1
|
Fredericks-Younger J, Feldman CA, Allareddy V, Funkhouser E, McBurnie M, Meyerowitz C, Ragusa P, Chapman-Greene J, Coker M, Fine D, Gennaro ML, Subramanian G. Pragmatic Return to Effective Dental Infection Control through Triage and Testing (PREDICT): an observational, feasibility study to improve dental office safety. Pilot Feasibility Stud 2024; 10:44. [PMID: 38419131 PMCID: PMC10900666 DOI: 10.1186/s40814-024-01471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, there was a substantial interruption of care, with patients and workers fearful to return to the dental office. As dental practice creates a highly aerosolized environment, the potential for spread of airborne illness is magnified. As a means to increase safety and mitigate risk, pre-visit testing for SARS-CoV-2 has the potential to minimize disease transmission in dental offices. The Pragmatic Return to Effective Dental Infection Control through Testing (PREDICT) Feasibility Study examined the logistics and impact of two different testing mechanisms (laboratory-based PCR viral testing and point-of-care antigen testing) in dental offices. METHODS Dental healthcare workers (DHCWs) and patients in four dental offices within the National Dental Practice-based Research Network participated in this prospective study. In addition to electronic surveys, participants in two offices completed POC testing, while participants in two offices used lab-based PCR methods to detect SARS-CoV-2 infection. Analysis was limited to descriptive measures, with median and interquartile ranges reported for Likert scale responses and mean and standard deviation for continuous variables. RESULTS Of the total 72 enrolled, 28 DHCWs and 41 patients completed the protocol. Two patients (4.9%) tested positive prior to their visit, while 2 DHCWs (12.5%) tested positive for SARS-CoV-2 infection at the start of the study. DHCWs and patients shared similar degree of concern (69% and 63%, respectively) for contracting COVID-19 from patients, while patients feared contracting COVID-19 from DHCWs less (49%). Descriptive statistics calculations revealed that saliva, tongue epithelial cells, and nasal swabs were the most desirable specimen collection method; both testing (LAB and POC) protocols took similar amounts of total time to complete; and DHCWs and patients reported feeling more comfortable when both groups were tested. CONCLUSIONS While a larger-scale, network study is necessary for generalizability of results, this feasibility study suggests that SARS-CoV-2 testing can be effectively implemented into dental practice workflows and positively impact perception of safety for DHCWs and patients. As new virulent infectious diseases emerge, preparing dental personnel to employ an entire toolbox of risk mitigation strategies, including testing, may have the potential to decrease dental practice closure time, maintaining continuity of dental care services for patients. TRIAL REGISTRATION ClinicalTrials.gov: NCT05123742.
Collapse
Affiliation(s)
- Janine Fredericks-Younger
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA.
| | - Cecile A Feldman
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
- School of Public Health, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| | | | | | - MaryAnn McBurnie
- Kaiser Permanente, Center for Health Research, Portland, OR, USA
| | - Cyril Meyerowitz
- Eastman Institute for Oral Health, University of Rochester, Rochester, USA
| | - Pat Ragusa
- Eastman Institute for Oral Health, University of Rochester, Rochester, USA
| | - Julie Chapman-Greene
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| | - Modupe Coker
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| | - Daniel Fine
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| | - Maria Laura Gennaro
- New Jersey Medical School, PHRI Center, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| | - Gayathri Subramanian
- School of Dental Medicine, Rutgers University, Office of Academic Affairs, 110 Bergen Street, Rm B813, Newark, NJ, 07103, USA
| |
Collapse
|
2
|
Fredericks-Younger J, Feldman C, Allareddy V, Funkhouser E, McBurnie M, Meyerowitz C, Ragusa P, Chapman-Greene J, Coker M, Fine DH, Gennaro ML, Subramanian G. Pragmatic Return to Effective Dental Infection Control through Triage and Testing (PREDICT): A feasibility study to improve dental office safety. RESEARCH SQUARE 2023:rs.3.rs-3011647. [PMID: 37720040 PMCID: PMC10503856 DOI: 10.21203/rs.3.rs-3011647/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background The COVID-19 pandemic highlights the need for practitioners to enhance workflows to increase safety and mitigate risk. As dental practice creates a highly aerosolized environment, pre-visit testing for SARS-CoV-2 has the potential to be an effective mitigation strategy to minimize disease transmission in dental offices. The Pragmatic Return to Effective Dental Infection Control through Testing (PREDICT) Feasibility Study examined the potential, logistics, and impact related to laboratory-based PCR viral testing and point-of-care (POC) antigen testing. Methods Dental healthcare workers (DHCWs) and patients in four dental offices within the National Dental Practice-based Research Network participated in this prospective study. In addition to electronic surveys, participants in two offices completed POC testing, while participants in two offices used lab based PCR methods to detect SARS-CoV-2 infection. For this feasibility study, analysis was limited to descriptive measures. Median and interquartile ranges were reported for Likert scale responses and mean and standard deviation for continuous variables. Results Forty-one of forty-three consented patients and twenty-eight of twenty-nine DHCWs completed the protocol. Descriptive statistics calculations including median and interquartile ranges revealed (1) saliva, tongue epithelial cells and nasal swabs were the most desirable specimens for testing for groups (2) both LAB and POC protocols took similar amounts of total time to complete the full testing protocol and (3) DHCWs and patients reported feeling more comfortable when both groups were tested. Conclusions This feasibility study suggests that pre-visit SARS-CoV-2 testing can be effectively implemented into dental practice workflows and positively impact perception of safety for DHCWs and patients, though a larger scale, network study is necessary for generalizability of results. As new virulent infectious diseases continue to emerge, preparing dental personnel to employ an entire toolbox of risk mitigation strategies, including testing, may have the potential to decrease dental practice closure time, maintaining continuity of dental care services for patients. Trial registration This trial was registered on ClinicalTrials.gov: NCT05123742.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pat Ragusa
- University of Rochester School of Medicine and Dentistry
| | | | | | | | | | | |
Collapse
|
3
|
