1
|
Steensels M, Soldan C, Rauw F, Roupie V, Lambrecht B. Protective efficacy of classical vaccines and vaccination protocols against an exotic Newcastle disease virus genotype VII.2 in Belgian layer and broiler chickens. Poult Sci 2025; 104:104604. [PMID: 39657465 PMCID: PMC11683331 DOI: 10.1016/j.psj.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Vaccination against Newcastle disease (ND) has been routinely implemented in the Belgian professional poultry sector since 1993, using genotype I and II vaccines. Despite this, an outbreak of genotype VII.2 avian paramyx-ovirus 1 (APMV-1) occurred in 2018, with 20 reported cases over the course of 3 months. Although the economic impact on the professional poultry sector was limited, this epizootic raised questions regarding the efficacy of implemented classical genotype I and II vaccines against phylogenetically distant exotic velogenic strains. The present study provides insights into the protective efficacy of standard vaccination programs applied in layer and broiler flocks against the introduction and transmission of this velogenic APMV-1 VII.2 strain. For fully field-vaccinated 26-week-old layer chickens, high levels of specific antibodies were measured at the time of the velogenic APMV-1 challenge, resulting in good clinical protection. However, despite the observed humoral immunity, viral excretion was not prevented, leading to transmission of the virus to non-infected sentinel birds. In fully field-vaccinated 4-week-old broiler chickens, assessment of vaccine uptake and coverage revealed low levels of ND specific antibodies despite double vaccination at day 1 and day 14. Consequently, poor protection against velogenic APMV-1 infection was observed, with both clinical signs and viral excretion occurring in both infected and sentinel birds. This study demonstrates that the introduction of velogenic APMV-1 VII.2 can lead to its dissemination among the Belgian avian poultry population despite the implementation of standard vaccination.
Collapse
Affiliation(s)
- Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium.
| | - Colas Soldan
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium; Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fabienne Rauw
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| | - Virginie Roupie
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| | - Bénédicte Lambrecht
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| |
Collapse
|
2
|
Abdallah Mouhamed A, Lee J, Kim DH, Song CS. Comparative protective efficacy of a newly generated live recombinant thermostable highly attenuated vaccine rK148/GVII-F using a single regimen against lethal NDV GVII.1.1. Avian Pathol 2024; 53:14-32. [PMID: 38009206 DOI: 10.1080/03079457.2023.2263395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/28/2023]
Abstract
RESEARCH HIGHLIGHTS A thermostable, safe, and effective NDV GVII recombinant vaccine was generated.Fusion gene replacement with GVII did not affect GI K148/08 virus thermostability.Strain rK148/GVII-F provided adequate protection against a lethal NDV challenge.Oropharyngeal shedding was significantly reduced on post-challenge days 5 and 7.
Collapse
Affiliation(s)
- Amal Abdallah Mouhamed
- Department of Avian Diseases, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jiho Lee
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Chang-Seon Song
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co. Ltd., Seoul, Republic of Korea
| |
Collapse
|
3
|
Elbestawy A, Ellakany H, Sedeik M, Gado A, Abdel-Latif M, Noreldin A, Orabi A, Radwan I, El-Ghany WA. Superior Efficacy of Apathogenic Genotype I (V4) over Lentogenic Genotype II (LaSota) Live Vaccines against Newcastle Disease Virus Genotype VII.1.1 in Pathogen-Associated Molecular Pattern-H9N2 Vaccinated Broiler Chickens. Vaccines (Basel) 2023; 11:1638. [PMID: 38005970 PMCID: PMC10674370 DOI: 10.3390/vaccines11111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
A comparison of the efficacy of apathogenic genotype I (V4) and lentogenic genotype II (LaSota) strains of live Newcastle disease virus (NDV) vaccines was performed following vaccination with pathogen-associated molecular pattern (PAMP) H9N2 avian influenza vaccine and challenge with velogenic NDV genotype VII.1.1 (vNDV-VII.1.1). Eight groups (Gs) of day-old chicks were used (n = 25). Groups 1-4 received a single dose of PAMP-H9N2 subcutaneously, while Gs (1, 5) and (2, 6) received eye drops of V4 and LaSota, respectively, as two doses. All Gs, except for 4 and 8, were intramuscularly challenged with vNDV-VII.1.1 at 28 days of age. No signs were detected in Gs 1, 5, 4, and 8. The mortality rates were 0% in Gs 1, 4, 5, and 8; 40% in G2; 46.66% in G6; and 100% in Gs 3 and 7. Lesions were recorded as minimal in Gs 1 and 5, but mild to moderate in Gs 2 and 6. The lowest significant viral shedding was detected in Gs 1, 2, and 5. In conclusion, two successive vaccinations of broilers with a live V4 NDV vaccine provided higher protection against vNDV-VII.1.1 challenge than LaSota. PAMP-H9N2 with live NDV vaccines induced more protection than the live vaccine alone.
