 34486970 PMCID: PMC8567428 DOI: 10.1099/jgv.0.001646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, murine kobuvirus (MuKV), a novel member of the family Picornaviridae, was identified in faecal samples of Rattus norvegicus in China. The limited information on the circulation of MuKV in other murine rodent species prompted us to investigate its prevalence and conduct a genetic characterization of MuKV in Rattus losea, Rattus tanezumi and Rattus norvegicus in China. Between 2015 and 2017, 243 faecal samples of these three murine rodent species from three regions in southern China were screened for the presence of MuKV. The overall prevalence was 23.0% (56/243). Three complete MuKV polyprotein sequences were acquired, and the genome organization was determined. Phylogenetic analyses suggested that our sequences were closely related to Chinese strains and belong to the species Aichivirus A in the genus Kobuvirus. Additional studies are required to understand the true prevalence of MuKV in murine rodent populations in China.
Collapse
Affiliation(s)
- Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fangfei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fei Wu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qiushuang Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
5
|
Phylogenetic analysis of kobuviruses and astroviruses from Korean wild boars: 2016-2018. Arch Virol 2021; 166:2591-2596. [PMID: 34244861 DOI: 10.1007/s00705-021-05164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
Between 2016 and 2018, the prevalence of porcine kobuvirus (PKoV) and porcine astrovirus (PAstV) in Korean wild boars (n = 845) was 28.0% and 10.7%, respectively. Coinfection by both viruses was detected in 5.1% of boars. Phylogenetic analysis revealed that 134 PKoV isolates belonged to diverse lineages within the species Aichivirus C; however, one strain (WKoV16CN-8627) clustered with bovine kobuvirus (Aichivirus B). Forty-seven PAstVs belonged to lineage PAstV4, and only one strain (WAst17JN-10931) was a novel addition to lineage PAstV2. The two viruses were more prevalent in boars weighing ≤ 60 kg than in boars weighing > 61 kg.
Collapse
|
6
|
Abi KM, Yu Z, Jing ZZ, Tang C. Identification of a novel Aichivirus D in sheep. INFECTION GENETICS AND EVOLUTION 2021; 91:104810. [PMID: 33741511 DOI: 10.1016/j.meegid.2021.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhonghua Yu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Hongyuan 624400, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
7
|
Dastjerdi A, Benfield C, Everest D, Stidworthy MF, Zell R. Novel enteric viruses in fatal enteritis of grey squirrels. J Gen Virol 2021; 101:746-750. [PMID: 32459620 DOI: 10.1099/jgv.0.001431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Astro- and kobuviruses infect both humans and animals. Here, we report on the disease history, detection and genomic characterization of novel astro- and kobuviruses from fatal diarrhoea of two juvenile grey squirrels. The virus particles had enterovirus-like morphology and a diameter of 28-32 nm. Next-generation sequencing confirmed astro- and kobuviruses and sequence analysis revealed typical astrovirus and picornavirus genome organizations. The astrovirus ORF2 sequence clustered with a clade of unassigned astroviruses, with marmot and rodent mamastroviruses as closest relatives. For the kobuvirus, divergences greater than 49.4 % for P1 and 43.5 % in the non-structural proteins indicated a novel species. However, phylogenetic analysis of the 3D polymerase showed that it clustered with that of the newly classified ludopivirus A1, suggesting a previous recombination event in the evolution of the kobuvirus. Our data provide further insights into the diversity of astro- and kobuviruses and broaden the spectrum of viruses infecting grey squirrels.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Camilla Benfield
- Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - David Everest
- Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Mark F Stidworthy
- International Zoo Veterinary Group, Station House, Parkwood Street, Keighley, West Yorkshire, BD21 4NQ, UK
| | - Roland Zell
- Section for Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, Germany
| |
Collapse
|
8
|
Duplex SYBR Green I-based real-time PCR assay for the rapid detection of canine kobuvirus and canine astrovirus. J Virol Methods 2021; 290:114066. [PMID: 33453300 DOI: 10.1016/j.jviromet.2021.114066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
A duplex SYBR Green I-based real-time PCR assay was established for the simultaneous detection of canine kobuvirus (CaKoV) and canine astrovirus (CaAstV). This assay can easily distinguish the two viruses according to their different melting temperatures (Tm) of 80 °C for CaKoV and 86.5 °C for CaAstV; other canine enteroviruses used as controls showed no specific melting peaks. The detection limit of this assay was determined to be 101 copies/μL for both viruses. This method exhibited high repeatability and reproducibility, with a coefficient of variation less than 1.5 %. A total of 48 fecal samples were collected for clinical testing by real-time PCR and confirmed by sequencing. Real-time PCR assay showed a 10.4 % CaKoV-positive rate and a 4.2 % CaAstV-positive rate, and the positive rate of co-infection of the two viruses was 2.1 %, which was consistent with the sequencing results. This assay has many advantages over conventional PCR: it is rapid, sensitive, specific, and reliable for detecting these two viruses in one sample, and it can be used as a tool to detect CaKoV and CaAstV infection or co-infection in clinical settings.
