1
|
Yang Q, Xue B, Liu F, Lu Y, Tang J, Yan M, Wu Q, Chen R, Zhou A, Liu L, Liu J, Qu C, Wu Q, Fu M, Zhong J, Dong J, Chen S, Wang F, Zhou Y, Zheng J, Peng W, Shang J, Chen X. Farnesyltransferase inhibitor lonafarnib suppresses respiratory syncytial virus infection by blocking conformational change of fusion glycoprotein. Signal Transduct Target Ther 2024; 9:144. [PMID: 38853183 PMCID: PMC11163014 DOI: 10.1038/s41392-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.
Collapse
Affiliation(s)
- Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengjiang Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengrong Yan
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiong Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruyi Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lijie Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Changbin Qu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Qingxin Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiayi Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jianwei Dong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou lnstitute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Wei Peng
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinsai Shang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Beach SS, Hull MA, Ytreberg FM, Patel JS, Miura TA. Molecular Modeling Predicts Novel Antibody Escape Mutations in the Respiratory Syncytial Virus Fusion Glycoprotein. J Virol 2022; 96:e0035322. [PMID: 35678603 PMCID: PMC9278155 DOI: 10.1128/jvi.00353-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies are increasingly used for the prevention and/or treatment of viral infections. One caveat of their use is the ability of viruses to evolve resistance to antibody binding and neutralization. Computational strategies to identify viral mutations that may disrupt antibody binding would leverage the wealth of viral genomic sequence data to monitor for potential antibody-resistant mutations. The respiratory syncytial virus is an important pathogen for which monoclonal antibodies against the fusion (F) protein are used to prevent severe disease in high-risk infants. In this study, we used an approach that combines molecular dynamics simulations with FoldX to estimate changes in free energy in F protein folding and binding to the motavizumab antibody upon each possible amino acid change. We systematically selected 8 predicted escape mutations and tested them in an infectious clone. Consistent with our F protein stability predictions, replication-effective viruses were observed for each selected mutation. Six of the eight variants showed increased resistance to neutralization by motavizumab. Flow cytometry was used to validate the estimated (model-predicted) effects on antibody binding to F. Using surface plasmon resonance, we determined that changes in the on-rate of motavizumab binding were associated with the reduced affinity for two novel escape mutations. Our study empirically validated the accuracy of our molecular modeling approach and emphasized the role of biophysical protein modeling in predicting viral resistance to antibody-based therapeutics that can be used to monitor the emergence of resistant viruses and to design improved therapeutic antibodies. IMPORTANCE Respiratory syncytial virus (RSV) causes severe disease in young infants, particularly those with heart or lung diseases or born prematurely. Because no vaccine is currently available, monoclonal antibodies are used to prevent severe RSV disease in high-risk infants. While it is known that RSV evolves to avoid recognition by antibodies, screening tools that can predict which changes to the virus may lead to antibody resistance are greatly needed.
Collapse
Affiliation(s)
- Sierra S. Beach
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - McKenna A. Hull
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - F. Marty Ytreberg
- Department of Physics, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| |
Collapse
|
3
|
Cockerill GS, Angell RM, Bedernjak A, Chuckowree I, Fraser I, Gascon-Simorte J, Gilman MSA, Good JAD, Harland R, Johnson SM, Ludes-Meyers JH, Littler E, Lumley J, Lunn G, Mathews N, McLellan JS, Paradowski M, Peeples ME, Scott C, Tait D, Taylor G, Thom M, Thomas E, Villalonga Barber C, Ward SE, Watterson D, Williams G, Young P, Powell K. Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. J Med Chem 2021; 64:3658-3676. [PMID: 33729773 DOI: 10.1021/acs.jmedchem.0c01882] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo.
