1
|
Gui Z, Ren Y, Guo Q, Yang W, Liu Z, Liu N, Peng Y, Liu Y, Yu J, Sun L, Wang Z. Development of a LAMP assay for the rapid visual detection of the emerging tick-borne Songling virus. Parasit Vectors 2024; 17:447. [PMID: 39487524 PMCID: PMC11529016 DOI: 10.1186/s13071-024-06552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Songling virus (SGLV) within the genus Orthonairovirus, family Nairoviridae, is an emerging tick-borne virus associated with human febrile illness. However, no rapid detection method for SGLV has been established. METHODS In this study, four primer sets targeting the nucleocapsid protein gene of SGLV were designed for use in the LAMP assay and evaluated to identify the optimal primer set. Recombinant plasmids were constructed and utilized for assessing the sensitivity of the assay. Tacheng tick virus 1 (TcTV-1)-, Beiji nairovirus (BJNV)-, Yezo virus (YEZV)-, severe fever with thrombocytopenia syndrome virus (SFTSV)-, and tick-borne encephalitis virus (TBEV)-positive tick samples were utilized to assess the specificity. Field-collected ticks were also evaluated as biological specimens to validate the assay. RESULTS A SGLV-specific LAMP assay was established with a detection limit of 1 × 10-2 copies/μl and could be visually confirmed by a color change from purple to blue in SGLV-positive samples. No cross-reactivity was observed in the detection of TcTV-1, BJNV, YEZV, SFTSV, and TBEV using the LAMP assay. In addition to the detection of the same seven high-copy numbers of SGLV as the SYBR Green quantitative RT-PCR assay within a reduced timeframe, the developed LAMP method also effectively identified an additional sample with a low copy number in the field-collected tick samples. CONCLUSIONS We successfully developed a sensitive, specific, and cost-effective visual method for the rapid detection of SGLV using the LAMP assay, which can be applied in pathogenesis and epidemiological surveillance studies of SGLV.
Collapse
Affiliation(s)
- Zheng Gui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanning Ren
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiqi Guo
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Weiying Yang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunzhi Peng
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingfeng Yu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Lichao Sun
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Khedhiri M, Chaouch M, Ayouni K, Chouikha A, Gdoura M, Touzi H, Hogga N, Benkahla A, Fares W, Triki H. Development and evaluation of an easy to use real-time reverse-transcription loop-mediated isothermal amplification assay for clinical diagnosis of West Nile virus. J Clin Virol 2024; 170:105633. [PMID: 38103483 DOI: 10.1016/j.jcv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.
Collapse
Affiliation(s)
- Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Laboratory of BioInformatics, BioMathematics and BioStatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Alia Benkahla
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Wasfi Fares
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
3
|
Staples J, Dourou AM, Liampa I, Sjaarda C, Moslinger E, Wong H, Sheth PM, Arhondakis S, Prakash R. A Miniaturized System for Rapid, Isothermal Detection of SARS-CoV-2 in Human and Environmental Samples. Biomedicines 2023; 11:2038. [PMID: 37509680 PMCID: PMC10377682 DOI: 10.3390/biomedicines11072038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
We report a small-footprint cost-effective isothermal rapid DNA amplification system, with integrated microfluidics for automated sample analysis and detection of SARS-CoV-2 in human and environmental samples. Our system measures low-level fluorescent signals in real-time during amplification, while maintaining the desired assay temperature on a low power, portable system footprint. A unique soft microfluidic chip design was implemented to mitigate thermocapillary effects and facilitate optical alignment for automated image capture and signal analysis. The system-on-board prototype, coupled with the LAMP primers designed by BioCoS, was sensitive enough to detect large variations in viral loads of SARS-CoV-2 corresponding to a threshold cycle range of 16 to 39. Furthermore, tested samples consisted of a broad range of viral strains and lineages identified in Canada during 2021-2022. Clinical specimens were collected and tested at the Kingston Health Science Centre using a clinically validated PCR assay, and variants were determined using whole genome sequencing.