Collapse
|
9
|
Sobhy NM, Armién AG, Wünschmann A, Muldoon D, Goyal SM, Mor SK. Detection and molecular characterization of kobuvirus from diarrheic goats in Minnesota. J Vet Diagn Invest 2020; 32:873-879. [PMID: 33140709 DOI: 10.1177/1040638720949475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kobuvirus infections are common among humans, rodents, carnivores, pigs, and ruminants. We report herein the complete genome sequence of a novel caprine kobuvirus (MN604700) from diarrheic kids in Minnesota. Whole-genome sequencing revealed a kobuvirus genome of 8,139 nt with a single ORF region encoding a polyprotein of 2,480 amino acids. Further analysis revealed nt substitutions along the genome compared with that of the caprine kobuvirus reference strain, with 93% identity. Phylogenetic analysis indicated that the clade of the caprine kobuvirus was most closely related to porcine kobuviruses rather than bovine or ovine kobuviruses. Using primers designed from this genome, caprine kobuvirus was identified in the stools of other goats. Sanger sequencing of PCR products indicated 3D and VP1 gene nucleotides of this latter strain were 95% and 91% identical with those of MN604700, respectively. There were 35 and 101 nt substitutions in 3D and VP1 genes, respectively. Findings of kobuvirus over a 2-y period may indicate an endemic state, which needs further research. In addition, screening for kobuviruses over large geographic areas is needed to identify the evolutionary connections among different strains.
Collapse
Affiliation(s)
- Nader M Sobhy
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Aníbal G Armién
- California Animal Health and Food Safety Laboratory System, University of California-Davis, Davis, CA
| | - Arno Wünschmann
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Dean Muldoon
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Sunil K Mor
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| |
Collapse
|
10
|
Identification and full-genome sequencing of canine kobuvirus in canine fecal samples collected from Anhui Province, eastern China. Arch Virol 2020; 165:2495-2501. [PMID: 32776176 PMCID: PMC7415332 DOI: 10.1007/s00705-020-04773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
Canine kobuvirus (CaKoV), a newly described virus, is the causative agent of gastroenteritis in dogs. In this study, 57 fecal samples from dogs with diarrhea in Anhui Province, eastern China, were collected. Among these, five samples were identified to be infected with CaKoV, by polymerase chain reaction targeting the CaKoV 3D gene. The five CaKoV strains were subjected to phylogenetic analysis. The sequences of VP1 from the five CaKoV strains were 93.6%–96.1% identical to each other and 91.75%–97.95% identical to other reported CaKoV VP1 sequences. In addition, the complete genome of one strain was successfully amplified and sequenced. The genome consisted of 8223 nucleotides and shared 94.6%–97.0% nucleotide and 93.1%–94.0% amino acid sequence identity with other CaKoV isolates. Phylogenetic analysis revealed that the CaKoV strain from Anhui Province was similar to other Chinese strains, and it was more closely related to feline and mouse kobuviruses than to sheep and bovine kobuviruses. Interestingly, all of the CaKoV-positive samples were coinfected with canine parvovirus. The finding of CaKoV infection in dogs with diarrhea and coinfection with canine parvovirus are a cause for concern and highlight the need for management and preventive measures.