Collapse
Affiliation(s)
- G Stuart Cockerill
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Richard M Angell
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Alexandre Bedernjak
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Irina Chuckowree
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Ian Fraser
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Jose Gascon-Simorte
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James A D Good
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Rachel Harland
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Sara M Johnson
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, United States
| | - John H Ludes-Meyers
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward Littler
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - James Lumley
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Graham Lunn
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Neil Mathews
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael Paradowski
- Medicines Discovery Institute, Cardiff University, Cardiff, Wales CF10 3AT, U.K
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, United States
| | - Claire Scott
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Dereck Tait
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, U.K
| | - Michelle Thom
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, U.K
| | - Elaine Thomas
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | | | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, Wales CF10 3AT, U.K
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gareth Williams
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Paul Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kenneth Powell
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| |
Collapse
|
4
|
Thakur N, Conceicao C, Isaacs A, Human S, Modhiran N, McLean RK, Pedrera M, Tan TK, Rijal P, Townsend A, Taylor G, Young PR, Watterson D, Chappell KJ, Graham SP, Bailey D. Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell-cell fusion. J Gen Virol 2021; 102:jgv001506. [PMID: 33054904 PMCID: PMC8116787 DOI: 10.1099/jgv.0.001506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ariel Isaacs
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Stacey Human
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Naphak Modhiran
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Rebecca K McLean
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Paul R Young
- University of Queensland, Brisbane, Queensland 4071, Australia
| | | | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
5
|
Cockerill GS, Good JAD, Mathews N. State of the Art in Respiratory Syncytial Virus Drug Discovery and Development. J Med Chem 2018; 62:3206-3227. [DOI: 10.1021/acs.jmedchem.8b01361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Stuart Cockerill
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - James A. D. Good
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - Neil Mathews
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| |
Collapse
|
6
|
Hicks SN, Chaiwatpongsakorn S, Costello HM, McLellan JS, Ray W, Peeples ME. Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F 2 Subunit Are Critical for Its Fusion Activity. J Virol 2018; 92:e00621-18. [PMID: 29743373 PMCID: PMC6052300 DOI: 10.1128/jvi.00621-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) fusion (F) protein is a trimeric, membrane-anchored glycoprotein capable of mediating both virus-target cell membrane fusion to initiate infection and cell-cell fusion, even in the absence of the attachment glycoprotein. The F protein is initially expressed in a precursor form, whose functional capabilities are activated by proteolysis at two sites between the F1 and F2 subunits. This cleavage results in expression of the metastable and high-energy prefusion conformation. To mediate fusion, the F protein is triggered by an unknown stimulus, causing the F1 subunit to refold dramatically while F2 changes minimally. Hypothesizing that the most likely site for interaction with a target cell component would be the top, or apex, of the protein, we determined the importance of the residues in the apical loop of F2 by alanine scanning mutagenesis analysis. Five residues were not important, two were of intermediate importance, and all four lysines and one isoleucine were essential. Alanine replacement did not result in the loss of the pre-F conformation for any of these mutants. Each of the four lysines required its specific charge for fusion function. Alanine replacement of the three essential lysines on the ascent to the apex hindered fusion following a forced fusion event, suggesting that these residues are involved in refolding. Alanine mutations at Ile64, also on the ascent to the apex, and Lys75 did not prevent fusion following forced triggering, suggesting that these residues are not involved in refolding and may instead be involved in the natural triggering of the F protein.IMPORTANCE RSV infects virtually every child by the age of 3 years, causing nearly 33 million acute lower respiratory tract infections (ALRI) worldwide each year in children younger than 5 years of age (H. Nair et al., Lancet 375:1545-1555, 2010). RSV is also the second leading cause of respiratory system-related death in the elderly (A. R. Falsey and E. E. Walsh, Drugs Aging 22:577-587, 2005; A. R. Falsey, P. A. Hennessey, M. A. Formica, C. Cox, and E. E. Walsh, N Engl J Med 352:1749-1759, 2005). The monoclonal antibody palivizumab is approved for prophylactic use in some at-risk infants, but healthy infants remain unprotected. Furthermore, its expense limits its use primarily to developed countries. No vaccine or effective small-molecule drug is approved for preventing disease or treating infection (H. M. Costello, W. Ray, S. Chaiwatpongsakorn, and M. E. Peeples, Infect Disord Drug Targets, 12:110-128, 2012). The essential residues identified in the apical domain of F2 are adjacent to the apical portion of F1, which, upon triggering, refolds into a long heptad repeat A (HRA) structure with the fusion peptide at its N terminus. These essential residues in F2 are likely involved in triggering and/or refolding of the F protein and, as such, may be ideal targets for antiviral drug development.
Collapse
Affiliation(s)
- Stephanie N Hicks
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Heather M Costello
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - William Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark E Peeples
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Battles MB, Langedijk JP, Furmanova-Hollenstein P, Chaiwatpongsakorn S, Costello HM, Kwanten L, Vranckx L, Vink P, Jaensch S, Jonckers THM, Koul A, Arnoult E, Peeples ME, Roymans D, McLellan JS. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat Chem Biol 2016; 12:87-93. [PMID: 26641933 PMCID: PMC4731865 DOI: 10.1038/nchembio.1982] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.