Abufares HI, Oyoun Alsoud L, Alqudah MAY, Shara M, Soares NC, Alzoubi KH, El-Huneidi W, Bustanji Y, Soliman SSM, Semreen MH. COVID-19 Vaccines, Effectiveness, and Immune Responses. Int J Mol Sci 2022; 23:15415. [PMID: 36499742 PMCID: PMC9737588 DOI: 10.3390/ijms232315415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has captivated the globe's attention since its emergence in 2019. This highly infectious, spreadable, and dangerous pathogen has caused health, social, and economic crises. Therefore, a worldwide collaborative effort was made to find an efficient strategy to overcome and develop vaccines. The new vaccines provide an effective immune response that safeguards the community from the virus' severity. WHO has approved nine vaccines for emergency use based on safety and efficacy data collected from various conducted clinical trials. Herein, we review the safety and effectiveness of the WHO-approved COVID-19 vaccines and associated immune responses, and their impact on improving the public's health. Several immunological studies have demonstrated that vaccination dramatically enhances the immune response and reduces the likelihood of future infections in previously infected individuals. However, the type of vaccination and individual health status can significantly affect immune responses. Exposure of healthy individuals to adenovirus vectors or mRNA vaccines causes the early production of antibodies from B and T cells. On the other hand, unhealthy individuals were more likely to experience harmful events due to relapses in their existing conditions. Taken together, aligning with the proper vaccination to a patient's case can result in better outcomes.
Collapse
Affiliation(s)
- Haneen Imad Abufares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohd Shara
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Nelson C. Soares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
4
|
Wang Y, Zhang Y, Zhang X, Liang H, Li G, Wang X. An intelligent forecast for COVID-19 based on single and multiple features. INT J INTELL SYST 2022; 37:9339-9356. [PMID: 36247714 PMCID: PMC9539063 DOI: 10.1002/int.22995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022]
Abstract
It is urgent to identify the development of the Corona Virus Disease 2019 (COVID-19) in countries around the world. Therefore, visualization is particularly important for monitoring the COVID-19. In this paper, we visually analyze the real-time data of COVID-19, to monitor the trend of COVID-19 in the form of charts. At present, the COVID-19 is still spreading. However, in the existing works, the visualization of COVID-19 data has not established a certain connection between the forecast of the epidemic data and the forecast of the epidemic. To better predict the development trend of the COVID-19, we establish a logistic growth model to predict the development of the epidemic by using the same data source in the visualization. However, the logistic growth model only has a single feature. To predict the epidemic situation in an all-round way, we also predict the development trend of the COVID-19 based on the Susceptible Exposed Infected Removed epidemic model with multiple features. We fit the data predicted by the model to the real COVID-19 epidemic data. The simulation results show that the predicted epidemic development trend is consistent with the actual epidemic development trend, and our model performs well in predicting the trend of COVID-19.
Collapse
Affiliation(s)
- Yilei Wang
- School of Computer ScienceQufu Normal UniversityRizhaoChina
| | - Yiting Zhang
- School of Computer ScienceQufu Normal UniversityRizhaoChina
| | - Xiujuan Zhang
- School of Computer ScienceQufu Normal UniversityRizhaoChina
| | - Hai Liang
- School of Computer ScienceGuilin University of Electronic TechnologyGuilinChina
| | - Guangshun Li
- School of Computer ScienceQufu Normal UniversityRizhaoChina
| | - Xiaoying Wang
- The Smart Hospital R & D CenterThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol Sin 2022; 43:1905-1915. [PMID: 34873317 PMCID: PMC8646346 DOI: 10.1038/s41401-021-00814-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.
Collapse
|
6
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
7
|
Berber E, Sumbria D, Çanakoğlu N. Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. J Infect Public Health 2021; 14:1051-1064. [PMID: 34174535 PMCID: PMC8214867 DOI: 10.1016/j.jiph.2021.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Zoonotic coronaviruses have caused several endemic and pandemic situations around the world. SARS caused the first epidemic alert at the beginning of this century, followed by MERS. COVID-19 appeared to be highly contagious, with human-to-human transmission by aerosol droplets, and reached nearly all countries around the world. A plethora of studies were performed, with reports being published within a short period of time by scientists and medical physicians. It has been difficult to find the relevant data to create an overview of the situation according to studies from accumulated findings and reports. In the present study we aimed to perform a comprehensive study in the context of the case fatality ratios (CFRs) of three major human Coronavirus outbreaks which occurred during the first twenty years of 21st century. METHODS In this study, we performed meta-analyses on SARS, MERS and COVID-19 outbreak events from publicly available records. Study analyses were performed with the help of highly reputable scientific databases such as PubMed, WOS and Scopus to evaluate and present current knowledge on zoonotic coronavirus outbreaks, starting from 2000 to the end of 2020. RESULTS A total of 250,194 research studies and records were identified with specific keywords and synonyms for the three viruses in order to cover all publications. In the end, 41 records were selected and included after applying several exclusion and inclusion criteria on identified datasets. SARS was found to have a nearly 11% case fatality ratio (CFR), which means the estimated number of deaths as a proportion of confirmed positive cases; Taiwan was the country most affected by the SARS outbreak based on the CFR analysis. MERS had CFRs of 35.8 and 26 in Saudi Arabia during the 2012 and 2015 outbreaks, respectively. COVID-19 resulted in a 2.2 CFR globally, and the USA reported the highest mortality ratio in the world in the end of first year of COVID-19 pandemic. CONCLUSION Some members of the Coronaviridae family can cause highly contagious and devastating infections among humans. Within the last two decades, the whole world has witnessed several deadly emerging infectious diseases, which are most commonly zoonotic in nature. We conclude that pre-existing immunity during the early stages of a pandemic might be important, but case control and management strategies should be improved to decrease CFRs. Finally, we have addressed several concerns in relation to outbreak events in this study.