Collapse
Affiliation(s)
- Jake Staples
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | | | - Calvin Sjaarda
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Emily Moslinger
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Henry Wong
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Prameet M Sheth
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Alotaibi MA, Al-Amad S, Chenari Bouket A, Al-Aqeel H, Haider E, Hijji AB, Belbahri L, Alenezi FN. High Occurrence Among Calves and Close Phylogenetic Relationships With Human Viruses Warrants Close Surveillance of Rotaviruses in Kuwaiti Dairy Farms. Front Vet Sci 2022; 9:745934. [PMID: 35356787 PMCID: PMC8959109 DOI: 10.3389/fvets.2022.745934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rotavirus, one of the main pathogens causing morbidity and mortality in neonatal dairy calves worldwide, is responsible for 30–44% of cattle deaths. It is considered to be the most common etiologic agent of diarrhea in neonatal dairy calves and children, the dominant type being group A. Two hundred seventy animals from 27 farms from 2 regions of Kuwait were tested for the presence of Rotavirus serogroup A (RVA) using latex agglutination test (LAT) and reverse transcription–polymerase chain (RT-PCR) testing. RVA non-structural proteins NSP1-2, NSP4-5 and capsid protein genes VP1-7 were characterized by next generation sequencing. LAT was positive in 15.56% of the animals, and RT-PCR in 28.89%. Using RT-PCR as a reference method, LAT was 100% specific but only 83.33% sensitive. ANOVA analysis showed correlation only with the location of the farms but no significant correlation with the age and sex of the animals. Although there was a tendency of clustering of RVA positive animals, it did not reach statistical significance (p = 0.035 for LAT). The phylogenetic analysis showed that Kuwaiti isolates of group A rotavirus clustered with human rotaviruses. Taken together, it seems that rotavirus was present in most of the dairy farms in Kuwait. The high occurrence of the virus in calves in Kuwaiti dairy farms and the close phylogenetic affinity with human isolates warrants urgent action to minimize and control its spread between calves in farms.
Collapse
Affiliation(s)
- Mohammad A. Alotaibi
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
- *Correspondence: Mohammad A. Alotaibi
| | - S. Al-Amad
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Ali Chenari Bouket
- East Azarbaijan Agricultural and Natural Resources Research and Education Center, Plant Protection Research Department, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - H. Al-Aqeel
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - E. Haider
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - A. Bin Hijji
- Biotechnology Program, Environmental and Life Sciences and Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, Neuchatel, Switzerland
| | | |
Collapse
|
5
|
Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal Biochem 2021; 634:114362. [PMID: 34478703 PMCID: PMC8406551 DOI: 10.1016/j.ab.2021.114362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 02/03/2023]
Abstract
The rapid spread of the SARS-CoV-2 virus that caused the COVID-19 disease, has highlighted our urgent need for sensitive, fast and accurate diagnostic technologies. In fact, one of the main challenges for flatting COVID-19 spread charts is the ability to accurately and rapidly identify asymptomatic cases that result in spreading the virus to close contacts. SARS-CoV-2 virus mutation is also relatively rapid, which makes the detection of COVID-19 diseases still crucial even after the vaccination. Conventional techniques, which are commercially available have focused on clinical manifestation, along with molecular and serological detection tools that can identify the SARS-CoV-2 virus however, owing to various disadvantages including low specificity and sensitivity, a quick, low cost and easy approach is needed for diagnosis of COVID-19. Scientists are now showing extensive interest in an effective portable and simple detection method to diagnose COVID-19. There are several novel methods and approaches that are considered viable advanced systems that can meet the demands. This study reviews the new approaches and sensing technologies that work on COVID-19 diagnosis for easy and successful detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, 87144, United States.
| | - Nader Hedayat
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Siamak Farhad
- Advanced Energy & Sensor Lab, Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325, United States.