Collapse
Affiliation(s)
- Ahmed Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Hany Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mahmoud Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ahmed Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mervat Abdel-Latif
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ismail Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Wafaa Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| |
Collapse
|
4
|
Chang Z, Dong X, Guan Z, Lu K, Chen X, Wei X, Guo H, Dang R, Wang J, Wang X, Xiao S, Yang Z, Liu H. Antigenic variation in hemagglutinin-neuraminidase of Newcastle disease virus isolated from Tibet, China. Vet Microbiol 2023; 285:109872. [PMID: 37690146 DOI: 10.1016/j.vetmic.2023.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Vaccines are widely used to prevent Newcastle disease virus (NDV). Under the pressure of immunization, NDVs with mutations among epitopes of F and HN protein were isolated, which indicates that the efficiency of vaccine may decrease in terms of preventing emerged NDV. However, the lack of evidences to support whether these mutations contribute to antigenic mutation and immune escape in NDV leading to the controversy that the matched vaccine is more effective than the mismatched vaccine. In this study, a genotype VII velogenic NDV strain (C22) was isolated from a vaccinated farm in Tibet, China. We found that this strain was close to NDV from east China, but it had a specific mutation (K138R) in one epitope (131DYIGGIGKE139) of HN protein. This mutation might change the interaction between amino acids in stalk-head link region of HN protein and then induce the specific antibody to worse recognize the C22 strain, but it did not alter viral virulence and growth ability. Then, the C22 strain was attenuated via modification of the F protein cleavage site to generate a matched vaccine. Comparing to a mismatched vaccine (LaSota), this matched vaccine showed advantages in inhibiting viral shedding and tissue damage. However, both vaccines induced chicken to generate similar level of neutralizing antibodies against C22, C22mut (R138K) and LaSota. These results suggest that the epitope mutation is insufficient to help NDV escaping neutralizing antibodies of vaccinated chicken, supporting that the merits of NDV matched vaccine are not totally related to humoral immunity.
Collapse
Affiliation(s)
- Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest University for Nationalities, Chengdu 610041, China
| | - Xi Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanwei Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Guseva NA, Kolosov SN, Zinyakov NG, Andriyasov AV, Yin R, Scherbakova LO, Ovchinnikova EV, Nikonova ZB, Andreychuk DB, Sprygin AV, Chvala IA, Moroz NV. Analysis of Avian Orthoavulavirus 1 Detected in the Russian Federation between 2017 and 2021. Vaccines (Basel) 2023; 11:1032. [PMID: 37376421 DOI: 10.3390/vaccines11061032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Newcastle disease virus (NDV, Avian orthoavulavirus type 1, AOAV-1) is a contagious high-impact poultry pathogen with infections detected worldwide. In the present study, 19,500 clinical samples from wild bird species and poultry collected from 28 regions of Russia between 2017 and 2021 were screened for the presence of the AOAV-1 genome. NDV RNA was detected in 15 samples from wild birds and 63 samples from poultry. All isolates were screened for a partial sequence of the fusion (F) gene that included the cleavage site. Phylogenetic analysis demonstrated that lentogenic AOAV-1 I.1.1, I.1.2.1, and II genotypes were dominant among vaccine-like viruses in the territory of the Russian Federation. A vaccine-like virus with a mutated cleavage site (112-RKQGR^L-117) was detected in turkeys. Among the virulent AOAV-1 strains, viruses of the XXI.1.1, VII.1.1, and VII.2 genotypes were identified. The cleavage site of viruses of the XXI.1.1 genotype had a 112-KRQKR^F-117 amino acid sequence. The cleavage site of viruses with VII.1.1 and VII.2 genotypes had a 112-RRQKR^F-117 amino acid sequence. The data collected by the present study demonstrate the distribution and dominance of the virulent VII.1.1 genotype in the Russian Federation between 2017 and 2021.