Collapse
Affiliation(s)
- Engin Berber
- University of Tennessee, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, Knoxville, TN, USA; Erciyes University, College of Veterinary Medicine, Department of Virology, Kayseri, Turkey.
| | - Deepak Sumbria
- University of Tennessee, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, Knoxville, TN, USA; Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Department of Silviculture and Agroforestry, College of Forestry, Solan, Himachal Pradesh, India
| | - Nurettin Çanakoğlu
- Muğla Sıtkı Koçman University, Milas Faculty of Veterinary Science, Department of Virology, Muğla, Turkey
| |
Collapse
|
8
|
Zhang N, Shan H, Liu M, Li T, Luo R, Yang L, Qi L, Chu X, Su X, Wang R, Liu Y, Sun W, Shen QT. Structure and assembly of double-headed Sendai virus nucleocapsids. Commun Biol 2021; 4:494. [PMID: 33888861 PMCID: PMC8062630 DOI: 10.1038/s42003-021-02027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/23/2021] [Indexed: 01/17/2023] Open
Abstract
Paramyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.
Collapse
Affiliation(s)
- Na Zhang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingdong Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianhao Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaofeng Chu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Su
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunhui Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qing-Tao Shen
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Jevšnik Virant M, Černe D, Petrovec M, Paller T, Toplak I. Genetic Characterisation and Comparison of Three Human Coronaviruses (HKU1, OC43, 229E) from Patients and Bovine Coronavirus (BCoV) from Cattle with Respiratory Disease in Slovenia. Viruses 2021; 13:v13040676. [PMID: 33920821 PMCID: PMC8071153 DOI: 10.3390/v13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.
Collapse
Affiliation(s)
- Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Danijela Černe
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Tomislav Paller
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
10
|
Chathappady House NN, Palissery S, Sebastian H. Corona Viruses: A Review on SARS, MERS and COVID-19. Microbiol Insights 2021; 14:11786361211002481. [PMID: 33795938 PMCID: PMC7983408 DOI: 10.1177/11786361211002481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
After the outbreak of SARS and MERS, the world is now in the grip of another viral disease named COVID-19 caused by a beta Coronavirus - SARS COV-2 which appears to be the only one with a pandemic potential. The case of COVID-19 was reported in the Hubei province of Wuhan city in Central China at the end of December 2019 and it is suspected that the sea food market played a role in this outbreak which was closed abruptly. Subsequently, a Public Health Emergency of International Concern was declared on 30 January 2020 by the World Health Organization. Both SARS and MERS corona viruses had its reservoir in bats and were transferred to humans from palm civets and camels respectively. This virus can be transmitted through airborne droplets. Natural reservoir and intermediate host of COVID-19 is yet to be identified. This paper reviews the occurrences of viral diseases in the recent times including SARS and MERS. As an addition to this, the paper will contain a detailed examination of the COVID-19 Pandemic.