| |
Collapse
|
6
|
Springer A, Glass A, Probst J, Strube C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol Res 2021; 120:4075-4090. [PMID: 33459849 PMCID: PMC8599405 DOI: 10.1007/s00436-020-07033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Around the world, human health and animal health are closely linked in terms of the One Health concept by ticks acting as vectors for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs. veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for collaboration in a One Health framework.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Antje Glass
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
7
|
Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colorimetric biosensors for point-of-care virus detections. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2019; 3:237-249. [PMID: 33604529 PMCID: PMC7148662 DOI: 10.1016/j.mset.2019.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
Colorimetric biosensors can be used to detect a particular analyte through color changes easily by naked eyes or simple portable optical detectors for quantitative measurement. Thus, it is highly attractive for point-of-care detections of harmful viruses to prevent potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. This review paper summaries existing and emerging techniques that can be employed to detect viruses through colorimetric assay design with detailed discussion of their sensing principles, performances as well as pros and cons, with an aim to provide guideline on the selection of suitable colorimetric biosensors for detecting different species of viruses. Among the colorimetric methods for virus detections, loop-mediated isothermal amplification (LAMP) method is more favourable for its faster detection, high efficiency, cheaper cost, and more reliable with high reproducible assay results. Nanoparticle-based colorimetric biosensors, on the other hand, are most suitable to be fabricated into lateral flow or lab-on-a-chip devices, and can be coupled with LAMP or portable PCR systems for highly sensitive on-site detection of viruses, which is very critical for early diagnosis of virus infections and to prevent outbreak in a swift and controlled manner.
Collapse
Affiliation(s)
- Victoria Xin Ting Zhao
- College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ten It Wong
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
8
|
Ma C, Song D, Gu Q, Li P, Zhan L. Reverse transcription loop‐mediated isothermal amplification assays allow the rapid detection of
Listeria monocytogenes
in fresh‐cut fruits and vegetables. J Food Saf 2019. [DOI: 10.1111/jfs.12658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Congcong Ma
- Department of Biotechnology, Key Laboratory for Food Microbial Technology of Zhejiang ProvinceZhejiang Gongshang University Hangzhou Zhejiang China
| | - Dafeng Song
- Department of Biotechnology, Key Laboratory for Food Microbial Technology of Zhejiang ProvinceZhejiang Gongshang University Hangzhou Zhejiang China
| | - Qing Gu
- Department of Biotechnology, Key Laboratory for Food Microbial Technology of Zhejiang ProvinceZhejiang Gongshang University Hangzhou Zhejiang China
| | - Ping Li
- Department of Biotechnology, Key Laboratory for Food Microbial Technology of Zhejiang ProvinceZhejiang Gongshang University Hangzhou Zhejiang China
| | - Lingzhi Zhan
- Department of Biotechnology, Key Laboratory for Food Microbial Technology of Zhejiang ProvinceZhejiang Gongshang University Hangzhou Zhejiang China
| |
Collapse
|
9
|
Palus M, Sohrabi Y, Broman KW, Strnad H, Šíma M, Růžek D, Volkova V, Slapničková M, Vojtíšková J, Mrázková L, Salát J, Lipoldová M. A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neurosci 2018; 19:39. [PMID: 29976152 PMCID: PMC6034256 DOI: 10.1186/s12868-018-0438-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background
Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. The basis of this heterogeneity is largely unknown, but part of this variation is likely due to host genetic. We have previously found that BALB/c mice exhibit intermediate susceptibility to the infection of TBE virus (TBEV), STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, carrying 12.5% of the STS genome on the background of the BALB/c genome is even more susceptible than BALB/c. Importantly, mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr3, Ccr5, Ifnl3 and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. As they cannot be responsible for the phenotypic difference of the two strains, we searched for the responsible STS-derived gene-locus. Of course the STS-derived genes in CcS-11 may operate through regulating or epigenetically modifying these non-polymorphic genes of BALB/c origin. Methods To determine the location of the STS genes responsible for susceptibility of CcS-11, we analyzed survival of TBEV-infected F2 hybrids between BALB/c and CcS-11. CcS-11 carries STS-derived segments on eight chromosomes. These were genotyped in the F2 hybrid mice and their linkage with survival was tested by binary trait interval mapping. We have sequenced genomes of BALB/c and STS using next generation sequencing and performed bioinformatics analysis of the chromosomal segment exhibiting linkage with TBEV survival. Results Linkage analysis revealed a novel suggestive survival-controlling locus on chromosome 7 linked to marker D7Nds5 (44.2 Mb). Analysis of this locus for polymorphisms between BALB/c and STS that change RNA stability and genes’ functions led to detection of 9 potential candidate genes: Cd33, Klk1b22, Siglece, Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3. One of them, Cd33, carried a nonsense mutation in the STS strain. Conclusions The robust genetic system of recombinant congenic strains of mice enabled detection of a novel suggestive locus on chromosome 7. This locus contains 9 candidate genes, which will be focus of future studies not only in mice but also in humans.