Collapse
|
11
|
Cortey M, Díaz I, Vidal A, Martín-Valls G, Franzo G, Gómez de Nova PJ, Darwich L, Puente H, Carvajal A, Martín M, Mateu E. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet Res 2019; 15:441. [PMID: 31805938 PMCID: PMC6896758 DOI: 10.1186/s12917-019-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diarrhoea is a major cause of death in neonate pigs and most of the viruses that cause it are RNA viruses. Next Generation Sequencing (NGS) deeply characterize the genetic diversity among rapidly mutating virus populations at the interspecific as well as the intraspecific level. The diversity of RNA viruses present in faeces of neonatal piglets suffering from diarrhoea in 47 farms, plus 4 samples from non-diarrhoeic piglets has been evaluated by NGS. Samples were selected among the cases submitted to the Veterinary Diagnostic Laboratories of Infectious Diseases of the Universitat Autònoma de Barcelona (Barcelona, Spain) and Universidad de León (León, Spain). RESULTS The analyses identified the presence of 12 virus species corresponding to 8 genera of RNA viruses. Most samples were co-infected by several viruses. Kobuvirus and Rotavirus were more commonly reported, with Sapovirus, Astrovirus 3, 4 and 5, Enterovirus G, Porcine epidemic diarrhoea virus, Pasivirus and Posavirus being less frequently detected. Most sequences showed a low identity with the sequences deposited in GenBank, allowing us to propose several new VP4 and VP7 genotypes for Rotavirus B and Rotavirus C. CONCLUSIONS Among the cases analysed, Rotaviruses were the main aetiological agents of diarrhoea in neonate pigs. Besides, in a small number of cases Kobuvirus and Sapovirus may also have an aetiological role. Even most animals were co-infected in early life, the association with enteric disease among the other examined viruses was unclear. The NGS method applied successfully characterized the RNA virome present in faeces and detected a high level of unreported intraspecific diversity.
Collapse
Affiliation(s)
- Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Anna Vidal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Gerard Martín-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Giovanni Franzo
- Department of Animal Medicine Production and Health (MAPS), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Pedro José Gómez de Nova
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Laila Darwich
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Charoenkul K, Janetanakit T, Chaiyawong S, Bunpapong N, Boonyapisitsopa S, Tangwangvivat R, Amonsin A. First detection and genetic characterization of canine Kobuvirus in domestic dogs in Thailand. BMC Vet Res 2019; 15:254. [PMID: 31324182 PMCID: PMC6642606 DOI: 10.1186/s12917-019-1994-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022] Open
Abstract
Background Canine Kobuvirus (CaKoV) has been detected both in healthy and diarrheic dogs and in asymptomatic wild carnivores. In this study, we conducted a survey of CaKoV at small animal hospitals in Bangkok and vicinity of Thailand during September 2016 to September 2018. Results Three hundred and seven rectal swab samples were collected from healthy dogs (n = 55) and dogs with gastroenteritis symptoms (n = 252). Of 307 swab samples tested by using one-step RT-PCR specific to 3D gene, we found CaKoV positivity at 17.59% (54/307). CaKoVs could be detected in both sick (19.44%) and healthy (9.09%) animals. In relation to age group, CaKoV could be frequently detected in younger dogs (25.45%). Our result showed no seasonal pattern of CaKoV infection in domestic dogs. In this study, we characterized CaKoVs by whole genome sequencing (n = 4) or 3D and VP1 gene sequencing (n = 8). Genetic and phylogenetic analyses showed that whole genomes of Thai CaKoVs were closely related to Chinese CaKoVs with highest 99.5% amino acid identity suggesting possible origin of CaKoVs in Thailand. Conclusions In conclusion, this study was the first to report the detection and genetic characteristics of CaKoVs in domestic dogs in Thailand. CaKoVs could be detected in both sick and healthy dogs. The virus is frequently detected in younger dogs. Thai CaKoVs were genetically closely related and grouped with Chinese CaKoVs. Our result raises the concerns to vet practitioners that diarrhea in dogs due to canine Kobuvirus infection should not be ignored. Electronic supplementary material The online version of this article (10.1186/s12917-019-1994-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamonpan Charoenkul
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taveesak Janetanakit
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supassama Chaiyawong
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napawan Bunpapong
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supanat Boonyapisitsopa
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratanaporn Tangwangvivat
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand. .,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Prevalence and genomic characteristics of canine kobuvirus in southwest China. Arch Virol 2017; 163:459-466. [DOI: 10.1007/s00705-017-3648-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
14
|
Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan. Virus Genes 2017; 53:593-602. [PMID: 28484931 DOI: 10.1007/s11262-017-1464-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.