Collapse
|
11
|
Kumar R, Singh V, Mohanty A, Bahurupi Y, Gupta PK. Corona health-care warriors in India: knowledge, attitude, and practices during COVID-19 outbreak. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2021; 10:44. [PMID: 34084791 PMCID: PMC8057180 DOI: 10.4103/jehp.jehp_524_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND COVID-19 has become a global health emergency after its first case in Wuhan city, China. An increasing number of cases and deaths are challenging the health-care system globally. This study aims to assess knowledge, attitude, and practice toward COVID-19 disease among health personnel in rapid outbreak in India. MATERIALS AND METHODS A cross-sectional survey was conducted using Google Forms through Google platform on-line. A total of 713 health personal allied health-care staff, working in different public and private health-care facilities, was conducted in the mid of April 2020. A structured knowledge, attitude, and practice questionnaire used to assess health personnel's knowledge, attitude, and practice toward COVID-19. All instruments were validated and pretested before use. Chi-square test, followed by binary logistic and multivariate regression, was applied to determine factors associated with knowledge scores. RESULTS Seven hundred and thirteen health personnel participated, and 703 (98.6%) participants responded were analyzed for final results. 95.9% of the health personnel were aware about route of transmission and clinical symptoms (95.3%) of COVID-19. 63.7% believed that virus outbreak would be controlled globally and followed standard precautions (81.8%), including wearing the mask. Further, majority (98.3%) of the participants avoided social contact by not going to crowded places and not calling people to their homes (82.2%) during the advisory of the government. In binary logistic regression analyses, the adequate knowledge score found significantly associated with MBBS/bachelor's degree (odds ratio [OR]: 2.309, confidence interval [CI]: 1.232-4.324, P < 0.009) and master's degree (OR: 2.944, CI: 1.485-5.835, P < 0.002), working with government health-care facility (OR: 3.662, CI: 1.624-8.285, P < 0.002), and holding a post of a physician (OR: 7.735, CI: 2.210-27.091, P < 0.001) during outbreak. CONCLUSIONS The level of education is associated with adequate knowledge scores among the health personnel. Type of health-care facility and post held in a health-care facility are significant predictors of adequacy of knowledge.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Nursing, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Vanya Singh
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Aroop Mohanty
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Yogesh Bahurupi
- Department of Community and Family Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
- Address for correspondence: Dr. Yogesh Bahurupi, Department of Community and Family Medicine, All India Institute of Medical Sciences Rishikesh - 249 203, Uttarakhand, India. E-mail:
| | - Puneet Kumar Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| |
Collapse
|
12
|
Stip E, Rizvi TA, Mustafa F, Javaid S, Aburuz S, Ahmed NN, Abdel Aziz K, Arnone D, Subbarayan A, Al Mugaddam F, Khan G. The Large Action of Chlorpromazine: Translational and Transdisciplinary Considerations in the Face of COVID-19. Front Pharmacol 2020; 11:577678. [PMID: 33390948 PMCID: PMC7772402 DOI: 10.3389/fphar.2020.577678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) in humans that is caused by SARS-associated coronavirus type 2 (SARS-CoV-2). In the context of COVID-19, several aspects of the relations between psychiatry and the pandemic due to the coronavirus have been described. Some drugs used as antiviral medication have neuropsychiatric side effects, and conversely some psychotropic drugs have antiviral properties. Chlorpromazine (CPZ, Largactil®) is a well-established antipsychotic medication that has recently been proposed to have antiviral activity against SARS-CoV-2. This review aims to 1) inform health care professionals and scientists about the history of CPZ use in psychiatry and its potential anti- SARS-CoV-2 activities 2) inform psychiatrists about its potential anti-SARS-CoV-2 activities, and 3) propose a research protocol for investigating the use of CPZ in the treatment of COVID-19 during the potential second wave. The history of CPZ's discovery and development is described in addition to the review of literature from published studies within the discipline of virology related to CPZ. The early stages of infection with coronavirus are critical events in the course of the viral cycle. In particular, viral entry is the first step in the interaction between the virus and the cell that can initiate, maintain, and spread the infection. The possible mechanism of action of CPZ is related to virus cell entry via clathrin-mediated endocytosis. Therefore, CPZ could be useful to treat COVID-19 patients provided that its efficacy is evaluated in adequate and well-conducted clinical trials. Interestingly, clinical trials of very good quality are in progress. However, more information is still needed about the appropriate dosage regimen. In short, CPZ repositioning is defined as a new use beyond the field of psychiatry.
Collapse
Affiliation(s)
- Emmanuel Stip
- Department of Psychiatry, University of Montréal, Montréal, QC, Canada
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed Javaid
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nahida Nayaz Ahmed
- Ambulatory Healthcare Services, Al Maqtaa Healthcare Center, Middle Regions Clinics Division, SEHA, Abu Dhabi, United Arab Emirates
| | - Karim Abdel Aziz
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Kings’ College London, Institute of Psychiatry, Psychology, Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| | - Aravinthan Subbarayan
- Behavioral Sciences Institute (BSI), Al Ain Hospital, SEHA, Al Ain, United Arab Emirates
| | - Fadwa Al Mugaddam
- Department of Psychiatry, University of Montréal, Montréal, QC, Canada