Collapse
Affiliation(s)
- Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Yahya Sohrabi
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, 6770 Medical Sciences Center, 1300 University Avenue, Madison, WI, 53706-1532, USA
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Matyáš Šíma
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Valeriya Volkova
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Martina Slapničková
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jarmila Vojtíšková
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Lucie Mrázková
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic.,Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01, Kladno, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Marie Lipoldová
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague, Czech Republic. .,Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01, Kladno, Czech Republic.
| |
Collapse
|
10
|
Oscorbin IP, Belousova EA, Zakabunin AI, Boyarskikh UA, Filipenko ML. Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP). Biotechniques 2016; 61:20-5. [PMID: 27401670 DOI: 10.2144/000114432] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
Real-time or quantitative loop-mediated isothermal amplification (qLAMP) is a promising technique for the accurate detection of pathogens in organisms and the environment. Here we present a comparative study of the performance of six fluorescent intercalating dyes-SYTO-9, SYTO-13, SYTO-82, SYBR Green I, SYBR Gold, EvaGreen-in three different qLAMP model systems. SYTO-9 and SYTO-82, which had the best results, were used for additional enzyme and template titration studies. SYTO-82 demonstrated the best combination of time-to-threshold (Tt) and signal-to-noise ratio (SNR).
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksandr I Zakabunin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ulyana A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
11
|
Ergunay K, Tkachev S, Kozlova I, Růžek D. A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens. Vector Borne Zoonotic Dis 2016; 16:4-12. [DOI: 10.1089/vbz.2015.1896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Koray Ergunay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Sihhiye Ankara, Turkey
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Kozlova
- FSSFE Scientific Centre of Family Health and Human Reproduction Problems, Siberian Branch of the Russian Academy of Medical Sciences, Irkutsk, Russia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Ambagala A, Pahari S, Fisher M, Lee PYA, Pasick J, Ostlund EN, Johnson DJ, Lung O. A Rapid Field-Deployable Reverse Transcription-Insulated Isothermal Polymerase Chain Reaction Assay for Sensitive and Specific Detection of Bluetongue Virus. Transbound Emerg Dis 2015; 64:476-486. [DOI: 10.1111/tbed.12388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Ambagala
- National Centres for Animal Disease; Lethbridge Laboratory; Canadian Food Inspection Agency; Lethbridge AB Canada
| | - S. Pahari
- National Centres for Animal Disease; Lethbridge Laboratory; Canadian Food Inspection Agency; Lethbridge AB Canada
| | - M. Fisher
- National Centres for Animal Disease; Lethbridge Laboratory; Canadian Food Inspection Agency; Lethbridge AB Canada
| | - P-Y. A. Lee
- Department of Research and Development; GeneReach USA; Lexington MA USA
| | - J. Pasick
- National Centres for Animal Disease; Winnipeg Laboratory; Canadian Food Inspection Agency; Winnipeg MB Canada
| | - E. N. Ostlund
- Diagnostic Virology Laboratory; National Veterinary Services Laboratories; STAS, APHIS, VS, USDA; Ames IA USA
| | - D. J. Johnson
- Diagnostic Virology Laboratory; National Veterinary Services Laboratories; STAS, APHIS, VS, USDA; Ames IA USA
| | - O. Lung
- National Centres for Animal Disease; Lethbridge Laboratory; Canadian Food Inspection Agency; Lethbridge AB Canada
| |
Collapse
|
13
|
Dauner AL, Mitra I, Gilliland T, Seales S, Pal S, Yang SC, Guevara C, Chen JH, Liu YC, Kochel TJ, Wu SJL. Development of a pan-serotype reverse transcription loop-mediated isothermal amplification assay for the detection of dengue virus. Diagn Microbiol Infect Dis 2015; 83:30-6. [PMID: 26032430 PMCID: PMC7126901 DOI: 10.1016/j.diagmicrobio.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 10/24/2022]