Collapse
Affiliation(s)
- Nelly A Guseva
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Sergey N Kolosov
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Nikolay G Zinyakov
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Artem V Andriyasov
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Renfu Yin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lidya O Scherbakova
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Evgenia V Ovchinnikova
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Zoya B Nikonova
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Dmitry B Andreychuk
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Alexander V Sprygin
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Ilya A Chvala
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| | - Natalia V Moroz
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), 600901 Vladimir, Russia
| |
Collapse
|
6
|
Endotoxin-free gram-negative bacterium as a system for production and secretion of recombinant proteins. Appl Microbiol Biotechnol 2022; 107:287-298. [DOI: 10.1007/s00253-022-12295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
|
7
|
Hu Z, He X, Deng J, Hu J, Liu X. Current situation and future direction of Newcastle disease vaccines. Vet Res 2022; 53:99. [PMID: 36435802 PMCID: PMC9701384 DOI: 10.1186/s13567-022-01118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Sultan HA, Elfeil WK, Nour AA, Tantawy L, Kamel EG, Eed EM, El Askary A, Talaat S. Efficacy of the Newcastle Disease Virus Genotype VII.1.1-Matched Vaccines in Commercial Broilers. Vaccines (Basel) 2021; 10:vaccines10010029. [PMID: 35062690 PMCID: PMC8779737 DOI: 10.3390/vaccines10010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
Class II genotype VII Newcastle disease viruses (NDV) are predominant in the Middle East and Asia despite intensive vaccination programs using conventional live and inactivated NDV vaccines. In this study, the protective efficacies of three commercial vaccine regimes involving genotype II NDV, recombinant genotype VII NDV-matched, and an autogenous velogenic NDV genotype VII vaccine were evaluated against challenge with velogenic NDV genotype VII (accession number MG029120). Three vaccination regimes were applied as follows: group-1 received inactivated genotype II, group-2 received inactivated recombinant genotype VII NDV-matched, and group-3 received velogenic inactivated autogenous NDV genotype VII vaccines given on day 7; for the live vaccine doses, each group received the same live genotype II vaccine. The birds in all of the groups were challenged with NDV genotype VII, which was applied on day 28. Protection by the three regimes was evaluated after infection based on mortality rate, clinical signs, gross lesions, virus shedding, seroconversion, and microscopic changes. The results showed that these three vaccination regimes partially protected commercial broilers (73%, 86%, 97%, respectively, vs. 8.6% in non-vaccinated challenged and 0% in non-vaccinated non-challenged birds) against mortality at 10 days post-challenge (dpc). Using inactivated vaccines significantly reduced the virus shedding at the level of the number of shedders and the amount of virus that was shed in all vaccinated groups (G1-3) compared to in the non-vaccinated group (G-4). In conclusion, using closely genotype-matched vaccines (NDV-GVII) provided higher protection than using vaccines that were not closely genotype-matched and non-genotype-matched. The vaccine seeds that were closely related to genotype VII.1.1 provided higher protection against challenge against this genotype since it circulates in the Middle East region. Updating vaccine seeds with recent and closely related isolates provides higher protection.
Collapse
Affiliation(s)
- Hesham A. Sultan
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, University of Sadat City, Menoufiya 32958, Egypt; (E.G.K.); (S.T.)
- Correspondence: (H.A.S.); (W.K.E.)
| | - Wael K. Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 51522, Egypt
- Correspondence: (H.A.S.); (W.K.E.)
| | - Ahmed A. Nour
- Agriculture Research Center, National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12566, Egypt;
| | - Laila Tantawy
- Agriculture Research Center, Pathology Department, Animal Health Research Institute, Giza 12566, Egypt;
| | - Elsayed G. Kamel
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, University of Sadat City, Menoufiya 32958, Egypt; (E.G.K.); (S.T.)
| | - Emad M. Eed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.M.E.); (A.E.A.)
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.M.E.); (A.E.A.)
| | - Shaimaa Talaat
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, University of Sadat City, Menoufiya 32958, Egypt; (E.G.K.); (S.T.)
| |
Collapse
|
9
|
Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF, Eid AAM. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front Vet Sci 2021; 8:647462. [PMID: 34336965 PMCID: PMC8320000 DOI: 10.3389/fvets.2021.647462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects more than 250 different species of birds. It causes a broad range of clinical diseases and results in devastating economic impact due to high morbidity and mortality in addition to trade restrictions. The ease of spread has allowed the virus to disseminate worldwide with subjective virulence, which depends on the virus strain and host species. The emergence of new virulent genotypes among global epizootics, including those from Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution of distinct APMV-1 genotypes at different geographic locations across the world. In Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur, despite rigorous prophylactic vaccination, and remained a potential threat to commercial and backyard poultry production. Since 2005, many researchers have investigated the nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes circulating among various species. The unique intermingling of migratory, free-living, and domesticated birds besides the availability of frequently mobile wild birds in Egypt may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of interest due to their inclusion in Egyptian poultry industry and their ability to spread the infection to other birds either by presence of different genotypes (as in pigeons) or by harboring a clinically silent disease (as in waterfowl). This review details (i) the genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic and evolutionary events in different avian species, and (iii) the vaccine applications and challenges in Egypt.