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Singh DD, Han I, Choi EH, Yadav DK. Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2. Comput Struct Biotechnol J 2020; 18:3774-3787. [PMID: 33235690 PMCID: PMC7677077 DOI: 10.1016/j.csbj.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a group of enveloped RNA viruses that are diversely found in humans and now declared a global pandemic by the World Health Organization in March 2020. The population's susceptibility to these highly pathogenic coronaviruses has contributed to large outbreaks, evolved into public health events, and rapidly transmitted globally. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In the primary stage of severe acute respiratory syndrome coronavirus (SARS-COV-2) infection, the signs and symptoms are nonspecific, and many more cases have been observed than initially expected. Genome sequencing is performed regularly to identify genetic changes to SARS-COV-2, and vaccine development is focused on manufacture, production, and based on specific problems, and very few are available on recent developments in the prevention of outbreaks. The aim of this review article to explore recent updates on SARS-COV-2 in the context of pathogenesis during disease progression, and innate acquired mechanisms of defense, This includes advances in diagnostics, susceptibility, and severity of host-virus genome interactions, modes of transmission, active compounds being used in pre-clinical and clinical trials for the treatment of patients, vaccine developments, and the effectiveness of SARS-COV-2 prevention and control measures. We have summarized the importance of pathophysiology immune response, Diagnostics, vaccine development currently approaches explored for SARS-COV-2.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
14
|
Singh DD, Han I, Choi EH, Yadav DK. Recent Advances in Pathophysiology, Drug Development and Future Perspectives of SARS-CoV-2. Front Cell Dev Biol 2020; 8:580202. [PMID: 33240881 PMCID: PMC7677140 DOI: 10.3389/fcell.2020.580202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus (SARS-CoV-2) pandemic is a rapidly transmitting and highly pathogenic disease. The spike protein of SARS-CoV-2 binds to the surface of angiotensin-converting enzyme-2 (ACE2) receptors along the upper respiratory tract and intestinal epithelial cells. SARS-CoV-2 patients develop acute respiratory distress, lymphocytic myocarditis, disseminated intravascular coagulation, lymphocytic infiltration, and other serious complications. A SARS-CoV-2 diagnosis is conducted using quantitative reverse-transcription PCR and computed tomography (CT) imaging. In addition, IgM or IgG antibodies are used to identify acute and convalescent illness. Recent clinical data have been generated by health workers and researchers and have shown that there is an urgent requirement in the effective clinical and treatment of patients, as well as other developments for dealing with SARS-CoV-2 infection. A broad spectrum of clinical trials of different vaccines and drug treatment has been evaluated for use against SARS-CoV-2. This review includes the emergence of SARS-CoV-2 pneumonia as a way to recognize and eliminate any barriers that affect rapid patient care and public health management against the SARS-CoV-2 epidemic based on the natural history of the disease, its transmission, pathogenesis, immune response, epidemiology, diagnosis, clinical presentation, possible treatment, drug and vaccine development, prevention, and future perspective.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
| |
Collapse
|
15
|
Taherizadeh M, Tabibzadeh A, Panahi M, Safarnezhad Tameshkel F, Golahdooz M, Karbalaie Niya MH. An Introduction to SARS Coronavirus 2; Comparative Analysis with MERS and SARS Coronaviruses: A Brief Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:30-37. [PMID: 34268203 PMCID: PMC8266008 DOI: 10.18502/ijph.v49is1.3667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Since the 1970 the replication and pathogenesis mechanism of different coronaviruses have been studded.. In 2002-2003, SARS (Severe Acute Respiratory Syndrome coronavirus) in China emerged which resulted in 8098 cases and 774 deaths. About 10 years later in 2012, the MERS (Middle East Respiratory Syndrome coronavirus) spread in Middle Eastern countries and leads to infection in 2465 cases. In Dec 2019, another acute respiratory disease caused by a novel coronavirus named SARS-2 emerged in Wuhan, China. The virus is assumed to be mainly transmitted by respiratory droplets. Travels and communications leads to high prevalence of COVID-19 (Coronavirus Disease 2019) in the world, and currently in Iran. The current review was conducted to compare the virus structure, genome organization, virus life cycle, pathogenesis and prediction the future of COVID-19.
Collapse
Affiliation(s)
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Golahdooz
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
16
|
Martínez-Sánchez G, Schwartz A, Di Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants (Basel) 2020; 9:antiox9050389. [PMID: 32384798 PMCID: PMC7278582 DOI: 10.3390/antiox9050389] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κB/Nrf2 pathways and IL-6/IL-1β expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κB/Nrf2 balance and IL-6 and IL-1β expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Collapse
|
17
|
Khan G, Sheek-Hussein M, Al Suwaidi AR, Idris K, Abu-Zidan FM. Novel coronavirus pandemic: A global health threat. Turk J Emerg Med 2020; 20:55-62. [PMID: 32587923 PMCID: PMC7305662 DOI: 10.4103/2452-2473.285016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
The world is facing one of its worst public health crises in modern history. Coronavirus 2019 (COVID-19) has shown how fragile our global preparedness for infectious diseases is. The world is a small-connected globe with short travel time between its remote parts. COVID-19 has spread globally and swiftly with major impacts on health, economy, and quality of life of communities. At this point in the time, April 9, 2020, >1,500,000 patients have been infected and >88,000 patients have died worldwide within the last 3 months. The status is evolving and the costly lessons learned over time are increasing. These lessons are global as this virus is. They involve different domains of health sciences including virology, public health, clinical, critical care, and disaster management. This review addresses our current knowledge of COVID-19 pandemic from the basic virology and transmission, through prevention, infection control, clinical management, and finally disaster management including the recovery period. This review has a multidisciplinary approach, which is needed at this time. After this difficult period passes, we have to carry the lessons we learned for the future so that we can be better prepared. One thing that has clearly emerged from this ongoing crisis is that infectious diseases have no borders and we have to work together, using the one world, one health approach, if we are to minimize the enormous impact such pandemics can cause.