Collapse
|
15
|
Complete Genome Sequence of a Porcine Kobuvirus Variant Strain from Jiangxi, China. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01580-16. [PMID: 28153909 PMCID: PMC5289695 DOI: 10.1128/genomea.01580-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The complete genome sequence of a porcine kobuvirus (PKoV) variant strain, CH/KB-1/2014 from Jiangxi, China, with a 90-nucleotide deletion in the 2B gene, was determined and characterized. This study provides a better understanding of the molecular characteristics and evolution of PKoV in Jiangxi, China.
Collapse
|
16
|
Abstract
To investigate whether kokuvirus is present in Japanese dogs, we examined the fecal
samples obtained from 94 diarrheal household dogs and 50 clinically healthy kenneled dogs
by RT-PCR. The gene was detected in 37.2% and 48.0% in the former and the latter,
respectively, suggesting that canine kobuvirus (CaKoV) is circulating among Japanese dogs.
From the result of the latter, however, CaKoV may not be a primary pathogen. Furthermore,
all gene-positive dogs were purebreds aged four months or younger. This finding suggests
that CaKoV endemic is confined in multi-dog environments, and the dogs have a strong
age-dependent resistance to CaKoV.
Collapse
Affiliation(s)
- Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan
| | | | | |
Collapse
|
17
|
Molecular Epidemiological Investigation of Porcine kobuvirus and Its Coinfection Rate with PEDV and SaV in Northwest China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7590569. [PMID: 27294133 PMCID: PMC4884858 DOI: 10.1155/2016/7590569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/17/2022]
Abstract
Porcine kobuvirus (PKV) has circulated throughout China in recent years. Although many studies have detected it throughout the world, its molecular epidemiology has not been characterized in northwest China. To understand its prevalence, 203 fecal samples were collected from different regions of Gansu Province and tested with reverse transcription-polymerase chain reaction. In this study, we tested these samples for PKV, porcine epidemic diarrhea virus (PEDV), and sapovirus and analyzed the amplified 2C gene fragments of PKV. Overall, 126 (62.1%) samples were positive for PKV. Of the 74 piglets samples among the 203 fecal samples, 65 (87.8%) were positive for PKV. PKV infection was often accompanied by PEDV, but the relationship between the two viruses must be confirmed. A phylogenetic analysis indicated that the PKV strains isolated from the same regions clustered on the same branches. This investigation shows that PKV infections are highly prevalent in pigs in northwest China, especially in piglets with symptoms of diarrhea.
Collapse
|
18
|
Lu L, Van Dung N, Bryant JE, Carrique-Mas J, Van Cuong N, Anh PH, Rabaa MA, Baker S, Simmonds P, Woolhouse ME. Evolution and phylogeographic dissemination of endemic porcine picornaviruses in Vietnam. Virus Evol 2016; 2:vew001. [PMID: 27774295 PMCID: PMC4989877 DOI: 10.1093/ve/vew001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the Picornaviridae are important and often zoonotic viruses responsible for a variety of human and animal diseases. However, the evolution and spatial dissemination of different picornaviruses circulating in domestic animals are not well studied. We examined the rate of evolution and time of origin of porcine enterovirus G (EV-G) and porcine kobuvirus species C lineages (PKV-C) circulating in pig farms in Vietnam and from other countries. We further explored the spatiotemporal spread of EV-G and PKV-C in Southwest Vietnam using phylogeographic models. Multiple types of EV-G are co-circulating in Vietnam. The two dominant EV-G types among isolates from Vietnam (G1 and G6) showed strong phylogenetic clustering. Three clades of PKV-C (PKV-C1-3) represent more recent introductions into Vietnam; PKV-C2 is closely related to PKV-C from Southwest China, indicating possible cross-border dissemination. In addition, high virus lineage migration rates were estimated within four districts in Dong Thap province in Vietnam for both EV-G types (G1, G6) and all PKV-C (C1-3) clades. We found that Chau Thanh district is a primary source of both EV-G and PKV-C clades, consistent with extensive pig trading in and out of the district. Understanding the evolution and spatial dissemination of endemic picornaviruses in pigs may inform future strategies for the surveillance and control of picornaviruses.