Collapse
Affiliation(s)
- Michael B Battles
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | | | - Supranee Chaiwatpongsakorn
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Leen Kwanten
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Luc Vranckx
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Paul Vink
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Steffen Jaensch
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Tim H M Jonckers
- Medicinal Chemistry Department, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Anil Koul
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Eric Arnoult
- Computational Chemistry, Janssen R&DLLC, Spring House, Pennsylvania, USA
| | - Mark E Peeples
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Dirk Roymans
- Respiratory Infections Research, Janssen Infectious Diseases & Vaccines BVBA, Beerse, Belgium
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Yasui Y, Yamaji Y, Sawada A, Ito T, Nakayama T. Cell fusion assay by expression of respiratory syncytial virus (RSV) fusion protein to analyze the mutation of palivizumab-resistant strains. J Virol Methods 2016; 231:48-55. [PMID: 26794681 DOI: 10.1016/j.jviromet.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV) consists of fusion (F), glyco (G), and small hydrophobic (SH) proteins as envelope proteins, and infects through cell fusion. F protein is expressed on the surface of infected cells, and induces cell fusion. In the present report, expression plasmids of the F, G and SH proteins were constructed and cell fusion activity was investigated under T7 RNA polymerase. F protein alone induced cell fusion at a lower concentration than previously reported, and co-expression of F and SH proteins induced cell fusion more efficiently than F protein alone. Palivizumab is the only prophylactic agent against RSV infection. Palivizumab-resistant strains having mutations of the F protein of K272E and S275F were reported. These mutations were introduced into an F-expression plasmid, and exhibited no inhibition of cell fusion with palivizumab. Among the RSV F protein mutants, N276S has been reported to have partial resistance against palivizumab, but the F expression plasmid with the N276S mutation showed a reduction in cell fusion in the presence of palivizumab, showing no resistance to palivizumab. The present expression system was useful for investigating the mechanisms of RSV cell fusion.
Collapse
Affiliation(s)
- Yosuke Yasui
- Keio University, Health Center, 4-1-1 Hiyoshi, Kouhoku, Yokohama, Kanagawa, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Akihito Sawada
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Takashi Ito
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| |
Collapse
|
9
|
The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 2012; 86:4432-43. [PMID: 22318136 DOI: 10.1128/jvi.06744-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.
Collapse
|
10
|
Shirato K, Maejima M, Matsuyama S, Ujike M, Miyazaki A, Takeyama N, Ikeda H, Taguchi F. Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity. Virus Res 2011; 161:188-93. [PMID: 21840351 PMCID: PMC7114372 DOI: 10.1016/j.virusres.2011.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 01/02/2023]
Abstract
Murine-adapted porcine epidemic diarrhea virus (PEDV), MK-p10, shows high neurovirulence and increased fusion activity compared with a non-adapted MK strain. MK-p10 S protein had four mutations relative to the original virus S, and one of these (H→R at position 1381, H1381R) in the cytoplasmic tail (CT) was suggested to be responsible for the increased fusion activity. To explore this, we examined fusion activity using recombinant S proteins. We expressed and compared the fusion activity of MK-p10 S, S with the H1381R mutation, S with the three other mutations that were not thought to be involved in high fusion activity, and the original S protein. The MK-p10 and MK-H1381R S proteins induced larger cell fusions than others. We also examined the distribution of these S proteins; the MK-p10 and MK-H1381R S proteins were transported onto the cell surface more efficiently than others. These findings suggest that the H1381R mutation is responsible for enhanced fusion activity, which may be attributed to the efficient transfer of S onto the cell surface. H1381 is a component of the KxHxx motif in the CT region, which is a retrieval signal of the S protein for the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Loss of this motif could allow for the efficient transfer of S proteins from ERGIC onto the cell surface and subsequent increased fusion activity.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang K, Incognito L, Cheng X, Ulbrandt ND, Wu H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J Virol 2010; 84:8132-40. [PMID: 20519399 PMCID: PMC2916538 DOI: 10.1128/jvi.02699-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/24/2010] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of virus-induced respiratory disease and hospitalization in infants. Palivizumab, an RSV-neutralizing monoclonal antibody, is used clinically to prevent serious RSV-related respiratory disease in high-risk infants. Motavizumab, an affinity-optimized version of palivizumab, was developed to improve protection against RSV. These antibodies bind RSV F protein, which plays a role in virus attachment and mediates fusion. Determining how these antibodies neutralize RSV is important to help guide development of new antibody drugs against RSV and, potentially, other viruses. This study aims to uncover the mechanism(s) by which palivizumab and motavizumab neutralize RSV. Assays were developed to test the effects of these antibodies at distinct steps during RSV replication. Pretreatment of virus with palivizumab or motavizumab did not inhibit virus attachment or the ability of F protein to interact with the target cell membrane. However, pretreatment of virus with either of these antibodies resulted in the absence of detectable viral transcription. These results show that palivizumab and motavizumab act at a point after F protein initiates interaction with the cell membrane and before virus transcription. Palivizumab and motavizumab also inhibited F protein-mediated cell-to-cell fusion. Therefore, these results strongly suggest that these antibodies block both cell-to-cell and virus-to-cell fusion, since these processes are likely similar. Finally, palivizumab and motavizumab did not reduce viral budding. Based on models developed from numerous studies of viral fusion proteins, our results indicate that these antibodies may prevent conformational changes in F protein required for the fusion process.