Abstract
During dengue outbreaks, acute diagnosis at the patient's point of need followed by appropriate supportive therapy reduces morbidity and mortality. To facilitate needed diagnosis, we developed and optimized a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay that detects all 4 serotypes of dengue virus (DENV). We used a quencher to reduce nonspecific amplification. The assay does not require expensive thermocyclers, utilizing a simple water bath to maintain the reaction at 63 °C. Results can be visualized using UV fluorescence, handheld readers, or lateral flow immunochromatographic tests. We report a sensitivity of 86.3% (95% confidence interval [CI], 72.7-94.8%) and specificity of 93.0% (95% CI, 83.0-98.1%) using a panel of clinical specimens characterized by DENV quantitative reverse transcription-polymerase chain reaction. This pan-serotype DENV RT-LAMP can be adapted to field-expedient formats where it can provide actionable diagnosis near the patient's point of need.
Collapse
Affiliation(s)
- Allison L Dauner
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| | - Indrani Mitra
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| | - Theron Gilliland
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| | - Sajeewane Seales
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| | - Subhamoy Pal
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | - Tadeusz J Kochel
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| | - Shuenn-Jue L Wu
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
14
|
Hayasaka D, Shimada S, Aoki K, Takamatsu Y, Uchida L, Horio M, Fuxun Y, Morita K. Epidemiological Survey of Severe Fever with Thrombocytopenia Syndrome Virus in Ticks in Nagasaki, Japan. Trop Med Health 2015; 43:159-64. [PMID: 26543390 PMCID: PMC4593780 DOI: 10.2149/tmh.2015-01] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease endemic in East Asia. Transmitted to other organisms by infected ticks, the SFTS virus (SFTSV) and is endemic to Nagasaki in western Japan. However, epidemiological information regarding SFTSV in Nagasaki ticks has not been available to date. In this study, we began by examining the sensitivities of SFTSV gene detection by real-time RT-PCR and virus isolation in cultured cells and mice. These methods could detect SFTSV in the samples containing more than 4 × 100 ffu. Next, we attempted to isolate SFTSV and to detect viral gene in 2,222 nymph and adult ticks collected from May to August 2013 among seven regions of Nagasaki. However, neither virus isolation nor viral gene detection were confirmed in the tick pools. SFTSV positivity rates are considered to be very low in ticks, and viral loads are also very limited. Further investigations increasing the number of ticks and including larval samples as well as improved detection methods, may be required to find SFTSV-positive ticks in this region.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine ; Leading Graduate School Program
| | - Satoshi Shimada
- Department of Virology, Institute of Tropical Medicine ; Leading Graduate School Program
| | - Kotaro Aoki
- Department of Virology, Institute of Tropical Medicine
| | | | - Leo Uchida
- Department of Virology, Institute of Tropical Medicine
| | | | - Yu Fuxun
- Department of Virology, Institute of Tropical Medicine
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine ; Leading Graduate School Program ; J-Grid, Nagasaki University . 1-12-4 Sakamoto, Nagasaki, 852-8523
| |
Collapse
|
15
|
Cao D, Hu L, Lin M, Li M, Ye Z, Sun H, Huang J, Yang H, Tian J. Real-time fluorescence Loop-Mediated Isothermal Amplification (LAMP) for rapid and reliable diagnosis of pulmonary tuberculosis. J Microbiol Methods 2015; 109:74-8. [DOI: 10.1016/j.mimet.2014.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
|
16
|
Mulholland C, Hoffmann B, McMenamy MJ, Korthase C, Earley B, Markey B, Cassidy JP, McKillen J, Allan G, Welsh MD. The development of an accelerated reverse-transcription loop mediated isothermal amplification for the serotype specific detection of bluetongue virus 8 in clinical samples. J Virol Methods 2014; 202:95-100. [PMID: 24642243 DOI: 10.1016/j.jviromet.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 11/26/2022]