Collapse
Affiliation(s)
- Lu Lu
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Pham Honh Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and; The London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK,; Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
19
|
Van Dung N, Anh PH, Van Cuong N, Hoa NT, Carrique-Mas J, Hien VB, Sharp C, Rabaa M, Berto A, Campbell J, Baker S, Farrar J, Woolhouse ME, Bryant JE, Simmonds P. Large-scale screening and characterization of enteroviruses and kobuviruses infecting pigs in Vietnam. J Gen Virol 2015; 97:378-388. [PMID: 26653281 DOI: 10.1099/jgv.0.000366] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A recent survey of pigs in Dong Thap province, Vietnam identified a high frequency of enterovirus species G (EV-G) infection (144/198; 72.7%). Amongst these was a plethora of EV-G types (EV-G1, EV-G6 and four new types EV-G8-EV-G11). To better characterize the genetic diversity of EV-G and investigate the possible existence of further circulating types, we performed a larger-scale study on 484 pig and 45 farm-bred boar faecal samples collected in 2012 and 2014, respectively. All samples from the previous and current studies were also screened for kobuviruses. The overall EV infection frequency remained extremely high (395/484; 81.6%), but with comparable detection rates and viral loads between healthy and diarrhoeic pigs; this contrasted with less frequent detection of EV-G in boars (4/45; 8.9%). EV was most frequently detected in pigs ≤ 14 weeks old (∼ 95%) and declined in older pigs. Infections with EV-G1 and EV-G6 were most frequent, whilst less commonly detected types included EV-G3, EV-G4 and EV-G8-EV-G11, and five new types (EV-G12-EV-G16). In contrast, kobuvirus infection frequency was significantly higher in diarrhoeic pigs (40.9 versus 27.6%; P = 0.01). Kobuviruses also showed contrasting epizootiologies and age associations; a higher prevalence was found in boars (42%) compared with domestic pigs (29%), with the highest infection frequency amongst pigs >52 weeks old. Although genetically diverse, all kobuviruses identified belonged to the species Aichivirus C. In summary, this study confirms infection with EV-G was endemic in Vietnamese domestic pigs and exhibits high genetic diversity and extensive inter-type recombination.
Collapse
Affiliation(s)
- Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Vo Be Hien
- Subdepartment of Animal Health, Dong Thap Province, Vietnam
| | - C Sharp
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - M Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - A Berto
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - James Campbell
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK.,London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
20
|
Liu P, Li P, Lyu W, Li X, Li S, Yang F, Huang J, Xu Z, Zhu L. Epidemiological study and variation analysis of the porcine kobuvirus 3D gene in Sichuan province, China. Virol Sin 2015; 30:460-3. [PMID: 26637336 DOI: 10.1007/s12250-015-3632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Pengjuan Liu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Ping Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Wenting Lyu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Xinqiong Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Song Li
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Fan Yang
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Jianbo Huang
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China.
| |
Collapse
|
21
|
Jin WJ, Yang Z, Zhao ZP, Wang WY, Yang J, Qin AJ, Yang HC. Genetic characterization of porcine kobuvirus variants identified from healthy piglets in China. INFECTION GENETICS AND EVOLUTION 2015; 35:89-95. [PMID: 26238210 DOI: 10.1016/j.meegid.2015.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
In this study, two porcine kobuvirus strains, JS-01-CHN and JS-02a-CHN were detected from piglets with diarrhea and asymptomatic, respectively. The sequences of the two strains were analyzed using a bioinformatics software package. The full-length genome of JS-02a-CHN, was detected in healthy piglets was 8121 nucleotides (nt) long excluding the poly(A) tail. There was a 30 amino acid deletion in the 2B-coding region of JS-02a-CHN. We are the first to report a 30 amino acid deletion in porcine kobuvirus from asymptomatic piglets, indicating that porcine kobuvirus may have evolved differently based on geography and host differences. Fecal samples were obtained from pigs with diarrhea (n=91) and healthy (n=126) pigs and analyzed using RT-PCR. Of these, 64.8% (59/91) of diarrheic piglets and 19.8% (25/126) of healthy piglets were positive for PKV using VP1 specific primers. Twenty-eight (28) virus positive samples were randomly selected and the VP1 gene was analyzed. Phylogenetic analysis indicated that the 15 strains isolated from pigs with diarrhea clustered into different branches, while the VP1 sequences from clinically healthy pigs clustered into a single large group. These results indicate that the VP1 gene is diverse in pigs with diarrhea but conserved in healthy pigs in the Jiangsu Province.