Collapse
Affiliation(s)
- Shimaa M G Mansour
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa E Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Mahmoud M Ismail
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan M F Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Li Y, Rehman ZU, Li M, Manzoor Z, Liu W, Qiu X, Sun Y, Liao Y, Tan L, Song C, Liu W, Yu S, Ding C, Meng C. Comparison of the protective antigen variabilities of prevalent Newcastle disease viruses in response to homologous/heterologous genotype vaccines. Poult Sci 2021; 100:101267. [PMID: 34237546 PMCID: PMC8267594 DOI: 10.1016/j.psj.2021.101267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
The genotype VII Newcastle disease virus (NDV) vaccine has begun to replace the traditional genotype II NDV vaccine and is widely used in the commercial poultry of China. However, the effect of homologous and heterogeneous anti-NDV serum on the evolution of prevalent NDV is unknown. To understand the effect of genotype II and VII anti-NDV serum on the evolution of genotype VII NDV strains, ZJ1 (waterfowl origin) and CH/SD/2008/128 (ND128; chicken origin) were used for serial passage of 30 generations in DF-1 cells without anti-NDV serum or with genotype II and VII anti-NDV serum independently. The F and HN genes of the 2 viruses were amplified for the 10th, 20th, and 30th generations of each serial passage group and compared with their respective original viruses. We found that there was only one mutation at position 248 in the F gene of ZJ1 due to the serum pressure of genotype VII anti-NDV. Similarly, mutations at residue 527 of the F gene, and position 9 and 319 of the HN gene of ND128 were noted in both anti-NDV serum groups. The results show that the nonsynonymous (NS)-to-synonymous (S) ratio of the F gene of ZJ1 virus was 1.6, and for the HN gene, it was 2.5 in the anti-II serum group. In the anti-VII serum group, the NS/S ratio for the F gene was 2.1, and for the HN gene, it was 2.5. The NS/S ratio of the F gene of the ND128 virus was 0.8, and for the HN gene, it was 3 in the anti-II serum group. Furthermore, the NS/S ratio of the F gene was 0.8, and the HN gene was 2.3 in the anti-VII group. Taken together, our findings highlight that there was no significant difference in the variation of protective antigens in genotype VII NDV under the selection pressure of homologous and heterogeneous genotype NDV inactivated vaccines.
Collapse
Affiliation(s)
- Yonghua Li
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zaib Ur Rehman
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi 46300 Pakistan
| | - Mengjiao Li
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zahid Manzoor
- Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi 46300 Pakistan
| | - Wei Liu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Ying Liao
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
11
|
Moharam I, Asala O, Reiche S, Hafez H, Beer M, Harder T, Grund C. Monoclonal antibodies specific for the hemagglutinin-neuraminidase protein define neutralizing epitopes specific for Newcastle disease virus genotype 2.VII from Egypt. Virol J 2021; 18:86. [PMID: 33902633 PMCID: PMC8072307 DOI: 10.1186/s12985-021-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Newcastle disease is a devastating disease in poultry caused by virulent Newcastle disease virus (NDV), a paramyxovirus endemic in many regions of the world despite intensive vaccination. Phylogenetic analyses reveal ongoing evolution of the predominant circulating genotype 2.VII, and the relevance of potential antigenic drift is under discussion. To investigate variation within neutralization-sensitive epitopes within the protein responsible for receptor binding, i.e. the Hemagglutinin-Neuraminidase (HN) spike protein, we were interested in establishing genotype-specific monoclonal antibodies (MAbs). Methods An HN-enriched fraction of a gradient-purified NDV genotype 2.VII was prepared and successfully employed to induce antibodies in BalbC mice that recognize conformationally intact sites reactive by haemagglutination inhibition (HI). For subsequent screening of mouse hybridoma cultures, an NDV-ELISA was established that utilizes Concanavalin A (ConA-ELISA) coupled glycoproteins proven to present conformation-dependent epitopes. Results Six out of nine selected MAbs were able to block receptor binding as demonstrated by HI activity. One MAb recognized an epitope only present in the homologue virus, while four other MAbs showed weak reactivity to selected other genotypes. On the other hand, one broadly cross-reacting MAb reacted with all genotypes tested and resembled the reactivity profile of genotype-specific polyclonal antibody preparations that point to minor antigenic differences between tested NDV genotpyes. Conclusions These results point to the concurrent presence of variable and conserved epitopes within the HN molecule of NDV. The described protocol should help to generate MAbs against a variety of NDV strains and to enable in depth analysis of the antigenic profiles of different genotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01540-0.