Collapse
Affiliation(s)
- Kelly Huang
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Len Incognito
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Xing Cheng
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | | | - Herren Wu
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| |
Collapse
|
12
|
Recombinant respiratory syncytial virus F protein expression is hindered by inefficient nuclear export and mRNA processing. Virus Genes 2010; 40:212-21. [PMID: 20111897 DOI: 10.1007/s11262-010-0449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Studies of the fusion activity of respiratory syncytial virus (RSV) F protein are significantly hindered by low recombinant expression levels. While infection produces F protein levels detectable by western blot, recombinant expression produces undetectable to low levels of F protein. Identifying the obstacles that hinder recombinant F protein expression may lead to improved expression and facilitate the study of F protein function. We hypothesized that nuclear localization and/or inefficient RNA polymerase II-mediated transcription contribute to poor recombinant F protein expression. This study shows a combination of stalled nuclear export, premature polyadenylation, and low mRNA abundance all contribute to low recombinant F protein expression levels. In addition, this study provides an expression optimization strategy that results in greater F protein expression levels than observed by codon-optimization of the F protein gene, which will be useful for future studies of F protein function.
Collapse
|
13
|
A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol 2009; 83:4185-94. [PMID: 19211758 DOI: 10.1128/jvi.01853-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory failure and viral death in infants. Abundant airway mucus contributes to airway obstruction in RSV disease. Interleukin-13 (IL-13) is a mediator of pulmonary mucus secretion. It has been shown that infection of BALB/c mice with the RSV line 19 strain but not with the RSV A2 laboratory strain results in lung IL-13 and mucus expression. Here, we sequenced the RSV line 19 genome and compared it to the commonly used A2 and Long strains. There were six amino acid differences between the line 19 strain and both the A2 and Long RSV strains, five of which are in the fusion (F) protein. The Long strain, like the A2 strain, did not induce lung IL-13 and mucus expression in BALB/c mice. We hypothesized that the F protein of RSV line 19 is more mucogenic than the F proteins of A2 and Long. We generated recombinant, F-chimeric RSVs by replacing the F gene of A2 with the F gene of either line 19 or Long. Infection of BALB/c mice with RSV rA2 line 19F resulted in lower alpha interferon lung levels 24 h postinfection, higher lung viral load, higher lung IL-13 levels, greater airway mucin expression levels, and greater airway hyperresponsiveness than infection with rA2-A2F or rA2-LongF. We identified the F protein of RSV line 19 as a factor that plays a role in pulmonary mucin expression in the setting of RSV infection.
Collapse
|
14
|
Wu SJ, Schmidt A, Beil EJ, Day ND, Branigan PJ, Liu C, Gutshall LL, Palomo C, Furze J, Taylor G, Melero JA, Tsui P, Del Vecchio AM, Kruszynski M. Characterization of the epitope for anti-human respiratory syncytial virus F protein monoclonal antibody 101F using synthetic peptides and genetic approaches. J Gen Virol 2007; 88:2719-2723. [PMID: 17872524 DOI: 10.1099/vir.0.82753-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric 101F (ch101F) is a mouse–human chimeric anti-human respiratory syncytial virus (HRSV) neutralizing antibody that recognizes residues within antigenic site IV, V, VI of the fusion (F) glycoprotein. The binding of ch101F to a series of peptides overlapping aa 422–438 spanning antigenic site IV, V, VI was analysed. Residues 423–436 comprise the minimal peptide sequence for ch101F binding. Substitution analysis revealed that R429 and K433 are critical for ch101F binding, whilst K427 makes a minor contribution. Binding of ch101F to a series of single mutations at positions 427, 429 and 433 in the F protein expressed recombinantly on the cell surface confirmed the peptide results. Sequence analysis of viruses selected for resistance to neutralization by ch101F indicated that a single change (K433T) in the F protein allowed ch101F escape. The results confirm that ch101F and palivizumab have different epitope specificity and define key residues for ch101F recognition.