Collapse
Affiliation(s)
- Gulfaraz Khan
- Department of Microbiolgy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamud Sheek-Hussein
- Department of Community Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed R. Al Suwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Kamal Idris
- Department of Critical Care, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Fikri M. Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
18
|
Abstract
The aim of this study was to use IEDB software to predict the suitable MERS-CoV epitope vaccine against the most known world population alleles through four selecting proteins such as S glycoprotein and envelope protein and their modification sequences after the pandemic spread of MERS-CoV in 2012. IEDB services is one of the computational methods; the output of this study showed that S glycoprotein, envelope (E) protein, and S and E protein modified sequences of MERS-CoV might be considered as a protective immunogenic with high conservancy because they can elect both neutralizing antibodies and T-cell responses when reacting with B-cell, T-helper cell, and cytotoxic T lymphocyte. NetCTL, NetChop, and MHC-NP were used to confirm our results. Population coverage analysis showed that the putative helper T-cell epitopes and CTL epitopes could cover most of the world population in more than 60 geographical regions. According to AllerHunter results, all those selected different protein showed non-allergen; this finding makes this computational vaccine study more desirable for vaccine synthesis.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of BioMedical Engineering, Medical College of Wisconsin, Milwaukee, WI USA
| | - Shamsoun Khamis Kafi
- Faculty of Medical Laboratory Science (MLS), The National Ribat University, Khartoum, Sudan
| |
Collapse
|
19
|
The Middle East Respiratory Syndrome Coronavirus: An Emerging Virus of Global Threat. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7148737 DOI: 10.1016/b978-0-12-819400-3.00008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Middle East respiratory syndrome (MERS) is a viral respiratory illness caused by a coronavirus (CoV), first identified in Saudi Arabia in 2012. Since then, almost 2000 cases have been reported from 27 countries, with Saudi Arabia being the epicenter. This newly emerging virus is highly pathogenic and has a case mortality rate of 35%. It is similar to the CoV causing severe acute respiratory syndrome CoV (SARS-CoV) in that both belong to the genus beta CoVs that are of zoonotic origin and cause lower respiratory infection. The natural reservoir for MERS-CoV remains unknown. Serological studies indicate that most dromedary camels in the Middle East have been infected with this virus, and they maybe the potential intermediate host. However, the mode of transmission from camels to humans is poorly understood. The majority of confirmed human cases have resulted from human-to-human transmission, most probably via respiratory route. Patients most at risk of developing severe MERS-CoV infection appear to be those with underlying conditions such as diabetes, hypertension, obesity, cardiac diseases, chronic respiratory diseases, and cancer. Unlike SARS-CoV, MERS-CoV is considered an ongoing public health problem, particularly for the Middle East region. In this chapter, we outline the prevailing information regarding the emergence and epidemiology of this virus, its mode of transmission and pathogenicity, its clinical features, and the potential strategies for prevention.
Collapse
|
20
|
Parvez MK, Parveen S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology 2017; 60:1-7. [PMID: 28772262 PMCID: PMC7179518 DOI: 10.1159/000478729] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/14/2017] [Indexed: 12/14/2022] Open
Abstract
Incidences of emerging/re-emerging deadly viral infections have significantly affected human health despite extraordinary progress in the area of biomedical knowledge. The best examples are the recurring outbreaks of dengue and chikungunya fever in tropical and sub-tropical regions, the recent epidemic of Zika in the Americas and the Caribbean, and the SARS, MERS, and influenza A outbreaks across the globe. The established natural reservoirs of human viruses are mainly farm animals, and, to a lesser extent, wild animals and arthropods. The intricate "host-pathogen-environment" relationship remains the key to understanding the emergence/re-emergence of pathogenic viruses. High population density, rampant constructions, poor sanitation, changing climate, and the introduction of anthropophilic vectors create selective pressure on host-pathogen reservoirs. Nevertheless, the knowledge and understanding of such zoonoses and pathogen diversity in their known non-human reservoirs are very limited. Prevention of arboviral infections using vector control methods has not been very successful. Currently, new approaches to protect against food-borne infections, such as consuming only properly cooked meats and animal products, are the most effective control measures. Though significant progress in controlling human immunodeficiency virus and hepatitis viruses has been achieved, the unpredictable nature of evolving viruses and the rare occasions of outbreaks severely hamper control and preventive modalities.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Adhikari N, Baidya SK, Saha A, Jha T. Structural Insight Into the Viral 3C-Like Protease Inhibitors: Comparative SAR/QSAR Approaches. VIRAL PROTEASES AND THEIR INHIBITORS 2017. [PMCID: PMC7150231 DOI: 10.1016/b978-0-12-809712-0.00011-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number of pathogeneses in human may occur due to the virus. This infection has not been taken into account before the SARS outbreak, and still it is a neglected one. Therefore, there is an urgent need to develop small molecule antivirals to combat the SARS-CoV. No vaccines are available till date though a number of SARS-CoV 3C-like and 3C protease inhibitors were reported. In this chapter, quantitative structure–activity relationship technique is used for development of anti-SARS and anti-HRV drugs and outcome discussed in details. This approach may be a useful strategy to design novel and potential anti-SARS drugs to combat these dreadful viral diseases.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Suresha PG, Akhil C, Anjali A, Giselle DR, Revti B, Arunkumar G. Human coronaviruses in severe acute respiratory infection (SARI) cases in southwest India. J Med Virol 2016; 88:163-5. [PMID: 26512711 PMCID: PMC7166866 DOI: 10.1002/jmv.24296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 11/09/2022]
Abstract
Acute viral respiratory infections (AVRI) are a leading cause of morbidity and mortality among all age groups globally. Except for Influenza virus and Respiratory Syncytial virus, mostly viral aetiology of AVRI remains undiagnosed. Lately, human coronaviruses (HCoVs) have emerged as an important aetiology of AVRI. A laboratory based retrospective cross sectional study was conducted in which respiratory samples (throat swabs) of patients (n = 864), with Influenza negative SARI, of all age groups between Jan 2011–Dec 2012 were tested for HCoVs including MERS‐CoV using Conventional and real time PCR assays. The prevalence of HCoV among SARI cases was 1.04% (9/864) [95% CI: 0.36–1.72]. Of these four (44.44%) were identified as HCoV OC43, three (33.33%) as HCoV NL63 and two (22.22%) as HCoV 229E. No HCoV HKU1 was detected. The samples were also negative for SARS‐CoV and MERS‐CoV. The results of this study documents low prevalence of human coronaviruses in SARI cases in south western India and the absence of highly pathogenic human coronaviruses. As the study included only SARI cases the prevalence reported could be an under estimate when it is extrapolated to community. J. Med. Virol. 88:163–165, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prabhu G Suresha
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Chameettachal Akhil
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Aithal Anjali
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Dsouza R Giselle
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Bhaskar Revti
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | | |
Collapse
|
23
|
Lee H, Lei H, Santarsiero BD, Gatuz JL, Cao S, Rice AJ, Patel K, Szypulinski MZ, Ojeda I, Ghosh AK, Johnson ME. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol 2015; 10:1456-65. [PMID: 25746232 PMCID: PMC4845099 DOI: 10.1021/cb500917m] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3).