Collapse
Affiliation(s)
- Ibrahim Moharam
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany.,Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | - Olayinka Asala
- Viral Vaccines Production Division, National Veterinary Research Institute, Vom, Nigeria
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Hafez Hafez
- Institute of Poultry Disease, Freie Universität Berlin, Berlin, Germany
| | - Martin Beer
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Virulence during Newcastle Disease Viruses Cross Species Adaptation. Viruses 2021; 13:v13010110. [PMID: 33467506 PMCID: PMC7830468 DOI: 10.3390/v13010110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/29/2023] Open
Abstract
The hypothesis that host adaptation in virulent Newcastle disease viruses (NDV) has been accompanied by virulence modulation is reviewed here. Historical records, experimental data, and phylogenetic analyses from available GenBank sequences suggest that currently circulating NDVs emerged in the 1920-1940's from low virulence viruses by mutation at the fusion protein cleavage site. These viruses later gave rise to multiple virulent genotypes by modulating virulence in opposite directions. Phylogenetic and pathotyping studies demonstrate that older virulent NDVs further evolved into chicken-adapted genotypes by increasing virulence (velogenic-viscerotropic pathotypes with intracerebral pathogenicity indexes [ICPIs] of 1.6 to 2), or into cormorant-adapted NDVs by moderating virulence (velogenic-neurotropic pathotypes with ICPIs of 1.4 to 1.6), or into pigeon-adapted viruses by further attenuating virulence (mesogenic pathotypes with ICPIs of 0.9 to 1.4). Pathogenesis and transmission experiments on adult chickens demonstrate that chicken-adapted velogenic-viscerotropic viruses are more capable of causing disease than older velogenic-neurotropic viruses. Currently circulating velogenic-viscerotropic viruses are also more capable of replicating and of being transmitted in naïve chickens than viruses from cormorants and pigeons. These evolutionary virulence changes are consistent with theories that predict that virulence may evolve in many directions in order to achieve maximum fitness, as determined by genetic and ecologic constraints.
Collapse
|
13
|
Development of Avian Avulavirus 1 Epitope-Based Vaccine Pattern Based on Epitope Prediction and Molecular Docking Analysis: An Immunoinformatic Approach. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09952-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ferreira HL, Taylor TL, Dimitrov KM, Sabra M, Afonso CL, Suarez DL. Virulent Newcastle disease viruses from chicken origin are more pathogenic and transmissible to chickens than viruses normally maintained in wild birds. Vet Microbiol 2019; 235:25-34. [PMID: 31282376 DOI: 10.1016/j.vetmic.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 01/11/2023]
Abstract
Five, class II, virulent Newcastle disease virus (vNDV) isolates of different genotypes from different host species were evaluated for their ability to infect, cause disease, and transmit to naïve chickens. Groups of five birds received a low, medium, or high dose, by the oculonasal route, of one of the following vNDV: three chicken-origin, one cormorant-origin, and one pigeon-origin. Three naïve birds were added to each group at two days post-inoculation (DPI) to evaluate transmission. Virus shedding was quantified from swabs (2/4/7 DPI), and seroconversion was evaluated at 14 DPI. All inoculated and contact birds in the chicken-origin vNDV groups succumbed to infection, displaying clinical signs typical of Newcastle disease and shed virus titers above 6 log10 EID50/ml. Birds receiving a high and medium dose of the cormorant virus showed primarily neurological clinical signs with 80% and 60% mortality, respectively. The chickens showing clinical disease shed virus at titers below 4 log10 EID50/ml, and the remaining bird in the high dose group seroconverted with a high HI titer. For the pigeon-origin virus, no clinical signs were observed in any of the birds, but all 5 chickens in the high challenge dose and one bird in the medium challenge group shed virus at mean titers of 3.1 and 2.2 log10 EID50/ml, respectively. Overall, the chicken-origin viruses infected chickens and efficiently transmitted to naïve birds, while the cormorant- and pigeon-origin viruses infected chickens only at the higher doses and did not transmit to other birds.
Collapse
Affiliation(s)
- Helena L Ferreira
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, 30605, Athens, GA, USA; University of Sao Paulo, ZMV- FZEA, Pirassununga, SP, 13635900, Brazil
| | - Tonya L Taylor
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, 30605, Athens, GA, USA
| | - Kiril M Dimitrov
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, 30605, Athens, GA, USA
| | - Mahmoud Sabra
- Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University,Qena, 83523, Egypt
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, 30605, Athens, GA, USA
| | - David L Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, 30605, Athens, GA, USA.
| |
Collapse
|
15
|
Molecular characterization of new emerging sub-genotype VIIh Newcastle disease viruses in China. Virus Genes 2019; 55:314-321. [PMID: 30835036 DOI: 10.1007/s11262-019-01651-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Newcastle disease (ND) has been enzootic in China for several decades since the first recognition of the disease in 1946 in China. Continuous surveillance revealed that the sub-genotype VIId Newcastle disease virus (NDV) has been predominantly responsible for most of ND outbreak in China in recent years. But in the present study, three virulent NDVs isolated from poultry in southern China were classified as sub-genotype VIIh, which is highly related to the viruses circulating in some Southeast Asia countries. Continuous isolation of genotype VIIh NDV strains in the region suggests its panzootic potential. This is the first report of the sub-genotype VIIh NDVs in domestic poultry in China. The complete genome length of the three isolates was 15,192 nucleotides, and the motif at the cleavage site of F protein was 112RRRRR/F117 or 112RRRKR/F117, which was typical of virulent NDV. Phylogenetic analysis based on the F gene revealed that the three viruses had close relationship with the sub-genotype VIIh virus isolated from wild bird in 2011 in China. These viruses might have formed a stable lineage in poultry during 2012-2016 and have the potential to cause enzootic in China. Our study revealed the genetic and phylogenetic characteristics of the three sub-genotype VIIh isolates, which could help us to better understand the epidemiological context of these viruses.