Abstract
In 2006 bluetongue virus serotype 8 (BTV 8) was identified for the first time in the Netherlands causing a major epidemic in sheep and cattle that quickly spread to neighbouring Belgium, Germany and beyond to France and the UK. This resulted in severe animal health and welfare problems as well as substantial economic losses to the agrifood industries of these countries. Given that the early diagnosis of BTV infection 'in-the-field' is extremely useful to its subsequent management and control, this study was established to design a novel, sensitive and rapid nucleic acid diagnostic test for the serotype-specific detection of BTV 8, which could be used without the use of advanced laboratory support and equipment. Primers for the detection of BTV 8 were based on genome segment 2 of the virus, the VP2 gene. The assay was assessed using a full panel of BTV reference strains and clinical samples. Positive amplification was observed using a fluorescent detection reagent. The sensitivity of the RT-LAMP assay was 102 copies of RNA. The assay did not amplify the closely related orbivirus EHDV. This novel RT-LAMP offers a sensitive, specific and rapid method of detecting BTV 8. The approach is inexpensive and easy to use and could potentially be used in a 'pen-side' setting 'in the field' or by smaller less well-equipped laboratories in developing countries.
Collapse
Affiliation(s)
- Catherine Mulholland
- Agri Food Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast BT4 3SD, UK; Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland; School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Belfield, Ireland.
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Michael J McMenamy
- Agri Food Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Christian Korthase
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Bryan Markey
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Joseph P Cassidy
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - John McKillen
- Agri Food Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Gordon Allan
- Agri Food Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Michael D Welsh
- Agri Food Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast BT4 3SD, UK
| |
Collapse
|
17
|
Luat LX, Tun MMN, Buerano CC, Aoki K, Morita K, Hayasaka D. Pathologic potential of variant clones of the oshima strain of far-eastern subtype tick-borne encephalitis virus. Trop Med Health 2014; 42:15-23. [PMID: 24808743 PMCID: PMC3965841 DOI: 10.2149/tmh.2013-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/20/2013] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent that causes acute central nervous system (CNS) disease in humans. We previously suggested that immune response in addition to CNS infection contribute to mouse mortality following TBEV infection. However, we did not examine the influence of virus variants in the previous study. Therefore, in this study, we investigated the biological and pathologic potentials of the variant clones in the TBEV Oshima strain. We isolated eight variant clones from the stock virus of the Oshima 5-10. These variants exhibited different plaque morphologies in BHK cells and pathogenic potentials in mice. Full sequences of viral genomes revealed that each of the variant clones except one had specific combinations of nucleotide and amino acid changes at certain positions different from the parent strain. We also showed that an amino acid substitution of Glu122→Gly in the E protein could have affected virus infection and replication in vivo, as well as the attenuated pathogenicity in mice. These data confirm the presence of virus variants or quasispecies from the parent strain. Further elucidation of the effect of each variant clone on immune responses such as the T-cell response is an important priority in the development of an effective vaccine and treatment strategies for tick-borne encephalitis.
Collapse
Affiliation(s)
- Le Xuan Luat
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| | - Corazon C Buerano
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| | - Kotaro Aoki
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Nagasaki University
| |
Collapse
|