Collapse
Affiliation(s)
- Hyun Lee
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Hao Lei
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Joseph L. Gatuz
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Shuyi Cao
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Amy J. Rice
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Kavankumar Patel
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Michael Z. Szypulinski
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | | | - Arun K. Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| |
Collapse
|
24
|
Wang L. Thank you to Virology Journal's peer reviewers in 2013. Virol J 2014. [PMCID: PMC3898089 DOI: 10.1186/1743-422x-11-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The editors of Virology Journal would like to thank all our reviewers who have contributed to the journal in Volume 10 (2013). The success of any scientific journal depends on an effective and strict peer review process and Virology Journal could not operate without your contribution. We are grateful to the large number of reviewers (1026 to be exact!), who have done a great job in not only lifting the quality of the journal’s scientific peer reviewing process, but also helped us to achieve our goal of a median time to first decision of just 35 days. Our record time from submission to online, open access, publication in 2013 was 22 days for a Research Article [1] and 28 days for a Review [2]. This is a great achievement by any standard. We look forward to your continuous support of Virology Journal either as an invited reviewer or a contributing author in the years to come.
Collapse
|
25
|
Abstract
In the USA, infectious diseases continue to exact a substantial toll on health and health-care resources. Endemic diseases such as chronic hepatitis, HIV, and other sexually transmitted infections affect millions of individuals and widen health disparities. Additional concerns include health-care-associated and foodborne infections--both of which have been targets of broad prevention efforts, with success in some areas, yet major challenges remain. Although substantial progress in reduction of the burden of vaccine-preventable diseases has been made, continued cases and outbreaks of these diseases persist, driven by various contributing factors. Worldwide, emerging and reemerging infections continue to challenge prevention and control strategies while the growing problem of antimicrobial resistance needs urgent action. An important priority for control of infectious disease is to ensure that scientific and technological advances in molecular diagnostics and bioinformatics are well integrated into public health. Broad and diverse partnerships across governments, health care, academia, and industry, and with the public, are essential to effectively reduce the burden of infectious diseases.
Collapse
Affiliation(s)
- Rima F Khabbaz
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Robin R Moseley
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Riley J Steiner
- Division of Adolescent and School Health, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alexandra M Levitt
- Office of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Beth P Bell
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
26
|
Khuri-Bulos N, Payne DC, Lu X, Erdman D, Wang L, Faouri S, Shehabi A, Johnson M, Becker MM, Denison MR, Williams JV, Halasa NB. Middle East respiratory syndrome coronavirus not detected in children hospitalized with acute respiratory illness in Amman, Jordan, March 2010 to September 2012. Clin Microbiol Infect 2014; 20:678-82. [PMID: 24313317 PMCID: PMC4618562 DOI: 10.1111/1469-0691.12438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/09/2013] [Accepted: 10/27/2013] [Indexed: 12/16/2022]
Abstract
Hospitalized children < 2 years of age in Amman, Jordan, admitted for fever and/or respiratory symptoms, were tested for Middle East respiratory syndrome coronavirus (MERS-CoV): MERS-CoV by real-time RT-PCR (rRT-PCR). This was a prospective year-round viral surveillance study in children <2 years of age admitted with acute respiratory symptoms and/or fever from March 2010 to September 2012 and enrolled from a government-run hospital, Al-Bashir in Amman, Jordan. Clinical and demographic data, including antibiotic use, were collected. Combined nasal/throat swabs were collected, aliquoted, and frozen at -80°C. Specimen aliquots were shipped to Vanderbilt University and the Centers for Disease Control and Prevention (CDC), and tested by rRT-PCR for MERS-CoV. Of the 2433 subjects enrolled from 16 March 2010 to 10 September 2012, 2427 subjects had viral testing and clinical data. Of 1898 specimens prospectively tested for other viruses between 16 March 2010 and 18 March 2012, 474 samples did not have other common respiratory viruses detected. These samples were tested at CDC for MERS-CoV and all were negative by rRT-PCR for MERS-CoV. Of the remaining 531 samples, collected from 19 March 2012 to 10 September 2012 and tested at Vanderbilt, none were positive for MERS-CoV. Our negative findings from a large sample of young Jordanian children hospitalized with fever and/or respiratory symptoms suggest that MERS-CoV was not widely circulating in Amman, Jordan, during the 30-month period of prospective, active surveillance occurring before and after the first documented MERS-CoV outbreak in the Middle East region.