Collapse
|
16
|
Esmaelizad M, Mayahi V. Analysis of natural recombination and host-related evolutionary dynamics of avian avulavirus 1 isolates based on positive and negative selection from 1948 to 2017. Arch Virol 2019; 164:717-724. [DOI: 10.1007/s00705-018-04130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022]
|
17
|
Shahar E, Haddas R, Goldenberg D, Lublin A, Bloch I, Bachner Hinenzon N, Pitcovski J. Newcastle disease virus: is an updated attenuated vaccine needed? Avian Pathol 2018; 47:467-478. [PMID: 29897786 DOI: 10.1080/03079457.2018.1488240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Newcastle disease virus (NDV) is a major cause of infectious mortality and morbidity in poultry worldwide. It is an enveloped virus with two outer-membrane proteins-haemagglutinin-neuraminidase (HN) and fusion protein (F)-that induce neutralizing antibodies. All NDV strains belong to one serotype. Yet, NDV vaccines, derived from genotype II, do not fully prevent infection or shedding of viruses from other genotypes. The aim of this study was to test if an updated vaccine is required. For this purpose, NDVs isolated from infected, albeit heavily vaccinated, flocks were genetically and immunologically characterized. Amino acid differences in F and HN protein sequences were identified between the vaccine strain and each of the isolates, some specifically at the neutralization sites. Whereas all tested isolates showed similar haemagglutination-inhibition (HI) titres, 100-100,000 times higher antibody-to-virus ratios were needed to neutralize viral propagation in embryos by the field isolates versus the vaccine strain. As a result, a model and an equation were developed to explain the phenomenon of escape in one-serotype viruses and to calculate the HI values needed for protection, depending on variation rate at key positions. In conclusion, to confer full protection against NDVs that differ from the vaccine strain at the neutralizing epitopes, very high levels of antibodies should be raised and maintained to compensate for the reduction in the number of effective epitopes; alternatively, an adjusted attenuated vaccine should be developed-a task made possible in the current era of reverse vaccinology.
Collapse
Affiliation(s)
- Ehud Shahar
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Ruth Haddas
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Dana Goldenberg
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | - Avishai Lublin
- b Division of Avian Diseases , Kimron Veterinary Institute , Bet-Dagan , Israel
| | - Itai Bloch
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel
| | | | - Jacob Pitcovski
- a MIGAL - Galilee Technology Center , Kiryat Shmona , Israel.,c Department of Biotechnology , Tel-Hai Academic College , Kiryat Shmona , Israel
| |
Collapse
|
18
|
Triosanti LS, Wibowo MH, Widayanti R. Molecular characterization of hemagglutinin-neuraminidase fragment gene of Newcastle disease virus isolated from periodically-vaccinated farms. Vet World 2018; 11:657-666. [PMID: 29915505 PMCID: PMC5993761 DOI: 10.14202/vetworld.2018.657-666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Newcastle disease (ND) caused by avian paramyxovirus serotype-1 (APMV-1) is long known as an acute contagious and infectious disease of various bird species. Prior studies have acknowledged that the virus could cause up to 100% morbidity and mortality as well as reducing eggs production. In theory, hemagglutinin-neuraminidase (HN) in ND virus (NDV) is one of the surface glycoproteins that functions during the attachment, assembly, and maturation of the virus. On the fields, Indonesia has been recognized as an endemic country for ND where continuous outbreaks of ND in commercial chicken farms have been reported despite the implementation of periodical vaccination programs. Thus, this study aims at characterizing NDV isolated from periodically vaccinated commercial farms, comparing its genetic correlation based on their HN gene fragment with registered NDV originated from Indonesia as well as with existing vaccine strains. Materials and Methods: The HN gene fragment of NDV isolated from well-vaccinated farms was amplified using primer pairs of forward 5’ GTGAGTGCAACCCCTTTAGGTTGT 3’ and reverse 3’ TAGACCCCAGTGATGCATGAGTTG 3’ with a 694 bp product length. The nucleotide sequences of nine samples, which were gathered from Kulon Progo, Gunung Kidul (2), Boyolali (2), Magelang, Muntilan (2), Palembang, and Medan, were later compared with the sequences of HN gene of NDV available in NCBI Genbank database. The amino acid sequence analysis and multiple sequence alignment were conducted using the Mega7 program. Result: The data analysis on amino acid sequences showed that the structure of amino acid residue at positions 345-353 for all isolates appears to be PDEQDYQIR. The structure is the same as for archived samples from Indonesia and either LaSota or B1 vaccine strains. The amino acid distance between observed isolates and LaSota vaccine strain is 8.2-8.8% with a homology value at 91.2-91.7%. Conclusion: Looking at amino acid sequence analysis, LaSota vaccines can considerably be stated as being protective against ND disease outbreak. However, the distant homology value from a perfect condition for the protection might have acted as the root cause of vaccination failures.