Collapse
Affiliation(s)
- Sheng-Jiun Wu
- Protein Engineering, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Albert Schmidt
- Protein Engineering, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Eric J Beil
- Protein Engineering, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Nicole D Day
- Immunobiology, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Patrick J Branigan
- Immunobiology, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Changbao Liu
- Immunobiology, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lester L Gutshall
- Immunobiology, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Concepción Palomo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Julie Furze
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Geraldine Taylor
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ping Tsui
- Molecular Discovery Technologies, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Alfred M Del Vecchio
- Immunobiology, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Marian Kruszynski
- Protein Engineering, Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|
15
|
Liu C, Day ND, Branigan PJ, Gutshall LL, Sarisky RT, Del Vecchio AM. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus. Virol J 2007; 4:71. [PMID: 17623075 PMCID: PMC1947961 DOI: 10.1186/1743-422x-4-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/10/2007] [Indexed: 11/30/2022] Open
Abstract
To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19), level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.
Collapse
Affiliation(s)
- Changbao Liu
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Nicole D Day
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Patrick J Branigan
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Lester L Gutshall
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Robert T Sarisky
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | | |
Collapse
|
16
|
Day ND, Branigan PJ, Liu C, Gutshall LL, Luo J, Melero JA, Sarisky RT, Del Vecchio AM. Contribution of cysteine residues in the extracellular domain of the F protein of human respiratory syncytial virus to its function. Virol J 2006; 3:34. [PMID: 16723026 PMCID: PMC1540417 DOI: 10.1186/1743-422x-3-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 05/24/2006] [Indexed: 11/10/2022] Open
Abstract
The mature F protein of all known isolates of human respiratory syncytial virus (HRSV) contains fifteen absolutely conserved cysteine (C) residues that are highly conserved among the F proteins of other pneumoviruses as well as the paramyxoviruses. To explore the contribution of the cysteines in the extracellular domain to the fusion activity of HRSV F protein, each cysteine was changed to serine. Mutation of cysteines 37, 313, 322, 333, 343, 358, 367, 393, 416, and 439 abolished or greatly reduced cell surface expression suggesting these residues are critical for proper protein folding and transport to the cell surface. As expected, the fusion activity of these mutations was greatly reduced or abolished. Mutation of cysteine residues 212, 382, and 422 had little to no effect upon cell surface expression or fusion activity at 32 degrees C, 37 degrees C, or 39.5 degrees C. Mutation of C37 and C69 in the F2 subunit either abolished or reduced cell surface expression by 75% respectively. None of the mutations displayed a temperature sensitive phenotype.
Collapse
Affiliation(s)
- Nicole D Day
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Patrick J Branigan
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Jianquan Luo
- Department of Structural Biology, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| |
Collapse
|
17
|
Branigan PJ, Day ND, Liu C, Gutshall LL, Melero JA, Sarisky RT, Vecchio AMD. The cytoplasmic domain of the F protein of Human respiratory syncytial virus is not required for cell fusion. J Gen Virol 2006; 87:395-398. [PMID: 16432027 DOI: 10.1099/vir.0.81481-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytoplasmic domains of the fusion proteins encoded by several viruses play a role in cell fusion and contain sites for palmitoylation associated with viral protein trafficking and virus assembly. The fusion (F) protein ofHuman respiratory syncytial virus(HRSV) has a predicted cytoplasmic domain of 26 residues containing a single palmitoylated cysteine residue that is conserved in bovine RSV F protein, but not in the F proteins of other pneumoviruses such as pneumonia virus of mice, human metapneumovirus and avian pneumovirus. The cytoplasmic domains in other paramyxovirus fusion proteins such as Newcastle disease virus F protein play a role in fusion. In this study, it was shown that deletion of the entire cytoplasmic domain or mutation of the single cysteine residue (C550S) of the HRSV F protein had no effect on protein processing, cell-surface expression or fusion.
Collapse
Affiliation(s)
- Patrick J Branigan
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Nicole D Day
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|