Collapse
Affiliation(s)
- N Khuri-Bulos
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, The Jordan University, Amman, Jordan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayden FG. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir Viruses 2014; 7 Suppl 3:36-43. [PMID: 24215380 PMCID: PMC6492651 DOI: 10.1111/irv.12173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progress in the development of antivirals for non‐influenza respiratory viruses has been slow with the result that many unmet medical needs and few approved agents currently exist. This commentary selectively reviews examples of where specific agents have provided promising clinical benefits in selected target populations and also considers potential therapeutics for emerging threats like the SARS and Middle East respiratory syndrome coronaviruses. Recent studies have provided encouraging results in treating respiratory syncytial virus infections in lung transplant recipients, serious parainfluenza virus and adenovirus infections in immunocompromised hosts, and rhinovirus colds in outpatient asthmatics. While additional studies are needed to confirm the efficacy and safety of the specific agents tested, these observations offer the opportunity to expand therapeutic studies to other patient populations.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
28
|
Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 2013; 95:614-626. [PMID: 24362959 DOI: 10.1099/vir.0.059014-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.
Collapse
Affiliation(s)
- Xingxing Yang
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xiaojuan Chen
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangxing Bian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jian Tu
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaling Xing
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yayun Wang
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhongbin Chen
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
29
|
Zhou N, Zhang Y, Zhang JC, Feng L, Bao JK. The receptor binding domain of MERS-CoV: the dawn of vaccine and treatment development. J Formos Med Assoc 2013; 113:143-7. [PMID: 24342026 PMCID: PMC7127315 DOI: 10.1016/j.jfma.2013.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/20/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is becoming another “SARS-like” threat to the world. It has an extremely high death rate (∼50%) as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD) and its complex with dipeptidyl peptidase 4 (DPP4), raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Nan Zhou
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Yun Zhang
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Jin-Chun Zhang
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Ling Feng
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Jin-Ku Bao
- School of Life Sciences & Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
30
|
Rókusz L, Jankovics I, Jankovics M, Sarkadi J, Visontai I. [Importance of the case of coronavirus-associated severe acute respiratory syndrome detected in Hungary in 2005]. Orv Hetil 2013; 154:1877-82. [PMID: 24240525 DOI: 10.1556/oh.2013.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology.
Collapse
Affiliation(s)
- László Rókusz
- HM Egészségügyi Központ Honvédkórház I. Belgyógyászati Osztály Budapest Róbert Károly krt. 44. 1134
| | | | | | | | | |
Collapse
|
31
|
Abstract
A novel coronavirus, MERS-CoV (NCoV, HCoV-EMC/2012), originating from the Middle-East, has been discovered. Incoming data reveal that the virus is highly virulent to humans. A model that categorizes coronaviuses according to the hardness of their shells was developed before the discovery of MERS-CoV. Using protein intrinsic disorder prediction, coronaviruses were categorized into three groups that can be linked to the levels of oral-fecal and respiratory transmission regardless of genetic proximity. Using this model, MERS-CoV is placed into disorder group C, which consists of coronaviruses that have relatively hard inner and outer shells. The members of this group are likely to persist in the environment for a longer period of time and possess the highest oral-fecal components but relatively low respiratory transmission components. Oral-urine and saliva transmission are also highly possible since both require harder protective shells. Results show that disorder prediction can be used as a tool that suggests clues to look for in further epidemiological investigations.
Collapse
|
32
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
33
|
Gorman S. How can we improve global infectious disease surveillance and prevent the next outbreak? ACTA ACUST UNITED AC 2013; 45:944-7. [PMID: 24001353 DOI: 10.3109/00365548.2013.826877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite a significant amount of progress in the past decade, global infectious disease surveillance still often falters, as in the case of the emerging novel coronavirus that has killed at least 17 people in Saudi Arabia. This article argues that we must continuously re-evaluate global infectious disease surveillance systems. It takes stock of problems in various countries' infectious disease surveillance systems and offers recommendations for how to improve surveillance and ensure more rapid reporting. Chief among the recommendations are strategies for reducing fragmentation in global surveillance systems and methods for making these systems less disease-specific. Suggestions are also offered for ways to improve infectious disease surveillance strategies in resource-limited settings.
Collapse
Affiliation(s)
- Sara Gorman
- Department of Health Policy & Management Columbia University, Mailman School of Public Health , New York , USA
| |
Collapse
|
34
|
Mandadapu SR, Weerawarna PM, Prior AM, Uy RAZ, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013; 23:3709-12. [PMID: 23727045 PMCID: PMC3750990 DOI: 10.1016/j.bmcl.2013.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively.
Collapse
Affiliation(s)
| | | | - Allan M. Prior
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
35
|
Chan RWY, Chan MCW, Agnihothram S, Chan LLY, Kuok DIT, Fong JHM, Guan Y, Poon LLM, Baric RS, Nicholls JM, Peiris JSM. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 2013; 87:6604-14. [PMID: 23552422 PMCID: PMC3676115 DOI: 10.1128/jvi.00009-13] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023] Open
Abstract
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.
Collapse
Affiliation(s)
- Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sudhakar Agnihothram
- Departments of Epidemiology and Microbiology and Immunology, Gillings School of Global Public Health, and School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Louisa L. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Denise I. T. Kuok
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joanne H. M. Fong
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y. Guan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ralph S. Baric
- Departments of Epidemiology and Microbiology and Immunology, Gillings School of Global Public Health, and School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - John M. Nicholls
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|