Collapse
Affiliation(s)
- Lucia S Triosanti
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Designing a Novel Recombinant HN Protein with Multi Neutralizing Antigenic Sites and Auto Tag Removal Ability Based on NDV-VIIj for Diagnosis and Vaccination Application. Indian J Microbiol 2018; 58:326-331. [PMID: 30013277 DOI: 10.1007/s12088-018-0727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
Abstract
Hemagglutinin-neuraminidase (HN) protein besides its mediation in viral pathogenesis, is composed of various antigenic sites which stimulate production of host's antibodies. Thus, application of this protein in serological tests and vaccination plays a major role in biosecurity and control programs. In the present study, we designed a recombinant HN protein containing different neutralizing antigenic sites with velogenic patterns, and sub-cloned it into pET-43.1a+ expression vector. The expression of NusA-HN recombinant protein was induced. Affinity chromatography protein purification using HisPur™ Ni-NTA was then conducted. Moreover, we performed western-blot technique using HRP-conjugated Anti His-Tag. Results revealed that following induction of recombinant protein, two distinct bands of HN-61 kDa and NusA-63 kDa were purified and identified by western-blotting. We recommend further analysis should be carried out to determine the functional role of this recombinant protein in enzyme-linked immunosorbent assays for Newcastle disease diagnosis. This HN protein containing multi neutralizing antigenic sites might also be applicable in vaccination programs to increase vaccines potency.
Collapse
|
20
|
Vázquez N, Vieira CP, Amorim BSR, Torres A, López-Fernández H, Fdez-Riverola F, Sousa JLR, Reboiro-Jato M, Vieira J. Large Scale Analyses and Visualization of Adaptive Amino Acid Changes Projects. Interdiscip Sci 2018; 10:24-32. [PMID: 29383564 PMCID: PMC5838210 DOI: 10.1007/s12539-018-0282-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/02/2022]
Abstract
When changes at few amino acid sites are the target of selection, adaptive amino acid changes in protein sequences can be identified using maximum-likelihood methods based on models of codon substitution (such as codeml). Although such methods have been employed numerous times using a variety of different organisms, the time needed to collect the data and prepare the input files means that tens or hundreds of coding regions are usually analyzed. Nevertheless, the recent availability of flexible and easy to use computer applications that collect relevant data (such as BDBM) and infer positively selected amino acid sites (such as ADOPS), means that the entire process is easier and quicker than before. However, the lack of a batch option in ADOPS, here reported, still precludes the analysis of hundreds or thousands of sequence files. Given the interest and possibility of running such large-scale projects, we have also developed a database where ADOPS projects can be stored. Therefore, this study also presents the B+ database, which is both a data repository and a convenient interface that looks at the information contained in ADOPS projects without the need to download and unzip the corresponding ADOPS project file. The ADOPS projects available at B+ can also be downloaded, unzipped, and opened using the ADOPS graphical interface. The availability of such a database ensures results repeatability, promotes data reuse with significant savings on the time needed for preparing datasets, and effortlessly allows further exploration of the data contained in ADOPS projects.
Collapse
Affiliation(s)
- Noé Vázquez
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Universidade de Vigo, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Bárbara S R Amorim
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - André Torres
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Hugo López-Fernández
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Universidade de Vigo, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Florentino Fdez-Riverola
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Universidade de Vigo, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
| | - José L R Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Miguel Reboiro-Jato
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Universidade de Vigo, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
21
|
Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). INFECTION GENETICS AND EVOLUTION 2016; 39:22-34. [PMID: 26792710 DOI: 10.1016/j.meegid.2016.01.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/16/2022]
Abstract
Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.
Collapse
|
22
|
Flores-López CA, Machado CA. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges? INFECTION GENETICS AND EVOLUTION 2015; 33:37-46. [DOI: 10.1016/j.meegid.2015.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 01/21/2023]
|
23
|
Miller PJ, Afonso CL, El Attrache J, Dorsey KM, Courtney SC, Guo Z, Kapczynski DR. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:505-513. [PMID: 23796788 DOI: 10.1016/j.dci.2013.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/10/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Different genotypes of avian paramyxovirus serotype-1 virus (APMV-1) circulate in many parts of the world. Traditionally, Newcastle disease virus (NDV) is recognized as having two major divisions represented by classes I and II, with class II being further divided into sixteen genotypes. Although all NDV are members of APMV-1 and are of one serotype, antigenic and genetic diversity is observed between the different genotypes. Reports of vaccine failure from many countries and reports by our lab on the reduced ability of classical vaccines to significantly decrease viral replication and shedding have created renewed interest in developing vaccines formulated with genotypes homologous to the virulent NDV (vNDV) circulating in the field. We assessed how the amount and specificity of humoral antibodies induced by inactivated vaccines affected viral replication, clinical protection and evaluated how non-homologous (heterologous) antibody levels induced by live NDV vaccines relate to transmission of vNDV. In an experimental setting, all inactivated NDV vaccines protected birds from morbidity and mortality, but higher and more specific levels of antibodies were required to significantly decrease viral replication. It was possible to significantly decrease viral replication and shedding with high levels of antibodies and those levels could be more easily reached with vaccines formulated with NDV of the same genotype as the challenge viruses. However, when the levels of heterologous antibodies were sufficiently high, it was possible to prevent transmission. As the level of humoral antibodies increase in vaccinated birds, the number of infected birds and the amount of vNDV shed decreased. Thus, in an experimental setting the effective levels of humoral antibodies could be increased by (1) increasing the homology of the vaccine to the challenge virus, or (2) allowing optimal time for the development of the immune response.