Collapse
Affiliation(s)
- Wen-Jie Jin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Zhen Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Zhen-Peng Zhao
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Wan-Yi Wang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Juan Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ai-Jian Qin
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Han-Chun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
22
|
Cho YY, Lim SI, Kim YK, Song JY, Lee JB, An DJ. Molecular evolution of kobuviruses in cats. Arch Virol 2014; 160:537-41. [PMID: 25398594 DOI: 10.1007/s00705-014-2259-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
Abstract
Aichi virus, a causative agent of human gastroenteritis, is one of a number of animal viruses belonging to the genus Kobuvirus within the family Picornaviridae. The kobuvirus genome encodes several structural and nonstructural proteins; the capsid proteins encoded by the VP1 gene are key immunogenic factors. Here, we used the VP1 region to determine substitution rates and the time to the most recent common ancestor (TMRCA) by comparing feline kobuvirus (FKoVs) sequences with kobuvirus sequences isolated from members of other species. The substitution rate for FKoVs was 1.29 × 10(-2 )substitutions/site/year (s/s/y) and the TMRCA was 5.3 years.
Collapse
Affiliation(s)
- Yoon-Young Cho
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi, 430-824, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Genetic characterization of porcine kobuvirus and detection of coinfecting pathogens in diarrheic pigs in Jiangsu Province, China. Arch Virol 2014; 159:3407-12. [PMID: 25119679 DOI: 10.1007/s00705-014-2204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
In this study, 396 samples from diarrheic pigs on 46 pig farms in Jiangsu Province, China, were analyzed by RT-PCR. One-hundred eighty-one pigs from 37 farms tested positive for porcine kobuvirus (PKV). Phylogenetic analysis of the 3D gene from 19 isolates showed sequence homology of 88.0 %-100 % and 69.4 %-100 % for nucleotides and amino acids, respectively, while similarity to isolates of other kobuviruses was 69.6 %-78.8 % and 27.8 %-56.9 %, respectively. One-hundred eighty-five samples contained two or more pathogens, and 31/68 PKV-positive samples tested positive for other diarrheic pathogens, confirming the existence of PKV infection and coinfection.
Collapse
|
24
|
Molecular characterization and sequence analysis of the 2B region of Aichivirus C strains in Japan and Thailand. INFECTION GENETICS AND EVOLUTION 2014; 26:89-94. [PMID: 24837671 DOI: 10.1016/j.meegid.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 11/20/2022]
Abstract
Aichivirus C is the third species in the genus Kobuvirus, family Picornaviridae, and the virus is circulating in pigs worldwide. Aichivirus A in humans and Aichivirus B in cows have been shown to associate with diarrheal diseases, however, the pathogenesis of Aichivirus C has not been demonstrated clearly. In this study, the full genome nucleotide sequence of the Thai strain, CMP06/2007/THA collected from stool sample of a diarrheal piglet was analyzed and identified as a variant type with a 90-nt deletion in the 2B-coding region. In addition, molecular characterization of nucleotide sequences of the 2B-coding region of Aichivirus C strains from six diarrheal and six healthy piglets in Thailand, and four strains from healthy pigs in Japan revealed that all of the strains in this study were variant types. These findings indicate that variant strains of Aichivirus C are circulating in Asian countries such as China, Thailand and Japan, and deletion of tandem repeat of 2B-region is unlikely to associate with the pathogenesis of the virus.
Collapse
|