Collapse
Affiliation(s)
- Patti J Miller
- Exotic and Emerging Avian Disease Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, United States.
| | | | | | | | | | | | | |
Collapse
|
24
|
Briand FX, Massin P, Jestin V. Characterisation of a type 1 Avian Paramyxovirus belonging to a divergent group. Vet Microbiol 2013; 168:25-33. [PMID: 24238668 DOI: 10.1016/j.vetmic.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/24/2022]
Abstract
Newcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported. The only full genome strain of this group is presently characterised from the point of view of codon usage with reference to class I and class II specificities. Class-specific residues were identified on HN and F proteins that are the two major proteins involved in cell attachment and pathogenicity. Comparison of protein patterns and codon usage for this newly identified APMV-1 strain indicates it is similar to class I viruses but contains a few characteristics close to the viruses of class II. Transmission of viruses from this recently identified divergent group from wild birds to domestic birds could have a major impact on the domestic poultry industry.
Collapse
Affiliation(s)
- François-Xavier Briand
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France.
| | - Pascale Massin
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France
| | - Véronique Jestin
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology and Parasitology Unit, BP 53, 22440 Ploufragan, France; European University of Brittany, France
| |
Collapse
|
25
|
Complete genome sequences of newcastle disease virus strains isolated from three different poultry species in china. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00198-12. [PMID: 23950112 PMCID: PMC3744668 DOI: 10.1128/genomea.00198-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In 2000, three Newcastle disease virus (NDV) strains were isolated from outbreaks of infection in layers, ducklings, and geese in the same region of China during the same time period. Here, we report their complete genome sequences, which belong to the NDV genotype VIId. This discovery might provide clues as to the evolution of the NDVs of different avian origins.
Collapse
|
26
|
Choi KS, Kye SJ, Kim JY, Lee HS. Genetic and Antigenic Variation of Shedding Viruses from Vaccinated Chickens After Challenge with Virulent Newcastle Disease Virus. Avian Dis 2013; 57:303-6. [DOI: 10.1637/10379-092112-resnote.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Vieira CP, Fonseca NA, Vieira J. ADOPS - Automatic Detection Of Positively Selected Sites. J Integr Bioinform 2012. [DOI: 10.1515/jib-2012-200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Summary Maximum-likelihood methods based on models of codon substitution have been widely used to infer positively selected amino acid sites that are responsible for adaptive changes. Nevertheless, in order to use such an approach, software applications are required to align protein and DNA sequences, infer a phylogenetic tree and run the maximum-likelihood models. Therefore, a significant effort is made in order to prepare input files for the different software applications and in the analysis of the output of every analysis. In this paper we present the ADOPS (Automatic Detection Of Positively Selected Sites) software. It was developed with the goal of providing an automatic and flexible tool for detecting positively selected sites given a set of unaligned nucleotide sequence data. An example of the usefulness of such a pipeline is given by showing, under different conditions, positively selected amino acid sites in a set of 54 Coffea putative S-RNase sequences. ADOPS software is freely available and can be downloaded from http://sing.ei.uvigo.es/ADOPS.
Collapse
Affiliation(s)
- David Reboiro-Jato
- 1Departamento de Informática, Universidade de Vigo, http://www.esei.uvigo.es/, Spain
| | - Miguel Reboiro-Jato
- 1Departamento de Informática, Universidade de Vigo, http://www.esei.uvigo.es/, Spain
| | | | - Cristina P. Vieira
- 2Instituto de Biologia Molecular e Celular, Universidade do Porto, http://www.ibmc.up.pt, Portugal
| | - Nuno A. Fonseca
- 3CRACS-INESC Porto LA, Universidade do Porto, http://cracs.fc.up.pt/ United Kingdom of Great Britain and Northern Ireland
- 4EMBL-European Bioinformatics Institute, http://www.ebi.ac.uk/, United Kingdom of Great Britain and Northern Ireland
| | - Jorge Vieira
- 2Instituto de Biologia Molecular e Celular, Universidade do Porto, http://www.ibmc.up.pt, Portugal
| |
Collapse
|